1
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
2
|
Karagyaur M, Primak A, Bozov K, Sheleg D, Arbatsky M, Dzhauari S, Illarionova M, Semina E, Samokhodskaya L, Klimovich P, Velichko A, Drach M, Sotskaya E, Popov V, Rubina K, Parfenenko M, Makus J, Tsygankov B, Tkachuk V, Neyfeld E. Novel missense variants in brain morphogenic genes associated with depression and schizophrenia. Front Psychiatry 2024; 15:1338168. [PMID: 38699454 PMCID: PMC11063365 DOI: 10.3389/fpsyt.2024.1338168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Impaired function of brain morphogenic genes is considered one of the predisposing factors for the manifestation of psychiatric and cognitive disorders, such as paranoid schizophrenia (SCZ) and major depressive disorder (MDD). Identification of such genes (genes of neurotrophic factors and guidance molecules among them) and their deleterious genetic variants serves as a key to diagnosis, prevention, and possibly treatment of such disorders. In this study, we have examined the prevalence of genomic variants in brain morphogenic genes in individuals with SCZ and MDD within a Russian population. Methods We have performed whole-exome sequencing of 21 DNA samples: 11 from individuals with SCZ and 10 with MDD, followed by ARMS (Amplification-Refractory Mutation System) based screening of detected single nucleotide variants (SNVs) in larger groups: 102 for individuals with SCZ, 79 for those with MDD and 103 for healthy donors. Results Whole-exome sequencing has revealed 226 missense mutations in 79 genes (out of 140 studied), some of which occur in patients with psychiatric disorders significantly more frequently than in healthy donors. We have identified previously undescribed genomic variants in brain morphogenic genes: CDH2 (rs1944294-T and rs17445840-T), DCHS2 (rs11935573-G and rs12500437-G/T) and CDH23 (rs1227051-G/A), significantly associated with the incidence of SCZ and MDD in the Russian population. For some SNVs (rs6265-T, rs1944294-T, rs11935573-G, rs4760-G) sex-biased differences in their prevalence between SCZ/MDD patients and healthy donors was detected. Discussion However, the functional significance of the SNVs identified has still to be confirmed in cellular and animal models. Once it is fulfilled, these SNVs have the potential to complement the diagnostic toolbox for assessing susceptibility to mental disorders. The data obtained indirectly confirm the importance of adequate brain structure formation for its correct functioning and preservation of mental health.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Sheleg
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Mikhail Arbatsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Larisa Samokhodskaya
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Arkadiy Velichko
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Drach
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Mariia Parfenenko
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Julia Makus
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Tsygankov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Neyfeld
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Lanjewar AL, Jagetia S, Khan ZM, Eagleson KL, Levitt P. Subclass-specific expression patterns of MET receptor tyrosine kinase during development in medial prefrontal and visual cortices. J Comp Neurol 2023; 531:132-148. [PMID: 36201439 PMCID: PMC9691614 DOI: 10.1002/cne.25418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Met encodes a receptor tyrosine kinase (MET) that is expressed during development and regulates cortical synapse maturation. Conditional deletion of Met in the nervous system during embryonic development leads to deficits in adult contextual fear learning, a medial prefrontal cortex (mPFC)-dependent cognitive task. MET also regulates the timing of critical period plasticity for ocular dominance in primary visual cortex (V1). However, the underlying circuitry responsible remains unknown. Therefore, this study determines the broad expression patterns of MET throughout postnatal development in mPFC and V1 projection neurons (PNs), providing insight into similarities and differences in the neuronal subtypes and temporal patterns of MET expression between cortical areas. Using a transgenic mouse line that expresses green fluorescent protein (GFP) in Met+ neurons, immunofluorescence and confocal microscopy were performed to visualize MET-GFP+ cell bodies and PN subclass-specific protein markers. Analyses reveal that the MET expression is highly enriched in infragranular layers of mPFC, but in supragranular layers of V1. Interestingly, temporal regulation of the percentage of MET+ neurons across development not only differs between cortical regions but also is distinct between lamina within a cortical region. Further, MET is expressed predominantly in the subcerebral PN subclass in mPFC, but the intratelencephalic PN subclass in V1. The data suggest that MET signaling influences the development of distinct circuits in mPFC and V1 that underlie subcerebral and intracortical functional deficits following Met deletion, respectively.
Collapse
Affiliation(s)
- Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA,Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sonum Jagetia
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zuhayr M. Khan
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kathie L. Eagleson
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Reyes-Robles T, Olow AK, Bechtel TJ, Lesley SA, Fadeyi OO, Oslund RC. Nanoscale Mapping of EGFR and c-MET Protein Environments on Lung Cancer Cell Surfaces via Therapeutic Antibody Photocatalyst Conjugates. ACS Chem Biol 2022; 17:2304-2314. [PMID: 35939534 DOI: 10.1021/acschembio.2c00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Receptor tyrosine kinases are involved in essential signaling roles that impact cell growth, differentiation, and proliferation. The overexpression or mutation of these proteins can lead to aberrant signaling that has been directly linked to a number of diseases including cancer cell formation and progression. This has led to intense clinical focus on modulating RTK activity through direct targeting of signaling activity or cell types harboring aberrant RTK behavior. In particular, epidermal growth factor receptor (EGFR) has attracted intense clinical attention due to the impact of inhibiting this RTK on tumor growth. However, mutations incurred through targeting EGFR have led to therapeutic resistance that involves not only direct mutations to the EGFR protein but also the involvement of other RTKs, such as c-MET, that can overcome therapeutic-based EGFR inhibition effects. This has, not surprisingly, led to co-targeting strategies of RTKs such as EGFR and c-MET to overcome resistance mechanisms. While the ability to co-target these proteins has led to success in the clinic, a more comprehensive understanding of their proximal environments, particularly in the context of therapeutic modalities, could further enhance both our understanding of their signaling biology and provide additional avenues for targeting these surface proteins. Thus, to investigate EGFR and c-MET protein microenvironments, we utilized our recently developed iridium photocatalyst-based microenvironment mapping technology to catalog EGFR and c-MET surface environments on non-small cell lung cancer cell lines. Through this approach, we enriched EGFR and c-MET from the cell surface and identified known EGFR and c-MET associators as well as previously unidentified proximal proteins.
