1
|
Liu L, Li S, Tian L, Yao X, Ling Y, Chen J, Wang G, Yang Y. The Impact of Cues on Joint Attention in Children with Autism Spectrum Disorder: An Eye-Tracking Study in Virtual Games. Behav Sci (Basel) 2024; 14:871. [PMID: 39457743 PMCID: PMC11505074 DOI: 10.3390/bs14100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Joint attention (JA), a core deficit in children with autism spectrum disorder (ASD), is crucial for social interaction, emotional understanding, and cognitive development. This study aims to compare and analyze the eye-tracking data of ASD and typically developing children (TDC) during virtual games, exploring how different cue types affect JA performance in ASD children. A total of 31 TDC and 40 ASD children participated in the study. Using eye-tracking devices, we recorded the children's eye movements as they played virtual games, selecting the correct target based on cues provided by virtual characters. Our findings revealed that different cue types significantly impacted the game scores of ASD children but had no significant effect on TDC, highlighting a notable disparity between the two groups. ASD children showed a lower fixation frequency, irregular fixation paths, and increased attention to non-target objects compared to TDC. Interestingly, among the three cue types, ASD children exhibited a preference for the third type, leading to longer fixation on the region of interest and higher game scores. These results underscore the importance of cue selection in enhancing JA in ASD children. This study provides novel insights into the JA deficits in ASD children and offers a scientific basis for the development of targeted and individualized intervention programs.
Collapse
Affiliation(s)
- Lili Liu
- National Engineering Research Center of Educational Big Data, Central China Normal University, Wuhan 430079, China;
- National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079, China
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China; (S.L.); (L.T.); (X.Y.); (Y.Y.)
| | - Shuang Li
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China; (S.L.); (L.T.); (X.Y.); (Y.Y.)
| | - Lin Tian
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China; (S.L.); (L.T.); (X.Y.); (Y.Y.)
| | - Xinyu Yao
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China; (S.L.); (L.T.); (X.Y.); (Y.Y.)
| | - Yutao Ling
- College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Jingying Chen
- National Engineering Research Center of Educational Big Data, Central China Normal University, Wuhan 430079, China;
- National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079, China
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China; (S.L.); (L.T.); (X.Y.); (Y.Y.)
| | - Guangshuai Wang
- National Engineering Research Center of Educational Big Data, Central China Normal University, Wuhan 430079, China;
- National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079, China
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China; (S.L.); (L.T.); (X.Y.); (Y.Y.)
| | - Yang Yang
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China; (S.L.); (L.T.); (X.Y.); (Y.Y.)
| |
Collapse
|
2
|
Park ES, Freeborn J, Venna VR, Roos S, Rhoads JM, Liu Y. Lactobacillus reuteri effects on maternal separation stress in newborn mice. Pediatr Res 2021; 90:980-988. [PMID: 33531679 DOI: 10.1038/s41390-021-01374-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Probiotic Lactobacillus reuteri DSM 17938 (LR 17938) is beneficial to infants with colic. To understand its mechanism of action, we assessed ultrasonic vocalizations (USV) and brain pain/stress genes in newborn mice exposed to maternal separation stress. METHODS Pups were exposed to unpredictable maternal separation (MSU or SEP) or MSU combined with unpredictable maternal stress (MSU + MSUS or S + S), from postnatal days 5 to 14. USV calls and pain/stress/neuroinflammation-related genes in the brain were analyzed. RESULTS We defined 10 different neonatal call patterns, none of which increased after MSU. Stress reduced overall USV calls. Orally feeding LR 17938 also did not change USV calls after MSU. However, LR 17938 markedly increased vocalizations in mice allowed to stay with their dams. Even though LR 17938 did not change MSU-related calls, LR 17938 modulated brain genes related to stress and pain. Up-regulated genes following LR 17938 treatment were opioid peptides, kappa-opioid receptor 1 genes, and CD200, important in anti-inflammatory signaling. LR 17938 down-regulated CCR2 transcripts, a chemokine receptor, in the stressed neonatal brain. CONCLUSIONS USV calls in newborn mice are interpreted as "physiological calls" instead of "cries." Feeding LR 17938 after MSU did not change USV calls but modulated cerebral genes favoring pain and stress reduction and anti-inflammatory signaling. IMPACT We defined mouse ultrasonic vocalization (USV) call patterns in this study, which will be important in guiding future studies in other mouse strains. Newborn mice with maternal separation stress have reduced USVs, compared to newborn mice without stress, indicating USV calls may represent "physiological calling" instead of "crying." Oral feeding of probiotic Lactobacillus reuteri DSM 17938 raised the number of calls when newborn mice continued to suckle on their dams, but not when mice were under stress. The probiotic bacteria had a dampening effect on monocyte activation and on epinephrine and glutamate-related stress gene expression in the mouse brain.
