1
|
Shen L, Zhang J, Fan S, Ping L, Yu H, Xu F, Cheng Y, Xu X, Yang C, Zhou C. Cortical thickness abnormalities in autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:65-77. [PMID: 36542200 DOI: 10.1007/s00787-022-02133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The pathological mechanism of autism spectrum disorder (ASD) remains unclear. Nowadays, surface-based morphometry (SBM) based on structural magnetic resonance imaging (sMRI) techniques have reported cortical thickness (CT) variations in ASD. However, the findings were inconsistent and heterogeneous. This current meta-analysis conducted a whole-brain vertex-wise coordinate-based meta-analysis (CBMA) on CT studies to explore the most noticeable and robust CT changes in ASD individuals by applying the seed-based d mapping (SDM) program. A total of 26 investigations comprised 27 datasets were included, containing 1,635 subjects with ASD and 1470 HC, along with 94 coordinates. Individuals with ASD exhibited significantly altered CT in several regions compared to HC, including four clusters with thicker CT in the right superior temporal gyrus (STG.R), the left middle temporal gyrus (MTG.L), the left anterior cingulate/paracingulate gyri, the right superior frontal gyrus (SFG.R, medial orbital parts), as well as three clusters with cortical thinning including the left parahippocampal gyrus (PHG.L), the right precentral gyrus (PCG.R) and the left middle frontal gyrus (MFG.L). Adults with ASD only demonstrated CT thinning in the right parahippocampal gyrus (PHG.R), revealed by subgroup meta-analyses. Meta-regression analyses found that CT in STG.R was positively correlated with age. Meanwhile, CT in MFG.L and PHG.L had negative correlations with the age of ASD individuals. These results suggested a complicated and atypical cortical development trajectory in ASD, and would provide a deeper understanding of the neural mechanism underlying the cortical morphology in ASD.
Collapse
Affiliation(s)
- Liancheng Shen
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Junqing Zhang
- Department of Pharmacy, Shandong Daizhuang Hospital, Jining, China
| | - Shiran Fan
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Fangfang Xu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunyan Yang
- School of Rehabilitation Medicine, Jining Medical University, Jining, China.
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
2
|
Ahtam B, Braeutigam S, Bailey A. Semantic Processing in Autism Spectrum Disorders Is Associated With the Timing of Language Acquisition: A Magnetoencephalographic Study. Front Hum Neurosci 2020; 14:267. [PMID: 32754020 PMCID: PMC7366733 DOI: 10.3389/fnhum.2020.00267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Individuals with autism show difficulties in using sentence context to identify the correct meaning of ambiguous words, such as homonyms. In this study, the brain basis of sentence context effects on word understanding during reading was examined in autism spectrum disorder (ASD) and typical development (TD) using magnetoencephalography. The correlates of a history of developmental language delay in ASD were also investigated. Event related field responses at early (150 ms after the onset of a final word) and N400 latencies are reported for three different types of sentence final words: dominant homonyms, subordinate homonyms, and unambiguous words. Clear evidence for semantic access was found at both early and conventional N400 latencies in both TD participants and individuals with ASD with no history of language delay. By contrast, modulation of evoked activity related to semantic access was weak and not significant at early latencies in individuals with ASD with a history of language delay. The reduced sensitivity to semantic context in individuals with ASD and language delay was accompanied by strong right hemisphere lateralization at early and N400 latencies; such strong activity was not observed in TD individuals and individuals with ASD without a history of language delay at either latency. These results provide new evidence and support for differential neural mechanisms underlying semantic processing in ASD, and indicate that delayed language acquisition in ASD is associated with different lateralization and processing of language.
Collapse
Affiliation(s)
- Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Anthony Bailey
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Li G, Rossbach K, Jiang W, Du Y. Resting-state brain activity in Chinese boys with low functioning autism spectrum disorder. Ann Gen Psychiatry 2018; 17:47. [PMID: 30473720 PMCID: PMC6234582 DOI: 10.1186/s12991-018-0217-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND This study aimed to explore the resting-state fMRI changes in Chinese boys with low functioning autism spectrum disorder (LFASD) and the correlation with clinical symptoms. METHODS The current study acquired resting-state fMRI data from 15 Chinese boys with LFASD and 15 typically developing (TD) boys to examine the local brain activity using the regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) indexes; the researchers also examined these measures and their possible relationships with clinical symptoms using the autism behavior checklist. RESULTS Results indicated that boys with LFASD exhibited increased ReHo in the right precuneus and inferior parietal gyrus (IPG), increased ALFF in right middle temporal gyrus, angular gyrus and IPG. However, no correlation was found between the ALFF/ReHo score and clinical symptoms in the LFASD group. CONCLUSIONS Some of the brain regions had ReHo/ALFF values that were higher in the boys with LFASD than the TD group and these differentiated brain areas in boys with LFASD were all on the right cerebrum, which supported 'atypical rightward asymmetry' in boys with LFASD.