Collapse
Affiliation(s)
- Tamara Reyes-Robles
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Aleksandra K Olow
- Genetics and Pharmacogenomics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Tyler J Bechtel
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Scott A Lesley
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Olugbeminiyi O Fadeyi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| | - Rob C Oslund
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02141, United States
| |
Collapse
|
5
|
Rysenkova KD, Troyanovskiy KE, Klimovich PS, Bulyakova TR, Shelomentseva EM, Shmakova AA, Tanygina DY, Ivashkina OI, Anokhin KV, Karagyaur MN, Zvereva MI, Rubina KA, Tkachuk VA, Semina EV. Identification of a Novel Small RNA Encoded in the Mouse Urokinase Receptor uPAR Gene ( Plaur) and Its Molecular Target Mef2d. Front Mol Neurosci 2022; 15:865858. [PMID: 35875662 PMCID: PMC9298986 DOI: 10.3389/fnmol.2022.865858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
Urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored receptor of urokinase (uPA), which is involved in brain development, nerve regeneration, wound healing and tissue remodeling. We have recently shown that Plaur, which encodes uPAR, is an early response gene in murine brain. Assumingly, diverse functions of Plaur might be attributed to hypothetical, unidentified microRNAs encoded within introns of the Plaur gene. Using a bioinformatic approach we identified novel small RNAs within the Plaur gene and named them Plaur-miR1-3p and Plaur-miR1-5p. We confirmed Plaur-dependent expression of Plaur-miR1-3p and Plaur-miR1-5p in the mouse brain and mouse neuroblastoma Neuro2a cells. Utilizing an in silico MR-microT algorithm in DianaTools we selected two target genes – Mef2d and Emx2 with the highest binding scores to small RNAs selected from identified Plaur-Pre-miR1. Furthermore, sequencing of mouse brain samples for Plaur-miR1-5p target genes revealed two more genes—Nrip3 and Snrnp200. The expression of Emx2, Mef2d, and Snrnp200 in the mouse brain and Mef2d and Snrnp200 in Neuro2a cells correlated with expression of Plaur and small RNAs—Plaur-miR1-3p and Plaur-miR1-5p. Finally, we demonstrated elevated MEF2D protein expression in the mouse brain after Plaur induction and displayed activating effects of Plaur-miR1-5p on Mef2d expression in Neuro2a cells using Luciferase reporter assay. In conclusion, we have identified Plaur-miR1-3p and Plaur-miR1-5p as novel small RNAs encoded in the Plaur gene. This finding expands the current understanding of Plaur function in brain development and functioning.
Collapse
Affiliation(s)
- Karina D Rysenkova
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology named after academician E.I. Chazov, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Polina S Klimovich
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology named after academician E.I. Chazov, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Anna A Shmakova
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology named after academician E.I. Chazov, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Daria Yu Tanygina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga I Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.,Laboratory of Neuroscience, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Konstantin V Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Maxim N Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maria I Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology named after academician E.I. Chazov, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Semina
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology named after academician E.I. Chazov, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022; 16:929469. [PMID: 35833090 PMCID: PMC9272671 DOI: 10.3389/fnins.2022.929469] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.
Collapse
Affiliation(s)
- Alfredo Llorca
- Visual Neuroscience Laboratory, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburg, United Kingdom
- *Correspondence: Alfredo Llorca
| | - Ruben Deogracias
- Neuronal Circuits Formation and Brain Disorders Laboratory, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
- Ruben Deogracias
| |
Collapse
|
7
|
Chen K, Ma X, Nehme A, Wei J, Cui Y, Cui Y, Yao D, Wu J, Anderson T, Ferguson D, Levitt P, Qiu S. Time-delimited signaling of MET receptor tyrosine kinase regulates cortical circuit development and critical period plasticity. Mol Psychiatry 2021; 26:3723-3736. [PMID: 31900430 PMCID: PMC7332377 DOI: 10.1038/s41380-019-0635-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Normal development of cortical circuits, including experience-dependent cortical maturation and plasticity, requires precise temporal regulation of gene expression and molecular signaling. Such regulation, and the concomitant impact on plasticity and critical periods, is hypothesized to be disrupted in neurodevelopmental disorders. A protein that may serve such a function is the MET receptor tyrosine kinase, which is tightly regulated developmentally in rodents and primates, and exhibits reduced cortical expression in autism spectrum disorder and Rett Syndrome. We found that the peak of MET expression in developing mouse cortex coincides with the heightened period of synaptogenesis, but is precipitously downregulated prior to extensive synapse pruning and certain peak periods of cortical plasticity. These results reflect a potential on-off regulatory synaptic mechanism for specific glutamatergic cortical circuits in which MET is enriched. In order to address the functional significance of the 'off' component of the proposed mechanism, we created a controllable transgenic mouse line that sustains cortical MET signaling. Continued MET expression in cortical excitatory neurons disrupted synaptic protein profiles, altered neuronal morphology, and impaired visual cortex circuit maturation and connectivity. Remarkably, sustained MET signaling eliminates monocular deprivation-induced ocular dominance plasticity during the normal cortical critical period; while ablating MET signaling leads to early closure of critical period plasticity. The results demonstrate a novel mechanism in which temporal regulation of a pleiotropic signaling protein underlies cortical circuit maturation and timing of cortical critical period, features that may be disrupted in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ke Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Antoine Nehme
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Yan Cui
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jie Wu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Barrow Neurological Institute, St. Joseph's Hospital Medical Center, Phoenix, AZ, 85013, USA
| | - Trent Anderson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
8
|