Collapse
Affiliation(s)
- Evelyn S Park
- Departments of Pediatrics at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jasmin Freeborn
- Departments of Pediatrics at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Venugopal Reddy Venna
- Departments of Neurology at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia AB, Stockholm, Sweden
| | - J Marc Rhoads
- Departments of Pediatrics at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuying Liu
- Departments of Pediatrics at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Phan ML, Liu TT, Vollbrecht MS, Mansour MH, Nikodijevic I, Jadav N, Patibanda N, Dang J, Shekaran G, Reisler RC, Kim WS, Zhou X, DiCicco-Bloom E, Samuels BA. Engrailed 2 deficiency and chronic stress alter avoidance and motivation behaviors. Behav Brain Res 2021; 413:113466. [PMID: 34271036 DOI: 10.1016/j.bbr.2021.113466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by impairments in social interaction, cognition, and communication, as well as the presence of repetitive or stereotyped behaviors and interests. ASD is most often studied as a neurodevelopmental disease, but it is a lifelong disorder. Adults with ASD experience more stressful life events and greater perceived stress, and frequently have comorbid mood disorders such as anxiety and depression. It remains unclear whether adult exposure to chronic stress can exacerbate the behavioral and neurodevelopmental phenotypes associated with ASD. To address this issue, we first investigated whether adult male and female Engrailed-2 deficient (En2-KO, En2-/-) mice, which display behavioral disturbances in avoidance tasks and dysregulated monoaminergic neurotransmitter levels, also display impairments in instrumental behaviors associated with motivation, such as the progressive ratio task. We then exposed adult En2-KO mice to chronic environmental stress (CSDS, chronic social defeat stress), to determine if stress exacerbated the behavioral and neuroanatomical effects of En2 deletion. En2-/- mice showed impaired instrumental acquisition and significantly lower breakpoints in a progressive ratio test, demonstrating En2 deficiency decreases motivation to exert effort for reward. Furthermore, adult CSDS exposure increased avoidance behaviors in En2-KO mice. Interestingly, adult CSDS exposure also exacerbated the deleterious effects of En2 deficiency on forebrain-projecting monoaminergic fibers. Our findings thus suggest that adult exposure to stress may exacerbate behavioral and neuroanatomical phenotypes associated with developmental effects of genetic En2 deficiency.
Collapse
Affiliation(s)
- Mimi L Phan
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Tonia T Liu
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Mallory S Vollbrecht
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mark H Mansour
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Ivana Nikodijevic
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Nikita Jadav
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Neeharika Patibanda
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Jenny Dang
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Gopna Shekaran
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Robert C Reisler
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Won S Kim
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Benjamin A Samuels
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
No preference for prosocial helping behavior in rats with concurrent social interaction opportunities. Learn Behav 2021; 49:397-404. [PMID: 33829419 DOI: 10.3758/s13420-021-00471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Helping behavior tasks are proposed to assess prosocial or "empathic" behavior in rodents. This paradigm characterizes the behavior of subject animals presented with the opportunity to release a conspecific from a distressing situation. Previous studies found a preference in rats for releasing restrained or distressed conspecifics over other controls (e.g., empty restrainers or inanimate objects). An empathy account was offered to explain the observed behaviors, claiming subjects were motivated to reduce the distress of others based on a rodent homologue of empathy. An opposing account attributes all previous results to subjects seeking social contact. To dissociate these two accounts for helping behavior, we presented subject rats with three simultaneous choice alternatives: releasing a restrained conspecific, engaging a nonrestrained conspecific, or not socializing. Subjects showed an initial preference for socializing with the nonrestrained conspecific, and no preference for helping. This result contradicts the empathy account, but is consistent with the social-contact account of helping behavior.
