1
|
Kang N, Sargsyan S, Chough I, Petrick L, Liao J, Chen W, Pavlovic N, Lurmann FW, Martinez MP, McConnell R, Xiang AH, Chen Z. Dysregulated metabolic pathways associated with air pollution exposure and the risk of autism: Evidence from epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124729. [PMID: 39147228 DOI: 10.1016/j.envpol.2024.124729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with symptoms that range from social and communication impairments to restricted interests and repetitive behavior and is the 4th most disabling condition for children aged 5-14. Risk factors of ASD are not fully understood. Environmental risk factors are believed to play a significant role in the ASD epidemic. Research focusing on air pollution exposure as an early-life risk factor of autism is growing, with numerous studies finding associations of traffic and industrial emissions with an increased risk of ASD. One of the possible mechanisms linking autism and air pollution exposure is metabolic dysfunction. However, there were no consensus about the key metabolic pathways and corresponding metabolite signatures in mothers and children that are altered by air pollution exposure and cause the ASD. Therefore, we performed a review of published papers examining the metabolomic signatures and metabolic pathways that are associated with either air pollution exposure or ASD risk in human studies. In conclusion, we found that dysregulated lipid, fatty acid, amino acid, neurotransmitter, and microbiome metabolisms are associated with both short-term and long-term air pollution exposure and the risk of ASD. These dysregulated metabolisms may provide insights into ASD etiology related to air pollution exposure, particularly during the perinatal period in which neurodevelopment is highly susceptible to damage from oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ni Kang
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Suzan Sargsyan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ino Chough
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Wu Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Michalczyk J, Miłosz A, Gesek M, Fornal A. Prenatal Diabetes and Obesity: Implications for Autism Spectrum Disorders in Offspring - A Comprehensive Review. Med Sci Monit 2024; 30:e945087. [PMID: 39180197 DOI: 10.12659/msm.945087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
Fetal brain development is an important determinant of neuropsychological performance in children. Any alterations in the intrauterine environment at different stages of pregnancy, such as maternal metabolic disorders, can lead to the development of chronic conditions in the offspring. Therefore, maternal diabetes, especially gestational diabetes mellitus, is an important factor in the development of pathological changes, such as miscarriage, fetal macrosomia, or neurodevelopmental disorders. During pregnancy, the hyperglycemic intrauterine environment adversely affects fetal brain development. A growing body of scientific research indicates that prenatal environmental factors, by affecting fetal brain development, can contribute to the appearance of autism spectrum disorders. According to the latest estimates from the International Diabetes Federation (2021), approximately 21.1 million live births worldwide (16.7%) have been affected by some form of hyperglycemia during pregnancy. The condition is more prevalent in low- and middle-income countries, where access to obstetric care is limited. The following factors have been identified as potential risk factors for gestational diabetes: advanced maternal age, overweight and obesity, family history of diabetes, and any form of diabetes. The purpose of this review is to summarize recent studies evaluating the effect of prenatal and maternal risk factors such as maternal pre-pregnancy diabetes, gestational diabetes, and obesity on the risk of developing autism spectrum disorder in offspring.
Collapse
Affiliation(s)
- Justyna Michalczyk
- Student Scientific Association at the Department of Pediatrics and Pediatric Nursing, Medical University of Lublin, Lublin, Poland
| | - Agata Miłosz
- Student Scientific Association at the Department of Pediatrics and Pediatric Nursing, Medical University of Lublin, Lublin, Poland
| | - Monika Gesek
- Department of Pediatric and Pediatric Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
- Department of Integrated Nursing Care, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Fornal
- Department of Pediatric and Pediatric Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
- Department of Integrated Nursing Care, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Gao Q, Bi D, Li B, Ni M, Pang D, Li X, Zhang X, Xu Y, Zhao Q, Zhu C. The Association Between Branched-Chain Amino Acid Concentrations and the Risk of Autism Spectrum Disorder in Preschool-Aged Children. Mol Neurobiol 2024; 61:6031-6044. [PMID: 38265552 PMCID: PMC11249470 DOI: 10.1007/s12035-024-03965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Several studies have linked branched-chain amino acid (BCAA) metabolism disorders with autism spectrum disorder (ASD), but the results have been inconsistent. The purpose of this study was to explore the association between BCAA concentrations and the risk of ASD. A total of 313 participants were recruited from two tertiary referral hospitals from May 2018 to July 2021. Concentrations of BCAAs in dried blood spots were analyzed using liquid chromatography-tandem mass spectrometry-based analysis. Multivariate analyses and