Shmakova AA, Balatskiy AV, Kulebyakina MA, Schaub T, Karagyaur MN, Kulebyakin KY, Rysenkova KD, Tarabykin VS, Tkachuk VA, Semina EV. Urokinase Receptor uPAR Overexpression in Mouse Brain Stimulates the Migration of Neurons into the Cortex during Embryogenesis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Kast RJ, Wu HH, Levitt P. Developmental Connectivity and Molecular Phenotypes of Unique Cortical Projection Neurons that Express a Synapse-Associated Receptor Tyrosine Kinase. Cereb Cortex 2020; 29:189-201. [PMID: 29190358 DOI: 10.1093/cercor/bhx318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
The complex circuitry and cell-type diversity of the cerebral cortex are required for its high-level functions. The mechanisms underlying the diversification of cortical neurons during prenatal development have received substantial attention, but understanding of neuronal heterogeneity is more limited during later periods of cortical circuit maturation. To address this knowledge gap, connectivity analysis and molecular phenotyping of cortical neuron subtypes that express the developing synapse-enriched MET receptor tyrosine kinase were performed. Experiments used a MetGFP transgenic mouse line, combined with coexpression analysis of class-specific molecular markers and retrograde connectivity mapping. The results reveal that MET is expressed by a minor subset of subcerebral and a larger number of intratelencephalic projection neurons. Remarkably, MET is excluded from most layer 6 corticothalamic neurons. These findings are particularly relevant for understanding the maturation of discrete cortical circuits, given converging evidence that MET influences dendritic elaboration and glutamatergic synapse maturation. The data suggest that classically defined cortical projection classes can be further subdivided based on molecular characteristics that likely influence synaptic maturation and circuit wiring. Additionally, given that MET is classified as a high confidence autism risk gene, the data suggest that projection neuron subpopulations may be differentially vulnerable to disorder-associated genetic variation.
Collapse
Affiliation(s)
- Ryan J Kast
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.,Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,The Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hsiao-Huei Wu
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,The Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.,Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,The Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Ohira K. Dopamine as a growth differentiation factor in the mammalian brain. Neural Regen Res 2020; 15:390-393. [PMID: 31571646 PMCID: PMC6921355 DOI: 10.4103/1673-5374.266052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The catecholamine, dopamine, plays an important role in the central nervous system of mammals, including executive functions, motor control, motivation, arousal, reinforcement, and reward. Dysfunctions of the dopaminergic system lead to diseases of the brains, such as Parkinson's disease, Tourette's syndrome, and schizophrenia. In addition to its fundamental role as a neurotransmitter, there is evidence for a role as a growth differentiation factor during development. Recent studies suggest that dopamine regulates the development of γ-aminobutyric acidergic interneurons of the cerebral cortex. Moreover, in adult brains, dopamine increases the production of new neurons in the hippocampus, suggesting the promoting effect of dopamine on proliferation and differentiation of neural stem cells and progenitor cells in the adult brains. In this mini-review, I center my attention on dopaminergic functions in the cortical interneurons during development and further discuss cell therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Koji Ohira
- Laboratory of Nutritional Brain Science, Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
11
|
The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain. J Neurosci 2017; 37:11271-11284. [PMID: 29038237 DOI: 10.1523/jneurosci.1482-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, PlA2) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders.SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin β3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin β3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk.
Collapse
|
12
|
Eagleson KL, Xie Z, Levitt P. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism. Biol Psychiatry 2017; 81:424-433. [PMID: 27837921 PMCID: PMC5285483 DOI: 10.1016/j.biopsych.2016.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/11/2016] [Accepted: 08/28/2016] [Indexed: 02/07/2023]
Abstract
People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Zhihui Xie
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA
| | - Pat Levitt
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
13
|
Xie Z, Li J, Baker J, Eagleson KL, Coba MP, Levitt P. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse. Biol Psychiatry 2016; 80:933-942. [PMID: 27086544 PMCID: PMC5001930 DOI: 10.1016/j.biopsych.2016.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. METHODS Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. RESULTS Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. CONCLUSIONS The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs.
Collapse
Affiliation(s)
- Zhihui Xie
- Department of Pediatrics and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jing Li
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jonathan Baker
- College of Science, University of Notre Dame, South Bend, Indiana
| | - Kathie L Eagleson
- Department of Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California; Los Angeles, California
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California; Los Angeles, California; Program in Developmental Neurogenetics, Institute for the Developing Mind and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| |
Collapse
|
14
|
Jiang X, Lachance M, Rossignol E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. PROGRESS IN BRAIN RESEARCH 2016; 226:81-126. [PMID: 27323940 DOI: 10.1016/bs.pbr.2016.04.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAergic interneurons of the parvalbumin-positive fast-spiking basket cells subtype (PV INs) are important regulators of cortical network excitability and of gamma oscillations, involved in signal processing and cognition. Impaired development or function of PV INs has been associated with epilepsy in various animal models of epilepsy, as well as in some genetic forms of epilepsy in humans. In this review, we provide an overview of some of the experimental data linking PV INs dysfunction with epilepsy, focusing on disorders of the specification, migration, maturation, synaptic function, or connectivity of PV INs. Furthermore, we reflect on the potential therapeutic use of cell-type specific stimulation of PV INs within active networks and on the transplantation of PV INs precursors in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- X Jiang
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - M Lachance
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - E Rossignol
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada.