Collapse
|
5
|
Yamauchi T, Yoshioka T, Yamada D, Hamano T, Ohashi M, Matsumoto M, Iio K, Ikeda M, Kamei M, Otsuki T, Sato Y, Nii K, Suzuki M, Ichikawa H, Nagase H, Iriyama S, Yoshizawa K, Nishino S, Miyazaki S, Saitoh A. Cold-restraint stress–induced ultrasonic vocalization as a novel tool to measure anxiety in mice. Biol Pharm Bull 2021; 45:268-275. [DOI: 10.1248/bpb.b21-00776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsugumi Yamauchi
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Takumi Hamano
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Misaki Ohashi
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Maki Matsumoto
- Laboratory of Bioinformatics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Keita Iio
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba
| | | | | | | | | | | | | | - Hiroko Ichikawa
- Laboratory of Psychology, Noda Division, Institute of Arts and Sciences, Tokyo University of Science
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba
| | - Satoshi Iriyama
- Laboratory of Quantum information dynamics, Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science
| | - Kazumi Yoshizawa
- Laboratory of Disease Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Satoru Miyazaki
- Laboratory of Bioinformatics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
6
|
Caruso A, Ricceri L, Scattoni ML. Ultrasonic vocalizations as a fundamental tool for early and adult behavioral phenotyping of Autism Spectrum Disorder rodent models. Neurosci Biobehav Rev 2020; 116:31-43. [DOI: 10.1016/j.neubiorev.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
7
|
Tan T, Wang W, Xu H, Huang Z, Wang YT, Dong Z. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission. Front Cell Neurosci 2018. [PMID: 29541022 PMCID: PMC5835518 DOI: 10.3389/fncel.2018.00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1-9), we found that low-frequency rTMS (LF-rTMS, 1 Hz) treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.
Collapse
Affiliation(s)
- Tao Tan
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Xu
- Wuhan Yiruide Medical Equipment Co., Ltd., Wuhan, China
| | - Zhilin Huang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Scattoni ML, Michetti C, Ricceri L. Rodent Vocalization Studies in Animal Models of the Autism Spectrum Disorder. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00042-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2017; 299:252-265. [PMID: 28774750 DOI: 10.1016/j.expneurol.2017.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022]
Abstract
Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD.
Collapse
Affiliation(s)
- M D Bauman
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| | - C M Schumann
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
10
|
Lahvis GP. Social Reward and Empathy as Proximal Contributions to Altruism: The Camaraderie Effect. Curr Top Behav Neurosci 2017; 30:127-157. [PMID: 27600591 PMCID: PMC5675738 DOI: 10.1007/7854_2016_449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural selection favors individuals to act in their own interests, implying that wild animals experience a competitive psychology. Animals in the wild also express helping behaviors, presumably at their own expense and suggestive of a more compassionate psychology. This apparent paradox can be partially explained by ultimate mechanisms that include kin selection, reciprocity, and multilevel selection, yet some theorists argue such ultimate explanations may not be sufficient and that an additional "stake in others" is necessary for altruism's evolution. We suggest this stake is the "camaraderie effect," a by-product of two highly adaptive psychological experiences: social motivation and empathy. Rodents can derive pleasure from access to others and this appetite for social rewards motivates individuals to live together, a valuable psychology when group living is adaptive. Rodents can also experience empathy, the generation of an affective state more appropriate to the situation of another compared to one's own. Empathy is not a compassionate feeling but it has useful predictive value. For instance, empathy allows an individual to feel an unperceived danger from social cues. Empathy of another's stance toward one's self would predict either social acceptance or ostracism and amplify one's physiological sensitivity to social isolation, including impaired immune responses and delayed wound healing. By contrast, altruistic behaviors would promote well-being in others and feelings of camaraderie from others, thereby improving one's own physiological well-being. Together, these affective states engender a stake in others necessary for the expression of altruistic behavior.