Collapse
Affiliation(s)
- Gaizhi Li
- Shanxi Medical University, The First Hospital of Shanxi Medical University, Taiyuan, China.,3Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No 600 Wanping Nan Road, Xuhui, Shanghai, 200030 China
| | | | - Wenqing Jiang
- 3Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No 600 Wanping Nan Road, Xuhui, Shanghai, 200030 China
| | - Yasong Du
- 3Department of Child & Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No 600 Wanping Nan Road, Xuhui, Shanghai, 200030 China
| |
Collapse
|
4
|
Sato W, Kochiyama T, Uono S, Yoshimura S, Kubota Y, Sawada R, Sakihama M, Toichi M. Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Front Hum Neurosci 2017; 11:395. [PMID: 28824399 PMCID: PMC5543091 DOI: 10.3389/fnhum.2017.00395] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral impairment in social interactions. Although theoretical and empirical evidence suggests that impairment in the social brain network could be the neural underpinnings of ASD, previous structural magnetic resonance imaging (MRI) studies in adults with ASD have not provided clear support for this, possibly due to confounding factors, such as language impairments. To further explore this issue, we acquired structural MRI data and analyzed gray matter volume in adults with ASD (n = 36) who had no language impairments (diagnosed with Asperger’s disorder or pervasive developmental disorder not otherwise specified, with symptoms milder than those of Asperger’s disorder), had no comorbidity, and were not taking medications, and in age- and sex-matched typically developing (TD) controls (n = 36). Univariate voxel-based morphometry analyses revealed that regional gray matter volume was lower in the ASD than in the control group in several brain regions, including the right inferior occipital gyrus, left fusiform gyrus, right middle temporal gyrus, bilateral amygdala, right inferior frontal gyrus, right orbitofrontal cortex, and left dorsomedial prefrontal cortex. A multivariate approach using a partial least squares (PLS) method showed that these regions constituted a network that could be used to discriminate between the ASD and TD groups. A PLS discriminant analysis using information from these regions showed high accuracy, sensitivity, specificity, and precision (>80%) in discriminating between the groups. These results suggest that reduced gray matter volume in the social brain network represents the neural underpinnings of behavioral social malfunctioning in adults with ASD.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute InternationalKyoto, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga UniversityShiga, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | | | - Motomi Toichi
- Faculty of Human Health Science, Kyoto UniversityKyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder ResearchKyoto, Japan
| |
Collapse
|
5
|
Sato W, Uono S, Kochiyama T, Yoshimura S, Sawada R, Kubota Y, Sakihama M, Toichi M. Structural Correlates of Reading the Mind in the Eyes in Autism Spectrum Disorder. Front Hum Neurosci 2017; 11:361. [PMID: 28747876 PMCID: PMC5506186 DOI: 10.3389/fnhum.2017.00361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Behavioral studies have shown that individuals with autism spectrum disorder (ASD) have impaired ability to read the mind in the eyes. Although this impairment is central to their social malfunctioning, its structural neural correlates remain unclear. To investigate this issue, we assessed Reading the Mind in the Eyes Test, revised version (Eyes Test) and acquired structural magnetic resonance images in adults with high-functioning ASD (n = 19) and age-, sex- and intelligence quotient-matched typically developing (TD) controls (n = 19). On the behavioral level, the Eyes Test scores were lower in the ASD group than in the control group. On the neural level, an interaction between group and Eyes Test score was found in the left temporoparietal junction (TPJ). A positive association between the Eyes Test score and gray matter volume of this region was evident in the control group, but not in the ASD group. This finding suggests that the failure to develop appropriate structural neural representations in the TPJ may underlie the impaired ability of individuals with ASD to read the mind in the eyes. These behavioral and neural findings provide support for the theories that impairments in processing eyes and the ability to infer others' mental states are the core symptoms of ASD, and that atypical features in the social brain network underlie such impairments.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto UniversityKyoto, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto UniversityKyoto, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute InternationalKyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto UniversityKyoto, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto UniversityKyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga UniversityHikone, Japan
| | | | - Motomi Toichi
- Faculty of Human Health Science, Kyoto UniversityKyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder ResearchKyoto, Japan
| |
Collapse
|
6
|
Sharda M, Foster NEV, Tryfon A, Doyle-Thomas KAR, Ouimet T, Anagnostou E, Evans AC, Zwaigenbaum L, Lerch JP, Lewis JD, Hyde KL. Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder. Cereb Cortex 2017; 27:1849-1862. [PMID: 26891985 DOI: 10.1093/cercor/bhw024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD.