| |
Collapse
|
15
|
Unmasking a novel disease gene NEO1 associated with autism spectrum disorders by a hemizygous deletion on chromosome 15 and a functional polymorphism. Behav Brain Res 2016; 300:135-42. [DOI: 10.1016/j.bbr.2015.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/14/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022]
|
16
|
Eagleson KL, Lane CJ, McFadyen-Ketchum L, Solak S, Wu HH, Levitt P. Distinct intracellular signaling mediates C-MET regulation of dendritic growth and synaptogenesis. Dev Neurobiol 2016; 76:1160-81. [PMID: 26818605 DOI: 10.1002/dneu.22382] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/11/2015] [Accepted: 01/13/2016] [Indexed: 12/14/2022]
Abstract
Hepatocyte growth factor (HGF) activation of the MET receptor tyrosine kinase influences multiple neurodevelopmental processes. Evidence from human imaging and mouse models shows that, in the forebrain, disruptions in MET signaling alter circuit formation and function. One likely means of modulation is by controlling neuron maturation. Here, we examined the signaling mechanisms through which MET exerts developmental effects in the neocortex. In situ hybridization revealed that hgf is located near MET-expressing neurons, including deep neocortical layers and periventricular zones. Western blot analyses of neocortical crude membranes demonstrated that HGF-induced MET autophosphorylation peaks during synaptogenesis, with a striking reduction in activation between P14 and P17 just before pruning. In vitro analysis of postnatal neocortical neurons assessed the roles of intracellular signaling following MET activation. There is rapid, HGF-induced phosphorylation of MET, ERK1/2, and Akt that is accompanied by two major morphological changes: increases in total dendritic growth and synapse density. Selective inhibition of each signaling pathway altered only one of the two distinct events. MAPK/ERK pathway inhibition significantly reduced the HGF-induced increase in dendritic length, but had no effect on synapse density. In contrast, inhibition of the PI3K/Akt pathway reduced HGF-induced increases in synapse density, with no effect on dendritic length. The data reveal a key role for MET activation during the period of neocortical neuron growth and synaptogenesis, with distinct biological outcomes mediated via discrete MET-linked intracellular signaling pathways in the same neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1160-1181, 2016.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christianne J Lane
- Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lisa McFadyen-Ketchum
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sara Solak
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hsiao-Huei Wu
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Thompson BL, Levitt P. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 2015; 7:35. [PMID: 26523156 PMCID: PMC4628780 DOI: 10.1186/s11689-015-9131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. METHODS Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. RESULTS Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. CONCLUSIONS These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Collapse
Affiliation(s)
- Barbara L Thompson
- Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089 USA ; Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| |
Collapse
|
18
|
Russo AJ. Decreased Phosphorylated Protein Kinase B (Akt) in Individuals with Autism Associated with High Epidermal Growth Factor Receptor (EGFR) and Low Gamma-Aminobutyric Acid (GABA). Biomark Insights 2015; 10:89-94. [PMID: 26508828 PMCID: PMC4607071 DOI: 10.4137/bmi.s21946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway could contribute to the pathogenesis of autism spectrum disorders. In this study, phosphorylated Akt concentration was measured in 37 autistic children and 12, gender and age similar neurotypical, controls using an enzyme-linked immunosorbent assay. Akt levels were compared to biomarkers known to be associated with epidermal growth factor receptor (EGFR) and c-Met (hepatocyte growth factor (HGF) receptor) pathways and severity levels of 19 autism-related symptoms. We found phosphorylated Akt levels significantly lower in autistic children and low Akt levels correlated with high EGFR and HGF and low gamma-aminobutyric acid, but not other biomarkers. Low Akt levels also correlated significantly with increased severity of receptive language, conversational language, hypotonia, rocking and pacing, and stimming, These results suggest a relationship between decreased phosphorylated Akt and selected symptom severity in autistic children and support the suggestion that the AKT pathways may be associated with the etiology of autism.
Collapse
Affiliation(s)
- Anthony J Russo
- Department of Biology, Hartwick College, Oneonta, NY, USA. ; Pfeiffer Medical Center, Health Research Institute, Warrenville, IL, USA
| |
Collapse
|
19
|
Peyre E, Silva CG, Nguyen L. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex. Front Cell Neurosci 2015; 9:129. [PMID: 25926769 PMCID: PMC4396449 DOI: 10.3389/fncel.2015.00129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.
Collapse
Affiliation(s)
- Elise Peyre
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Carla G Silva
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium ; Wallon Excellence in Lifesciences and Biotechnology, University of Liège Liège, Belgium
| |
Collapse
|
20
|
Russo AJ. Increased Epidermal Growth Factor Receptor (EGFR) Associated with Hepatocyte Growth Factor (HGF) and Symptom Severity in Children with Autism Spectrum Disorders (ASDs). J Cent Nerv Syst Dis 2014; 6:79-83. [PMID: 25249767 PMCID: PMC4167315 DOI: 10.4137/jcnsd.s13767] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND One in 88 children in the US is thought to have one of the autism spectrum disorders (ASDs). ASDs are characterized by social impairments and communication problems. Growth factors and their receptors may play a role in the etiology of ASDs. Research has shown that epidermal growth factor receptor (EGFR) activation is associated with nerve cell development and repair. This study was designed to measure plasma levels of EGFR in autistic children and correlate these levels with its ligand, epidermal growth factor, other related putative biomarkers such as hepatocyte growth factor (HGF), the ligand for MET (MNNG HOS transforming gene) receptor, as well as the symptom severity of 19 different behavioral symptoms. SUBJECTS AND METHODS Plasma EGFR concentration was measured in 33 autistic children and 34 age- and gender-similar neurotypical controls, using an enzyme-linked immunosorbent assay. Plasma EGFR levels were compared to putative biomarkers known to be associated with EGFR and MET and severity levels of 19 autism-related symptoms. RESULTS We found plasma EGFR levels significantly higher in autistic children, when compared to neurotypical controls. EGFR levels correlated with HGF and high-mobility group protein B1 (HMGB1) levels, but not other tested putative biomarkers, and EGFR levels correlated significantly with severity of expressive language, conversational language, focus/attention, hyperactivity, eye contact, and sound sensitivity deficiencies. CONCLUSIONS These results suggest a relationship between increased plasma EGFR levels and designated symptom severity in autistic children. A strong correlation between plasma EGFR and HGF and HMGB1 suggests that increased EGFR levels may be associated with the HGF/Met signaling pathway, as well as inflammation.