restricted cubic spline models were used to identify the association between BCAAs and the risk of ASD, and a nomogram was developed by using multivariate logistic regression and the risk was determined by receiver operating characteristic curve analysis and calibration curve analysis. Concentrations of total BCAA, valine, and leucine/isoleucine were higher in the ASD group, and all of them were positively and non-linearly associated with the risk of ASD even after adjusting for potential confounding factors such as age, gender, body mass index, and concentrations of BCAAs (P < 0.05). The nomogram integrating total BCAA and valine showed a good discriminant AUC value of 0.756 (95% CI 0.676-0.835). The model could yield net benefits across a reasonable range of risk thresholds. In the stratified analysis, the diagnostic ability of the model was more pronounced in children older than 3 years. We provide evidence that increased levels of BCAAs are associated with the risk of ASD, and the nomogram model of BCAAs presented here can serve as a marker for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Qi Gao
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Bi
- Department of Pediatrics, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Min Ni
- Department of Henan Newborn Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450054, China
| | - Dizhou Pang
- Center for Child Behavioral Development, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xian Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zhao
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, 450052, China.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
4
|
Shao W, Su Y, Liu J, Liu Y, Zhao J, Fan X. Understanding the link between different types of maternal diabetes and the onset of autism spectrum disorders. DIABETES & METABOLISM 2024; 50:101543. [PMID: 38761920 DOI: 10.1016/j.diabet.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Autism spectrum disorders (ASD) encompass a collection of neurodevelopmental disorders that exhibit impaired social interactions and repetitive stereotypic behaviors. Although the exact cause of these disorders remains unknown, it is widely accepted that both genetic and environmental factors contribute to their onset and progression. Recent studies have highlighted the potential negative impact of maternal diabetes on embryonic neurodevelopment, suggesting that intrauterine hyperglycemia could pose an additional risk to early brain development and contribute to the development of ASD. This paper presents a comprehensive analysis of the current research on the relationship between various forms of maternal diabetes, such as type 1 diabetes mellitus, type 2 diabetes mellitus, and gestational diabetes mellitus, and the likelihood of ASD in offspring. The study elucidates the potential mechanisms through which maternal hyperglycemia affects fetal development, involving metabolic hormones, immune dysregulation, heightened oxidative stress, and epigenetic alterations. The findings of this review offer valuable insights for potential preventive measures and evidence-based interventions targeting ASD.
Collapse
Affiliation(s)
- Wenyu Shao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yichun Su
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulong Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Maitin-Shepard M, O'Tierney-Ginn P, Kraneveld AD, Lyall K, Fallin D, Arora M, Fasano A, Mueller NT, Wang X, Caulfield LE, Dickerson AS, Diaz Heijtz R, Tarui T, Blumberg JB, Holingue C, Schmidt RJ, Garssen J, Almendinger K, Lin PID, Mozaffarian D. Food, nutrition, and autism: from soil to fork. Am J Clin Nutr 2024; 120:240-256. [PMID: 38677518 DOI: 10.1016/j.ajcnut.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Food and nutrition-related factors have the potential to impact development of autism spectrum disorder (ASD) and quality of life for people with ASD, but gaps in evidence exist. On 10 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships of food and nutrition with ASD. This meeting report summarizes the presentations and deliberations from the meeting. Topics addressed included prenatal and child dietary intake, the microbiome, obesity, food-related environmental exposures, mechanisms and biological processes linking these factors and ASD, food-related social factors, and data sources for future research. Presentations highlighted evidence for protective associations with prenatal folic acid supplementation and ASD development, increases in risk of ASD with maternal gestational obesity, and the potential for exposure to environmental contaminants in foods and food packaging to influence ASD development. The importance of the maternal and child microbiome in ASD development or ASD-related behaviors in the child was reviewed, as was the role of discrimination in leading to disparities in environmental exposures and psychosocial factors that may influence ASD. The role of child diet and high prevalence of food selectivity in children with ASD and its association with adverse outcomes were also discussed. Priority evidence gaps identified by participants include further clarifying ASD development, including biomarkers and key mechanisms; interactions among psychosocial, social, and biological determinants; interventions addressing diet, supplementation, and the microbiome to prevent and improve quality of life for people with ASD; and mechanisms of action of diet-related factors associated with ASD. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and ASD.