Collapse
Affiliation(s)
- Garet P Lahvis
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Mail Code L-470, Portland, Oregon, 97239, USA.
| |
Collapse
|
11
|
Chabout J, Jones-Macopson J, Jarvis ED. Eliciting and Analyzing Male Mouse Ultrasonic Vocalization (USV) Songs. J Vis Exp 2017. [PMID: 28518074 PMCID: PMC5607930 DOI: 10.3791/54137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mice produce ultrasonic vocalizations (USVs) in a variety of social contexts throughout development and adulthood. These USVs are used for mother-pup retrieval1, juvenile interactions2, opposite and same sex interactions345, and territorial interactions6. For decades, the USVs have been used by investigators as proxies to study neuropsychiatric and developmental or behavioral disorders789, and more recently to understand mechanisms and evolution of vocal communication among vertebrates10. Within the sexual interactions, adult male mice produce USV songs, which have some features similar to courtship songs of songbirds11. The use of such multisyllabic repertoires can increase potential flexibility and information they carry, as they can be varied in how elements are organized and recombined, namely syntax. In this protocol a reliable method to elicit USV songs from male mice in various social contexts, such as exposure to fresh female urine, anesthetized animals, and estrus females is described. This includes conditions to induce a large amount of syllables from the mice. We reduce recording of ambient noises with inexpensive sound chambers, and present a quantification method to automatically detect, classify and analyze the USVs. The latter includes evaluation of call-rate, vocal repertoire, acoustic parameters, and syntax. Various approaches and insight on using playbacks to study an animal's preference for specific song types are described. These methods were used to describe acoustic and syntax changes across different contexts in male mice, and song preferences in female mice.
Collapse
Affiliation(s)
- Jonathan Chabout
- Department of Neurobiology, Duke University; Howard Hughes Medical Institute;
| | | | - Erich D Jarvis
- Department of Neurobiology, Duke University; Howard Hughes Medical Institute; The Rockefeller University;
| |
Collapse
|
12
|
Mills BD, Pearce HL, Khan O, Jarrett BR, Fair DA, Lahvis GP. Prenatal domoic acid exposure disrupts mouse pro-social behavior and functional connectivity MRI. Behav Brain Res 2016; 308:14-23. [PMID: 27050322 PMCID: PMC4918767 DOI: 10.1016/j.bbr.2016.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Domoic acid (DA) is a toxin produced by marine algae and known primarily for its role in isolated outbreaks of Amnestic Shellfish Poisoning and for the damage it inflicts on marine mammals, particularly California sea lions. Lethal effects of DA are often preceded by seizures and coma. Exposure to DA during development can result in subtle and highly persistent effects on brain development and include behavioral changes that resemble diagnostic features of schizophrenia and anomalies in social behavior we believe are relevant to autism spectrum disorder (ASD). To more fully examine this hypothesis, we chose to examine adolescent mice exposed in utero to DA for endpoints relevant to ASD, specifically changes in social behavior and network structure, the latter measured by resting state functional connectivity (rs-fcMRI). We found that male offspring exposed in utero to DA expressed reproducible declines in social interaction and atypical patterns of functional connectivity in the anterior cingulate, a region of the default mode network that is critical for social functioning. We also found disruptions in global topology in regions involved in the processing of reward, social, and sensory experiences. Finally, we found that DA exposed males expressed a pattern of local over-connectivity. These anomalies in brain connectivity bear resemblance to connectivity patterns in ASD and help validate DA-exposed mice as a model of this mental disability.