Collapse
Affiliation(s)
- Anthony J Russo
- Hartwick College, Oneonta, NY, Health Research Institute and Pfeiffer Medical Center, Warrenville, IL
| |
Collapse
|
21
|
Eagleson KL, Milner TA, Xie Z, Levitt P. Synaptic and extrasynaptic location of the receptor tyrosine kinase met during postnatal development in the mouse neocortex and hippocampus. J Comp Neurol 2014; 521:3241-59. [PMID: 23787772 DOI: 10.1002/cne.23343] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/13/2013] [Accepted: 04/05/2013] [Indexed: 12/13/2022]
Abstract
MET, a replicated autism risk gene, encodes a pleiotropic receptor tyrosine kinase implicated in multiple cellular processes during development and following injury. Previous studies suggest that Met modulates excitatory synapse development in the neocortex and hippocampus, although the underlying mechanism is unknown. The peak of Met expression corresponds to the period of process outgrowth and synaptogenesis, with robust expression in hippocampal and neocortical neuropil. Resolving whether neuropil expression represents presynaptic, postsynaptic or glial localization provides insight into potential mechanisms of Met action. The subcellular distribution of Met was characterized using complementary ultrastructural, in situ proximity ligation assay (PLA), and biochemical approaches. At postnatal day (P) 7, immunoelectron microscopy revealed near-equivalent proportions of Met-immunoreactive pre- (axons and terminals) and postsynaptic (dendritic shafts and spines) profiles in the stratum radiatum in the hippocampal CA1 region. Staining was typically in elements in which the corresponding pre- or postsynaptic apposition was unlabeled. By P21, Met-immunoreactive presynaptic profiles predominated and ~20% of Met-expressing profiles were glial. A different distribution of Met-immunoreactive profiles was observed in layer V of somatosensory cortex: Met-labeled spines were rare and a smaller proportion of glial profiles expressed Met. Strikingly, Met-immunoreactive presynaptic profiles predominated over postsynaptic profiles as early as P7. PLA analysis of neurons in vitro and biochemical analysis of tissue subsynaptic fractions confirmed the localization of Met in specific synaptic subcompartments. The study demonstrates that Met is enriched at synapses during development and its activation may modulate synapse formation and stability through both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
22
|
Condro MC, White SA. Recent Advances in the Genetics of Vocal Learning. COMPARATIVE COGNITION & BEHAVIOR REVIEWS 2014; 9:75-98. [PMID: 26052371 DOI: 10.3819/ccbr.2014.90003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Language is a complex communicative behavior unique to humans, and its genetic basis is poorly understood. Genes associated with human speech and language disorders provide some insights, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been associated with speech and language disorders, along with other genes. Here, we review these recent findings that implicate genetic factors in human speech. Due to the exclusivity of language to humans, no single animal model is sufficient to study the complete behavioral effects of these genes. Fortunately, some animals possess subcomponents of language. One such subcomponent is vocal learning, which though rare in the animal kingdom, is shared with songbirds. We therefore discuss how songbird studies have contributed to the current understanding of genetic factors that impact human speech, and support the continued use of this animal model for such studies in the future.
Collapse
Affiliation(s)
- Michael C Condro
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles
| | - Stephanie A White
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| |
Collapse
|
23
|
Parellada M, Penzol MJ, Pina L, Moreno C, González-Vioque E, Zalsman G, Arango C. The neurobiology of autism spectrum disorders. Eur Psychiatry 2013; 29:11-9. [PMID: 24275633 DOI: 10.1016/j.eurpsy.2013.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
Data is progressively and robustly accumulating regarding the biological basis of autism. Autism spectrum disorders (ASD) are currently considered a group of neurodevelopmental disorders with onset very early in life and a complex, heterogeneous, multifactorial aetiology. A comprehensive search of the last five years of the Medline database was conducted in order to summarize recent evidence on the neurobiological bases of autism. The main findings on genetic influence, neuropathology, neurostructure and brain networks are summarized. In addition, findings from peripheral samples of subjects with autism and animal models, which show immune, oxidative, mitochondrial dysregulations, are reported. Then, other biomarkers from very different systems associated with autism are reported. Finally, an attempt is made to try and integrate the available evidence, which points to a oligogenetic, multifactorial aetiology that converges in an aberrant micro-organization of the cortex, with abnormal functioning of the synapses and abnormalities in very general physiological pathways (such as inflammatory, immune and redox systems).
Collapse
Affiliation(s)
- M Parellada
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain.
| | - M J Penzol
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - L Pina
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - C Moreno
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - E González-Vioque
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - G Zalsman
- Child and Adolescent Psychiatry, Geha Hospital, Petach Tiqva, 49100 Tel Aviv, Israel
| | - C Arango
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| |
Collapse
|
24
|
Plummer JT, Evgrafov OV, Bergman MY, Friez M, Haiman CA, Levitt P, Aldinger KA. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome. Transl Psychiatry 2013; 3:e316. [PMID: 24150225 PMCID: PMC3818007 DOI: 10.1038/tp.2013.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022] Open
Abstract
Single nucleotide variants (SNV) in the gene encoding the MET receptor tyrosine kinase have been associated with an increased risk for autism spectrum disorders (ASD). The MET promoter SNV rs1858830 C 'low activity' allele is enriched in ASD, associated with reduced protein expression, and impacts functional and structural circuit connectivity in humans. To gain insight into the transcriptional regulation of MET on ASD-risk etiology, we examined an interaction between the methyl CpG-binding protein 2 (MeCP2) and the MET 5' promoter region. Mutations in MeCP2 cause Rett syndrome (RTT), a predominantly female neurodevelopmental disorder sharing some ASD clinical symptoms. MeCP2 binds to a region of the MET promoter containing the ASD-risk SNV, and displays rs1858830 genotype-specific binding in human neural progenitor cells derived from the olfactory neuroepithelium. MeCP2 binding enhances MET expression in the presence of the rs1858830 C allele, but MET transcription is attenuated by RTT-specific mutations in MeCP2. In the postmortem temporal cortex, a region normally enriched in MET, gene expression is reduced dramatically in females with RTT, although not due to enrichment of the rs1858830 C 'low activity' allele. We newly identified a sex-based reduction in MET expression, with male ASD cases, but not female ASD cases compared with sex-matched controls. The experimental data reveal a prominent allele-specific regulation of MET transcription by MeCP2. The mechanisms underlying the pronounced reduction of MET in ASD and RTT temporal cortex are distinct and likely related to factors unique to each disorder, including a noted sex bias.