Collapse
Affiliation(s)
| | | | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura E Caulfield
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Tomo Tarui
- Department of Pediatrics, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jeffrey B Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Calliope Holingue
- Center for Autism Services, Science and Innovation, Kennedy Krieger Institute and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, the MIND Institute, University of California Davis, Davis, CA, United States
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Katherine Almendinger
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Pi-I Debby Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Dariush Mozaffarian
- Food is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| |
Collapse
|
6
|
Raghavan R, Wang X. Early Life Origins of Neurodevelopmental Disabilities in the Boston Birth Cohort: Research findings and future directions. PRECISION NUTRITION 2024; 3:e00062. [PMID: 39184946 PMCID: PMC11343508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurodevelopmental disabilities (NDD) are a group of conditions with onset in early development period and is characterized by limitations in several functional domains. Autism spectrum disorder (ASD) and Attention-Deficit Hyperactivity Disorders (ADHD), the most common NDDs, have complex etiologies and possibly multiple pathways leading up to the manifestation of these disorders. Boston Birth Cohort (BBC) is a preterm enriched birth cohort, and over the years, researchers have used the BBC dataset to study a broad spectrum of early life protective and risk factors in the context of NDDs. Broadly, some of them include: 1) nutrition (e.g. maternal folate, vitamin B12, cord folate species, selenium), 2) metabolic factors (e.g. role of maternal diabetes, obesity, branched chain amino acids and other essential amino acids), 3) lipid metabolism (e.g. maternal cholesterol), 4) immune activation and/or systematic inflammation (including maternal immune activation, inflammation of the placenta, inflammatory markers, maternal antibiotic use and acetaminophen use), and 5) other factors associated with NDDs (e.g. maternal stress, sickle cell disease). The findings from these studies are discussed in this review. BBC studies have advanced the field of NDD in the following important ways: 1) generating evidence that sheds light on new exposures, 2) furthering the existing knowledge using better methodological approaches, 3) analyzing novel mechanistic pathways on already proven relationship, and 4) advancing knowledge on the under-studied minority population in the U.S. BBC researchers are involved in ongoing efforts to characterize NDD developmental trajectories across the life stages by integrating multi-omics data (genome, epigenome, and metabolome) to gain a deeper understanding of the molecular pathways by which early life factors drive or shape the developmental trajectories of NDDs.
Collapse
Affiliation(s)
- Ramkripa Raghavan
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Chang X, Zhang Y, Chen X, Li S, Mei H, Xiao H, Ma X, Liu Z, Li R. Gut microbiome and serum amino acid metabolome alterations in autism spectrum disorder. Sci Rep 2024; 14:4037. [PMID: 38369656 PMCID: PMC10874930 DOI: 10.1038/s41598-024-54717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Gut microbiota and their metabolic products might play important roles in regulating the pathogenesis of autism spectrum disorder (ASD). The purpose of this study was to characterize gut microbiota and serum amino acid metabolome profiles in children with ASD. A non-randomized controlled study was carried out to analyze the alterations in the intestinal microbiota and their metabolites in patients with ASD (n = 30) compared with neurotypical controls (NC) (n = 30) by metagenomic sequencing to define the gut microbiota community and liquid chromatography/mass spectrometry (LC/MS) analysis to characterize the metabolite profiles. Compared with children in the NC group, those in the ASD group showed lower richness, higher evenness, and an altered microbial community structure. At the class level, Deinococci and Holophagae were significantly lower in children with ASD compared with TD. At the phylum level, Deinococcus-Thermus was significantly lower in children with ASD compared with TD. In addition, the functional properties (such as galactose metabolism) displayed significant differences between the ASD and NC groups. Five dominant altered species were identified and analyzed (LDA score > 2.0, P < 0.05), including Subdoligranulum, Faecalibacterium_praushitzii, Faecalibacterium, Veillonellaceae, and Rumminococcaceae. The peptides/nickel transport system was the main metabolic pathway involved in the differential species in the ASD group. Decreased ornithine levels and elevated valine levels may increase the risk of ASD through a metabolic pathway known as the nickel transport system. The microbial metabolism in diverse environments was negatively correlated with phascolarctobacterium succinatutens. Our study provides novel insights into compositional and functional alterations in the gut microbiome and metabolite profiles in ASD and the underlying mechanisms between metabolite and ASD.