Collapse
Affiliation(s)
- Brian D Mills
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Hadley L Pearce
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Omar Khan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Ben R Jarrett
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, United States; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Garet P Lahvis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
13
|
Ku KM, Weir RK, Silverman JL, Berman RF, Bauman MD. Behavioral Phenotyping of Juvenile Long-Evans and Sprague-Dawley Rats: Implications for Preclinical Models of Autism Spectrum Disorders. PLoS One 2016; 11:e0158150. [PMID: 27351457 PMCID: PMC4924796 DOI: 10.1371/journal.pone.0158150] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
The laboratory rat is emerging as an attractive preclinical animal model of autism spectrum disorder (ASD), allowing investigators to explore genetic, environmental and pharmacological manipulations in a species exhibiting complex, reciprocal social behavior. The present study was carried out to compare two commonly used strains of laboratory rats, Sprague-Dawley (SD) and Long-Evans (LE), between the ages of postnatal day (PND) 26-56 using high-throughput behavioral phenotyping tools commonly used in mouse models of ASD that we have adapted for use in rats. We detected few differences between young SD and LE strains on standard assays of exploration, sensorimotor gating, anxiety, repetitive behaviors, and learning. Both SD and LE strains also demonstrated sociability in the 3-chamber social approach test as indexed by spending more time in the social chamber with a constrained age/strain/sex matched novel partner than in an identical chamber without a partner. Pronounced differences between the two strains were, however, detected when the rats were allowed to freely interact with a novel partner in the social dyad paradigm. The SD rats in this particular testing paradigm engaged in play more frequently and for longer durations than the LE rats at both juvenile and young adult developmental time points. Results from this study that are particularly relevant for developing preclinical ASD models in rats are threefold: (i) commonly utilized strains exhibit unique patterns of social interactions, including strain-specific play behaviors, (ii) the testing environment may profoundly influence the expression of strain-specific social behavior and (iii) simple, automated measures of sociability may not capture the complexities of rat social interactions.
Collapse
Affiliation(s)
- Katherine M. Ku
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
| | - Ruth K. Weir
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
- The MIND Institute, University of California, Davis, Sacramento, California, United States of America
| | - Robert F. Berman
- Department of Neurological Surgery, University of California, Davis, Davis, California, United States of America
| | - Melissa D. Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
- The MIND Institute, University of California, Davis, Sacramento, California, United States of America
- California National Primate Research Center, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Homberg JR, Kyzar EJ, Nguyen M, Norton WH, Pittman J, Poudel MK, Gaikwad S, Nakamura S, Koshiba M, Yamanouchi H, Scattoni ML, Ullman JF, Diamond DM, Kaluyeva AA, Parker MO, Klimenko VM, Apryatin SA, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65:292-312. [DOI: 10.1016/j.neubiorev.2016.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
|
15
|
Grimsley JMS, Sheth S, Vallabh N, Grimsley CA, Bhattal J, Latsko M, Jasnow A, Wenstrup JJ. Contextual Modulation of Vocal Behavior in Mouse: Newly Identified 12 kHz "Mid-Frequency" Vocalization Emitted during Restraint. Front Behav Neurosci 2016; 10:38. [PMID: 27014000 PMCID: PMC4783392 DOI: 10.3389/fnbeh.2016.00038] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
While several studies have investigated mouse ultrasonic vocalizations (USVs) emitted by isolated pups or by males in mating contexts, studies of behavioral contexts other than mating and vocalization categories other than USVs have been limited. By improving our understanding of the vocalizations emitted by mice across behavioral contexts, we will better understand the natural vocal behavior of mice and better interpret vocalizations from mouse models of disease. Hypothesizing that mouse vocal behavior would differ depending on behavioral context, we recorded vocalizations from male CBA/CaJ mice across three behavioral contexts including mating, isolation, and restraint. We found that brief restraint elevated blood corticosterone levels of mice, indicating increased stress relative to isolation. Further, after 3 days of brief restraint, mice displayed behavioral changes indicative of stress. These persisted for at least 2 days after restraint. Contextual differences in mouse vocal behavior were striking and robust across animals. Thus, while USVs were the most common vocalization type across contexts, the spectrotemporal features of USVs were context-dependent. Compared to the mating context, vocalizations during isolation and restraint displayed a broader frequency range, with a greater emphasis on frequencies below 50 kHz. These contexts also included more non-USV vocal categories and different vocal patterns. We identified a new Mid-Frequency Vocalization, a tonal vocalization with fundamental frequencies below 18 kHz, which was almost exclusively emitted by mice undergoing restraint stress. These differences combine to form vocal behavior that is grossly different among behavioral contexts and may reflect the level of anxiety in these contexts.