Collapse
Affiliation(s)
- J T Plummer
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - O V Evgrafov
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - M Y Bergman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Friez
- Greenwood Genetic Center, Greenwood, SC, USA
| | - C A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Levitt
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K A Aldinger
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, 98101 WA, USA. E-mail:
| |
Collapse
|
25
|
Menashe I, Grange P, Larsen EC, Banerjee-Basu S, Mitra PP. Co-expression profiling of autism genes in the mouse brain. PLoS Comput Biol 2013; 9:e1003128. [PMID: 23935468 PMCID: PMC3723491 DOI: 10.1371/journal.pcbi.1003128] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/21/2013] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most prevalent and highly heritable neurodevelopmental disorders in humans. There is significant evidence that the onset and severity of ASD is governed in part by complex genetic mechanisms affecting the normal development of the brain. To date, a number of genes have been associated with ASD. However, the temporal and spatial co-expression of these genes in the brain remain unclear. To address this issue, we examined the co-expression network of 26 autism genes from AutDB (http://mindspec.org/autdb.html), in the framework of 3,041 genes whose expression energies have the highest correlation between the coronal and sagittal images from the Allen Mouse Brain Atlas database (http://mouse.brain-map.org). These data were derived from in situ hybridization experiments conducted on male, 56-day old C57BL/6J mice co-registered to the Allen Reference Atlas, and were used to generate a normalized co-expression matrix indicating the cosine similarity between expression vectors of genes in this database. The network formed by the autism-associated genes showed a higher degree of co-expression connectivity than seen for the other genes in this dataset (Kolmogorov-Smirnov P = 5×10⁻²⁸). Using Monte Carlo simulations, we identified two cliques of co-expressed genes that were significantly enriched with autism genes (A Bonferroni corrected P<0.05). Genes in both these cliques were significantly over-expressed in the cerebellar cortex (P = 1×10⁻⁵) suggesting possible implication of this brain region in autism. In conclusion, our study provides a detailed profiling of co-expression patterns of autism genes in the mouse brain, and suggests specific brain regions and new candidate genes that could be involved in autism etiology.
Collapse
Affiliation(s)
- Idan Menashe
- MindSpec, McLean, Virginia, United States of America.
| | | | | | | | | |
Collapse
|
26
|
Kang JQ, Barnes G. A common susceptibility factor of both autism and epilepsy: functional deficiency of GABA A receptors. J Autism Dev Disord 2013; 43:68-79. [PMID: 22555366 DOI: 10.1007/s10803-012-1543-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism and epilepsy are common childhood neurological disorders with a great heterogeneity of clinical phenotypes as well as risk factors. There is a high co-morbidity of autism and epilepsy. The neuropathology of autism and epilepsy has similar histology implicating the processes of neurogenesis, neural migration, programmed cell death, and neurite outgrowth. Genetic advances have identified multiple molecules that participate in neural development, brain network connectivity, and synaptic function which are involved in the pathogenesis of autism and epilepsy. Mutations in GABA(A) receptor subunit have been frequently associated with epilepsy, autism, and other neuropsychiatric disorders. In this paper, we address the hypothesis that functional deficiency of GABAergic signaling is a potential common molecular mechanism underpinning the co-morbidity of autism and epilepsy.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave, Nashville, TN 37232-8552, USA.
| | | |
Collapse
|
27
|
Davis DA, Bortolato M, Godar SC, Sander TK, Iwata N, Pakbin P, Shih JC, Berhane K, McConnell R, Sioutas C, Finch CE, Morgan TE. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS One 2013; 8:e64128. [PMID: 23734187 PMCID: PMC3667185 DOI: 10.1371/journal.pone.0064128] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM). In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m3) or control filtered ambient air for 10 weeks (3×5 hour exposures per week), encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml) to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.