Collapse
Affiliation(s)
- Megha Sharda
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | - Nicholas E V Foster
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | - Ana Tryfon
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, Canada H2V 2J2.,Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | - Tia Ouimet
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | | | - Alan C Evans
- Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, CanadaH3A 2B4
| | | | - Jason P Lerch
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, CanadaM5T 3H7
| | - John D Lewis
- Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, CanadaH3A 2B4
| | - Krista L Hyde
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, Canada H2V 2J2.,Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
7
|
Jack A, Pelphrey K. Annual Research Review: Understudied populations within the autism spectrum - current trends and future directions in neuroimaging research. J Child Psychol Psychiatry 2017; 58:411-435. [PMID: 28102566 PMCID: PMC5367938 DOI: 10.1111/jcpp.12687] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions that vary in both etiology and phenotypic expression. Expressions of ASD characterized by a more severe phenotype, including autism with intellectual disability (ASD + ID), autism with a history of developmental regression (ASD + R), and minimally verbal autism (ASD + MV) are understudied generally, and especially in the domain of neuroimaging. However, neuroimaging methods are a potentially powerful tool for understanding the etiology of these ASD subtypes. SCOPE AND METHODOLOGY This review evaluates existing neuroimaging research on ASD + MV, ASD + ID, and ASD + R, identified by a search of the literature using the PubMed database, and discusses methodological, theoretical, and practical considerations for future research involving neuroimaging assessment of these populations. FINDINGS There is a paucity of neuroimaging research on ASD + ID, ASD + MV, and ASD + R, and what findings do exist are often contradictory, or so sparse as to be ungeneralizable. We suggest that while greater sample sizes and more studies are necessary, more important would be a paradigm shift toward multimodal (e.g. imaging genetics) approaches that allow for the characterization of heterogeneity within etiologically diverse samples.
Collapse
Affiliation(s)
- Allison Jack
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Ashburn, VA
- Department of Pharmacology and Physiology, The George Washington University, Washington, D.C
| | - Kevin Pelphrey
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Ashburn, VA
- Department of Pharmacology and Physiology, The George Washington University, Washington, D.C
- Children's National Health System, Washington, D.C., USA
| |
Collapse
|
8
|
Smith E, Thurm A, Greenstein D, Farmer C, Swedo S, Giedd J, Raznahan A. Cortical thickness change in autism during early childhood. Hum Brain Mapp 2016; 37:2616-29. [PMID: 27061356 DOI: 10.1002/hbm.23195] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/25/2016] [Accepted: 03/16/2016] [Indexed: 11/11/2022] Open
Abstract
Structural magnetic resonance imaging (MRI) scans at high spatial resolution can detect potential foci of early brain dysmaturation in children with autism spectrum disorders (ASD). In addition, comparison between MRI and behavior measures over time can identify patterns of brain change accompanying specific outcomes. We report structural MRI data from two time points for a total of 84 scans in children with ASD and 30 scans in typical controls (mean age time one = 4.1 years, mean age at time two = 6.6 years). Surface-based cortical morphometry and linear mixed effects models were used to link changes in cortical anatomy to both diagnostic status and individual differences in changes in language and autism severity. Compared with controls, children with ASD showed accelerated gray matter volume gain with age, which was driven by a lack of typical age-related cortical thickness (CT) decrease within 10 cortical regions involved in language, social cognition, and behavioral control. Greater expressive communication gains with age in children with ASD were associated with greater CT gains in a set of right hemisphere homologues to dominant language cortices, potentially identifying a compensatory system for closer translational study. Hum Brain Mapp 37:2616-2629, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elizabeth Smith
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Audrey Thurm
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Deanna Greenstein
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Cristan Farmer
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Susan Swedo
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Jay Giedd
- Department of Psychiatry at University of California, San Diego, California
| | - Armin Raznahan
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland
| |
Collapse
|