Collapse
Affiliation(s)
- Jasmine M S Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Saloni Sheth
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Neil Vallabh
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Calum A Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Jyoti Bhattal
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Maeson Latsko
- Department of Psychological Sciences, Kent State University Kent, OH, USA
| | - Aaron Jasnow
- Department of Psychological Sciences, Kent State University Kent, OH, USA
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| |
Collapse
|
16
|
Sungur AÖ, Schwarting RK, Wöhr M. Early communication deficits in theShank1knockout mouse model for autism spectrum disorder: Developmental aspects and effects of social context. Autism Res 2015; 9:696-709. [DOI: 10.1002/aur.1564] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/07/2015] [Accepted: 08/21/2015] [Indexed: 11/05/2022]
Affiliation(s)
- A. Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology; Philipps-University of Marburg; Gutenbergstr. 18 D-35032 Germany
| | - Rainer K.W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology; Philipps-University of Marburg; Gutenbergstr. 18 D-35032 Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology; Philipps-University of Marburg; Gutenbergstr. 18 D-35032 Germany
| |
Collapse
|
17
|
|
18
|
Chabout J, Sarkar A, Dunson DB, Jarvis ED. Male mice song syntax depends on social contexts and influences female preferences. Front Behav Neurosci 2015; 9:76. [PMID: 25883559 PMCID: PMC4383150 DOI: 10.3389/fnbeh.2015.00076] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/10/2015] [Indexed: 11/25/2022] Open
Abstract
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.
Collapse
Affiliation(s)
- Jonathan Chabout
- Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| | - Abhra Sarkar
- Department of Statistical Science, Duke University Durham, NC, USA
| | - David B Dunson
- Department of Statistical Science, Duke University Durham, NC, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| |
Collapse
|
19
|
Wu X, Bai Y, Tan T, Li H, Xia S, Chang X, Zhou Z, Zhou W, Li T, Wang YT, Dong Z. Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats. Front Behav Neurosci 2014; 8:234. [PMID: 25018711 PMCID: PMC4071979 DOI: 10.3389/fnbeh.2014.00234] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/13/2014] [Indexed: 11/21/2022] Open
Abstract
Neonatal isolation is a widely accepted model to study the long-term behavioral changes produced by the early life events. However, it remains unknown whether neonatal isolation can induce autistic-like behaviors, and if so, whether pharmacological treatment can overcome it. Here, we reported that newborn rats subjected to individual isolations from their mother and nest for 1 h per day from postnatal days 1–9 displayed apparent autistic-like symptoms including social deficits, excessive repetitive self-grooming behavior, and increased anxiety- and depressive-like behaviors tested in young adult (postnatal days 42–56) compared to normal reared controls. Furthermore, these behavioral changes were accompanied by impaired adult hippocampal neurogenesis and reduced the ratio of excitatory/inhibitory synaptic transmissions, as reflected by an increase in spontaneous inhibitory postsynaptic current (sIPSC) and normal spontaneous excitatory postsynaptic current (sEPSC) in the hippocampal CA1 pyramidal neuron. More importantly, chronic administration of lithium, a clinically used mood stabilizer, completely overcame neonatal isolation-induced autistic-like behaviors, and restored adult hippocampal neurogenesis as well as the balance between excitatory and inhibitory activities to physiological levels. These findings indicate that neonatal isolation may produce autistic-like behaviors, and lithium may be a potential therapeutic agent against autism spectrum disorders (ASD) during development.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Yanrui Bai
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Tao Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Hongjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Shuting Xia
- Ministry of Education Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University Nanjing, China
| | - Xinxia Chang
- Ministry of Education Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University Nanjing, China
| | - Zikai Zhou
- Ministry of Education Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University Nanjing, China
| | - Weihui Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Tingyu Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| |
Collapse
|
20
|
Wöhr M. Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: Detailed spectrographic analyses and developmental profiles. Neurosci Biobehav Rev 2014; 43:199-212. [DOI: 10.1016/j.neubiorev.2014.03.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/25/2014] [Accepted: 03/31/2014] [Indexed: 12/31/2022]
|
21
|