Collapse
Affiliation(s)
- David A. Davis
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, United States of America
| | - Sean C. Godar
- School of Pharmacy, USC, Los Angeles, California, United States of America
| | - Thomas K. Sander
- Dornsife College of Letters, Arts and Sciences, USC, Los Angeles, California, United States of America
| | - Nahoko Iwata
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| | - Payam Pakbin
- Viterbi School of Engineering, USC, Los Angeles, California, United States of America
| | - Jean C. Shih
- School of Pharmacy, USC, Los Angeles, California, United States of America
| | - Kiros Berhane
- Keck School of Medicine, USC, Los Angeles, California, United States of America
| | - Rob McConnell
- Keck School of Medicine, USC, Los Angeles, California, United States of America
| | - Constantinos Sioutas
- Viterbi School of Engineering, USC, Los Angeles, California, United States of America
| | - Caleb E. Finch
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
- Dept. of Neurobiology, Dornsife College, USC, Los Angeles, California, United States of America
- * E-mail:
| | - Todd E. Morgan
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| |
Collapse
|
28
|
Marín O. Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci 2013; 38:2019-29. [DOI: 10.1111/ejn.12225] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias; Consejo Superior de Investigaciones Científicas; Universidad Miguel Hernández; Sant Joan d'Alacant; Spain
| |
Collapse
|
29
|
Zhang Y, Gao D, Kluetzman K, Mendoza A, Bolivar VJ, Reilly A, Jolly JK, Lawrence DA. The maternal autoimmune environment affects the social behavior of offspring. J Neuroimmunol 2013; 258:51-60. [DOI: 10.1016/j.jneuroim.2013.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/23/2013] [Accepted: 02/26/2013] [Indexed: 12/28/2022]
|
30
|
Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc Natl Acad Sci U S A 2013; 110:3585-90. [PMID: 23401536 DOI: 10.1073/pnas.1216855110] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form long-range temporal correlations (LRTCs). In millisecond time scales, neuronal activity comprises cascade-like neuronal avalanches that exhibit power-law size and lifetime distributions. However, it remains unknown whether these neuronal scaling laws are correlated with those characterizing behavioral performance or whether neuronal LRTCs and avalanches are related. Here, we show that the neuronal scaling laws are strongly correlated both with each other and with behavioral scaling laws. We used source reconstructed magneto- and electroencephalographic recordings to characterize the dynamics of ongoing cortical activity. We found robust power-law scaling in neuronal LRTCs and avalanches in resting-state data and during the performance of audiovisual threshold stimulus detection tasks. The LRTC scaling exponents of the behavioral performance fluctuations were correlated with those of concurrent neuronal avalanches and LRTCs in anatomically identified brain systems. The behavioral exponents also were correlated with neuronal scaling laws derived from a resting-state condition and with a similar anatomical topography. Finally, despite the difference in time scales, the scaling exponents of neuronal LRTCs and avalanches were strongly correlated during both rest and task performance. Thus, long and short time-scale neuronal dynamics are related and functionally significant at the behavioral level. These data suggest that the temporal structures of human cognitive fluctuations and behavioral variability stem from the scaling laws of individual and intrinsic brain dynamics.
Collapse
|
31
|
Connecting signaling pathways underlying communication to ASD vulnerability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:97-133. [PMID: 24290384 DOI: 10.1016/b978-0-12-418700-9.00004-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Language is a human-specific trait that likely facilitated the rapid increase in higher cognitive function in our species. A consequence of the selective pressures that have permitted language and cognition to flourish in humans is the unique vulnerability of humans to developing cognitive disorders such as autism. Therefore, progress in understanding the genetic and molecular mechanisms of language evolution should provide insight into such disorders. Here, we discuss the few genes that have been identified in both autism-related pathways and language. We also detail the use of animal models to uncover the function of these genes at a mechanistic and circuit level. Finally, we present the use of comparative genomics to identify novel genes and gene networks involved in autism. Together, all of these approaches will allow for a broader and deeper view of the molecular brain mechanisms involved in the evolution of language and the gene disruptions associated with autism.
Collapse
|
32
|
Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL, Gorrindo P, Thompson PM, Geschwind DH, Bookheimer SY, Levitt P, Dapretto M. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 2012; 75:904-15. [PMID: 22958829 DOI: 10.1016/j.neuron.2012.07.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 11/18/2022]
Abstract
As genes that confer increased risk for autism spectrum disorder (ASD) are identified, a crucial next step is to determine how these risk factors impact brain structure and function and contribute to disorder heterogeneity. With three converging lines of evidence, we show that a common, functional ASD risk variant in the Met Receptor Tyrosine Kinase (MET) gene is a potent modulator of key social brain circuitry in children and adolescents with and without ASD. MET risk genotype predicted atypical fMRI activation and deactivation patterns to social stimuli (i.e., emotional faces), as well as reduced functional and structural connectivity in temporo-parietal regions known to have high MET expression, particularly within the default mode network. Notably, these effects were more pronounced in individuals with ASD. These findings highlight how genetic stratification may reduce heterogeneity and help elucidate the biological basis of complex neuropsychiatric disorders such as ASD.
Collapse
Affiliation(s)
- Jeffrey D Rudie
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA 90095-7085, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Y, Bolivar VJ, Lawrence DA. Developmental exposure to mercury chloride does not impair social behavior of C57BL/6 × BTBR F1mice. J Immunotoxicol 2012; 9:401-10. [DOI: 10.3109/1547691x.2012.682663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Qiu S, Aldinger KA, Levitt P. Modeling of autism genetic variations in mice: focusing on synaptic and microcircuit dysfunctions. Dev Neurosci 2012; 34:88-100. [PMID: 22572629 DOI: 10.1159/000336644] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/21/2011] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders that are characterized by deficits in social interaction, verbal and nonverbal communication, and restrictive interests and repetitive behaviors. While human genetic studies have revealed marked heritability in ASD, it has been challenging to translate this genetic risk into a biological mechanism that influences brain development relevant to the disorder phenotypes. This is partly due to the complex genetic architecture of ASD, which involves de novo gene mutations, genomic abnormalities, and common genetic variants. Rather than trying to reconstitute the clinical disorder, using genetic model animals to examine specific features of core ASD pathophysiology offers unique opportunities for refining our understanding of neurodevelopmental mechanisms in ASD. A variety of ASD-relevant phenotypes can now be investigated in rodents, including stereotyped and repetitive behaviors, and deficits in social interaction and communication. In this review, we focus on several prevailing mouse models and discuss how studies have advanced our understanding of synaptic mechanisms that may underlie ASD pathophysiology. Although synaptic perturbations are not the only alterations relevant for ASD, we reason that understanding the synaptic underpinnings of ASD using mouse models may provide mechanistic insights into its etiology and lead to novel therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Shenfeng Qiu
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Calif., USA
| | | | | |
Collapse
|
35
|
Flood ZC, Engel DLJ, Simon CC, Negherbon KR, Murphy LJ, Tamavimok W, Anderson GM, Janušonis S. Brain growth trajectories in mouse strains with central and peripheral serotonin differences: relevance to autism models. Neuroscience 2012; 210:286-95. [PMID: 22450231 DOI: 10.1016/j.neuroscience.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/01/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
Abstract
The genetic heterogeneity of autism spectrum disorders (ASDs) suggests that their underlying neurobiology involves dysfunction at the neural network level. Understanding these neural networks will require a major collaborative effort and will depend on validated and widely accepted animal models. Many mouse models have been proposed in autism research, but the assessment of their validity often has been limited to measuring social interactions. However, two other well-replicated findings have been reported in ASDs: transient brain overgrowth in early postnatal life and elevated 5-HT (serotonin) levels in blood platelets (platelet hyperserotonemia). We examined two inbred mouse strains (C57BL/6 and BALB/c) with respect to these phenomena. The BALB/c strain is less social and exhibits some other autistic-like behaviors. In addition, it has a lower 5-HT synthesis rate in the central nervous system due to a single-nucleotide polymorphism in the tryptophan hydroxylase 2 (Tph2) gene. The postnatal growth of brain mass was analyzed with mixed-effects models that included litter effects. The volume of the hippocampal complex and the thickness of the somatosensory cortex were measured in 3D-brain reconstructions from serial sections. The postnatal whole-blood 5-HT levels were assessed with high-performance liquid chromatography. With respect to the BALB/c strain, the C57BL/6 strain showed transient brain overgrowth and persistent blood hyperserotonemia. The hippocampal volume was permanently enlarged in the C57BL/6 strain, with no change in the adult brain mass. These results indicate that, in mice, autistic-like shifts in the brain and periphery may be associated with less autistic-like behaviors. Importantly, they suggest that consistency among behavioral, anatomical, and physiological measures may expedite the validation of new and previously proposed mouse models of autism, and that the construct validity of models should be demonstrated when these measures are inconsistent.
Collapse
Affiliation(s)
- Z C Flood
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shepherd GMG, Katz DM. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr Opin Neurobiol 2011; 21:827-33. [PMID: 21733672 PMCID: PMC3199024 DOI: 10.1016/j.conb.2011.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
Abstract
Recent findings in the genetics of neurodevelopmental syndromes have ushered in an exciting era of discovery in which substrates of neurologic dysfunction are being identified at the synaptic and microcircuit levels in mouse models of these disorders. We review recent progress in this area, focusing on two examples of mouse models of autism spectrum disorders (ASDs): Mecp2 models of Rett syndrome, and a Met-knockout model of non-syndromic forms of autism. In both cases, a dominant theme is changes in synaptic strength, associated with hyper-connectivity or hypo-connectivity in specific microcircuits. Alterations in intrinsic neuronal excitability are also found, but do not appear to be as common. The microcircuit-specific nature of synaptic changes observed in these ASD models indicates that it will be necessary to define mechanisms of circuit dysfunction on a case-by-case basis, not only in neocortex but also in brainstem and other sub-cortical areas. Thus, functional microcircuit analysis is emerging as an important line of investigation, highly complementary to neurogenetic and molecular strategies, and holds promise for generating models of the underlying pathophysiology and for guiding development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
37
|
Zhou X, Xu Y, Wang J, Zhou H, Liu X, Ayub Q, Wang X, Tyler-Smith C, Wu L, Xue Y. Replication of the association of a MET variant with autism in a Chinese Han population. PLoS One 2011; 6:e27428. [PMID: 22110649 PMCID: PMC3217055 DOI: 10.1371/journal.pone.0027428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 10/16/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autism is a common, severe and highly heritable neurodevelopmental disorder in children, affecting up to 100 children per 10,000. The MET gene has been regarded as a promising candidate gene for this disorder because it is located within a replicated linkage interval, is involved in pathways affecting the development of the cerebral cortex and cerebellum in ways relevant to autism patients, and has shown significant association signals in previous studies. PRINCIPAL FINDINGS Here, we present new ASD patient and control samples from Heilongjiang, China and use them in a case-control and family-based replication study of two MET variants. One SNP, rs38845, was successfully replicated in a case-control association study, but failed to replicate in a family-based study, possibly due to small sample size. The other SNP, rs1858830, failed to replicate in both case-control and family-based studies. CONCLUSIONS This is the first attempt to replicate associations in Chinese autism samples, and our result provides evidence that MET variants may be relevant to autism susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Yang Xu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hongbo Zhou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Department of Biochemistry and Molecular Biology, Basic Medical Science College of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xian Liu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Qasim Ayub
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Xuelai Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
38
|
A new synaptic player leading to autism risk: Met receptor tyrosine kinase. J Neurodev Disord 2011; 3:282-92. [PMID: 21509596 PMCID: PMC3261279 DOI: 10.1007/s11689-011-9081-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/25/2011] [Indexed: 12/14/2022] Open
Abstract
The validity for assigning disorder risk to an autism spectrum disorder (ASD) candidate gene comes from convergent genetic, clinical, and developmental neurobiology data. Here, we review these lines of evidence from multiple human genetic studies, and non-human primate and mouse experiments that support the conclusion that the MET receptor tyrosine kinase (RTK) functions to influence synapse development in circuits relevant to certain core behavioral domains of ASD. There is association of both common functional alleles and rare copy number variants that impact levels of MET expression in the human cortex. The timing of Met expression is linked to axon terminal outgrowth and synaptogenesis in the developing rodent and primate forebrain, and both in vitro and in vivo studies implicate this RTK in dendritic branching, spine maturation, and excitatory connectivity in the neocortex. This impact can occur in a cell-nonautonomous fashion, emphasizing the unique role that Met plays in specific circuits relevant to ASD.
Collapse
|