Sungur AÖ, Vörckel KJ, Schwarting RKW, Wöhr M. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context. J Neurosci Methods 2014; 234:92-100. [PMID: 24820912 DOI: 10.1016/j.jneumeth.2014.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is characterized by persistent deficits in social behavior and communication, together with restricted and repetitive patterns of behavior. Several ASD candidate genes have been identified, including the SHANK gene family with its three family members SHANK1, SHANK2, and SHANK3. METHODS Typically, repetitive behavior in mouse models for ASD is assessed by measuring self-grooming behavior. The first aim of the current study was to assess repetitive behaviors in Shank1(-/-) null mutant, Shank1(+/-) heterozygous, and Shank1(+/+) wildtype littermate control mice by means of a comprehensive approach, including the assessment of self-grooming, digging behavior, and marble burying. The second aim was to establish a test paradigm that allows for assessing the effects of social context on the occurrence of repetitive behaviors in a genotype-dependent manner. To this aim, repetitive behaviors were repeatedly tested on three consecutive days in distinct social contexts, namely in presence or absence of social odors. RESULTS Shank1(+/-) heterozygous and to a lesser extent Shank1(-/-) null mutant mice displayed slightly elevated levels of self-grooming behavior as adults, but not as juveniles, with genotype differences being most prominent in the social context. In contrast to elevated self-grooming behavior, marble burying was strongly reduced in adult Shank1(+/-) heterozygous and Shank1(-/-) null mutant mice across social contexts, as compared to adult Shank1(+/+) wildtype littermate controls. CONCLUSION The opposite effects of the Shank1 deletion on the two types of repetitive behaviors are in line with a number of studies on repetitive behaviors in other genetic Shank models.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Karl J Vörckel
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, D-35032 Marburg, Germany.
| |
Collapse
|
22
|
The need for a comprehensive molecular characterization of autism spectrum disorders. Int J Neuropsychopharmacol 2014; 17:651-73. [PMID: 24229490 DOI: 10.1017/s146114571300117x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of disorders which have complex behavioural phenotypes. Although ASD is a highly heritable neuropsychiatric disorder, genetic research alone has not provided a profound understanding of the underlying causes. Recent developments using biochemical tools such as transcriptomics, proteomics and cellular models, will pave the way to gain new insights into the underlying pathological pathways. This review addresses the state-of-the-art in the search for molecular biomarkers for ASD. In particular, the most important findings in the biochemical field are highlighted and the need for establishing streamlined interaction between behavioural studies, genetics and proteomics is stressed. Eventually, these approaches will lead to suitable translational ASD models and, therefore, a better disease understanding which may facilitate novel drug discovery efforts in this challenging field.
Collapse
|
23
|
Lugo JN, Swann JW, Anderson AE. Early-life seizures result in deficits in social behavior and learning. Exp Neurol 2014; 256:74-80. [PMID: 24685665 DOI: 10.1016/j.expneurol.2014.03.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 12/30/2022]
Abstract
Children with epilepsy show a high co-morbidity with psychiatric disorders and autism. One of the critical determinants of a child's behavioral outcome with autism and cognitive dysfunction is the age of onset of seizures. In order to examine whether seizures during postnatal days 7-11 result in learning and memory deficits and behavioral features of autism we administered the inhalant flurothyl to induce seizures in C57BL/6J mice. Mice received three seizures per day for five days starting on postnatal day 7. Parallel control groups consisted of similarly handled animals that were not exposed to flurothyl and naïve mice. Subjects were then processed through a battery of behavioral tests in adulthood: elevated-plus maze, nose-poke assay, marble burying, social partition, social chamber, fear conditioning, and Morris water maze. Mice with early-life seizures had learning and memory deficits in the training portion of the Morris water maze (p<0.05) and probe trial (p<0.01). Mice with seizures showed no differences in marble burying, the nose-poke assay, or elevated plus-maze testing compared to controls. However, they showed a significant difference in the social chamber and social partition tests. Mice with seizures during postnatal days 7-11 showed a significant decrease in social interaction in the social chamber test and had a significant impairment in social behavior in the social partition test. Together, these results indicate that early life seizures result in deficits in hippocampal-dependent memory tasks and produce long-term disruptions in social behavior.
Collapse
Affiliation(s)
- Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - John W Swann
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne E Anderson
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav Brain Res 2013; 251:5-17. [DOI: 10.1016/j.bbr.2013.05.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022]
|
25
|
Greco B, Managò F, Tucci V, Kao HT, Valtorta F, Benfenati F. Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 2012; 251:65-74. [PMID: 23280234 PMCID: PMC3730181 DOI: 10.1016/j.bbr.2012.12.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy.
Collapse
Affiliation(s)
- Barbara Greco
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Bhattacharya A, Klann E. The molecular basis of cognitive deficits in pervasive developmental disorders. Learn Mem 2012; 19:434-43. [PMID: 22904374 DOI: 10.1101/lm.025007.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Persons with pervasive developmental disorders (PDD) exhibit a range of cognitive deficits that hamper their quality of life, including difficulties involving communication, sociability, and perspective-taking. In recent years, a variety of studies in mice that model genetic syndromes with a high risk of PDD have provided insights into the underlying molecular mechanisms associated with these disorders. What is less appreciated is how the molecular anomalies affect neuronal and circuit function to give rise to the cognitive deficits associated with PDD. In this review, we describe genetic mutations that cause PDD and discuss how they alter fundamental social and cognitive processes. We then describe efforts to correct cognitive impairments associated with these disorders and identify areas of further inquiry in the search for molecular targets for therapeutics for PDD.
Collapse
Affiliation(s)
- Aditi Bhattacharya
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | |
Collapse
|
27
|
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 2012; 4:19. [PMID: 22958744 PMCID: PMC3464940 DOI: 10.1186/1866-1955-4-19] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 7255, 101 Manning Drive, Chapel Hill, NC, 275997255, USA
| | - Cara A Damiano
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John A Allen
- Neuroscience Research Unit Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|
28
|
Kohls G, Chevallier C, Troiani V, Schultz RT. Social 'wanting' dysfunction in autism: neurobiological underpinnings and treatment implications. J Neurodev Disord 2012; 4:10. [PMID: 22958468 PMCID: PMC3436671 DOI: 10.1186/1866-1955-4-10] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/17/2012] [Indexed: 12/27/2022] Open
Abstract
Most behavioral training regimens in autism spectrum disorders (ASD) rely on reward-based reinforcement strategies. Although proven to significantly increase both cognitive and social outcomes and successfully reduce aberrant behaviors, this approach fails to benefit a substantial number of affected individuals. Given the enormous amount of clinical and financial resources devoted to behavioral interventions, there is a surprisingly large gap in our knowledge of the basic reward mechanisms of learning in ASD. Understanding the mechanisms for reward responsiveness and reinforcement-based learning is urgently needed to better inform modifications that might improve current treatments. The fundamental goal of this review is to present a fine-grained literature analysis of reward function in ASD with reference to a validated neurobiological model of reward: the 'wanting'/'liking' framework. Despite some inconsistencies within the available literature, the evaluation across three converging sets of neurobiological data (neuroimaging, electrophysiological recordings, and neurochemical measures) reveals good evidence for disrupted reward-seeking tendencies in ASD, particularly in social contexts. This is most likely caused by dysfunction of the dopaminergic-oxytocinergic 'wanting' circuitry, including the ventral striatum, amygdala, and ventromedial prefrontal cortex. Such a conclusion is consistent with predictions derived from diagnostic criteria concerning the core social phenotype of ASD, which emphasize difficulties with spontaneous self-initiated seeking of social encounters (that is, social motivation). Existing studies suggest that social 'wanting' tendencies vary considerably between individuals with ASD, and that the degree of social motivation is both malleable and predictive of intervention response. Although the topic of reward responsiveness in ASD is very new, with much research still needed, the current data clearly point towards problems with incentive-based motivation and learning, with clear and important implications for treatment. Given the reliance of behavioral interventions on reinforcement-based learning principles, we believe that a systematic focus on the integrity of the reward system in ASD promises to yield many important clues, both to the underlying mechanisms causing ASD and to enhancing the efficacy of existing and new interventions.
Collapse
Affiliation(s)
- Gregor Kohls
- Center for Autism Research, The Children's Hospital of Philadelphia, 3535 Market Street, 8th floor, Suite 860, Philadelphia, PA, 19104, USA.
| | | | | | | |
Collapse
|