Collapse
Affiliation(s)
- Xuening Chang
- Department of Child Health Care, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yuchen Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xue Chen
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Shihan Li
- Department of Child Health Care, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Hong Mei
- Department of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Han Xiao
- Department of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| | - Xinyu Ma
- Department of Radiology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| | - Zhisheng Liu
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| | - Ruizhen Li
- Department of Child Health Care, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| |
Collapse
|
8
|
Croen LA, Ames JL, Qian Y, Alexeeff S, Ashwood P, Gunderson EP, Wu YW, Boghossian AS, Yolken R, Van de Water J, Weiss LA. Inflammatory Conditions During Pregnancy and Risk of Autism and Other Neurodevelopmental Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:39-50. [PMID: 38045769 PMCID: PMC10689278 DOI: 10.1016/j.bpsgos.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
Background Maternal inflammation can result from immune dysregulation and metabolic perturbations during pregnancy. Whether conditions associated with inflammation during pregnancy increase the likelihood of autism spectrum disorder (ASD) or other neurodevelopmental disorders (DDs) is not well understood. Methods We conducted a case-control study among children born in California from 2011 to 2016 to investigate maternal immune-mediated and cardiometabolic conditions during pregnancy and risk of ASD (n = 311) and DDs (n = 1291) compared with children from the general population (n = 967). Data on maternal conditions and covariates were retrieved from electronic health records. Maternal genetic data were used to assess a causal relationship. Results Using multivariable logistic regression, we found that mothers with asthma were more likely to deliver infants later diagnosed with ASD (odds ratio [OR] = 1.62, 95% CI: 1.15-2.29) or DDs (OR = 1.30, 95% CI: 1.02-1.64). Maternal obesity was also associated with child ASD (OR = 1.51, 95% CI: 1.07-2.13). Mothers with both asthma and extreme obesity had the greatest odds of delivering an infant later diagnosed with ASD (OR = 16.9, 95% CI: 5.13-55.71). These increased ASD odds were observed among female children only. Polygenic risk scores for obesity, asthma, and their combination showed no association with ASD risk. Mendelian randomization did not support a causal relationship between maternal conditions and ASD. Conclusions Inflammatory conditions during pregnancy are associated with risk for neurodevelopmental disorders in children. These risks do not seem to be due to shared genetic risk; rather, inflammatory conditions may share nongenetic risk factors with neurodevelopmental disorders. Children whose mothers have both asthma and obesity during pregnancy may benefit from earlier screening and intervention.
Collapse
Affiliation(s)
- Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Jennifer L. Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Yinge Qian
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Stacey Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology and the MIND Institute, University of California, Davis, Davis, California
| | - Erica P. Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Yvonne W. Wu
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, California
| | - Andrew S. Boghossian
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Robert Yolken
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Judy Van de Water
- Division of Rheumatology/Allergy/Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, California
| | - Lauren A. Weiss
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| |
Collapse
|
9
|
Di Gesù CM, Matz LM, Bolding IJ, Fultz R, Hoffman KL, Marino Gammazza A, Petrosino JF, Buffington SA. Maternal gut microbiota mediate intergenerational effects of high-fat diet on descendant social behavior. Cell Rep 2022; 41:111461. [PMID: 36223744 PMCID: PMC9597666 DOI: 10.1016/j.celrep.2022.111461] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
Dysbiosis of the maternal gut microbiome during pregnancy is associated with adverse neurodevelopmental outcomes. We previously showed that maternal high-fat diet (MHFD) in mice induces gut dysbiosis, social dysfunction, and underlying synaptic plasticity deficits in male offspring (F1). Here, we reason that, if HFD-mediated changes in maternal gut microbiota drive offspring social deficits, then MHFD-induced dysbiosis in F1 female MHFD offspring would likewise impair F2 social behavior. Metataxonomic sequencing reveals reduced microbial richness among female F1 MHFD offspring. Despite recovery of microbial richness among MHFD-descendant F2 mice, they display social dysfunction. Post-weaning Limosilactobacillus reuteri treatment increases the abundance of short-chain fatty acid-producing taxa and rescues MHFD-descendant F2 social deficits. L. reuteri exerts a sexually dimorphic impact on gut microbiota configuration, increasing discriminant taxa between female cohorts. Collectively, these results show multigenerational impacts of HFD-induced dysbiosis in the maternal lineage and highlight the potential of maternal microbiome-targeted interventions for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy,Current address: Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston,These authors contributed equally
| | - Lisa M. Matz
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,These authors contributed equally
| | - Ian J. Bolding
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Fultz
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelly A. Buffington
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Microbiome Research, The University of Texas Medical Branch, Galveston, TX 77555, USA,Lead contact,Correspondence:
| |
Collapse
|
10
|
Salinas-Roca B, Rubió-Piqué L, Montull-López A. Polyphenol Intake in Pregnant Women on Gestational Diabetes Risk and Neurodevelopmental Disorders in Offspring: A Systematic Review. Nutrients 2022; 14:3753. [PMID: 36145129 PMCID: PMC9502213 DOI: 10.3390/nu14183753] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The intake of foods containing polyphenols can have a protective role to avoid comorbidities during pregnancy and, at the same time, promote transgenerational health. This review aims to describe the effect of polyphenol intake through supplements or polyphenol-rich foods during pregnancy on the incidence and evolution of gestational diabetes mellitus (GDM), as well as the link with the neurodevelopment of the fetus. Using PRISMA procedures, a systematic review was conducted by searching in biomedical databases (PubMed, Cinahl and Scopus) from January to June 2022. Full articles were screened (n = 419) and critically appraised. Fourteen studies were selected and were divided into two different thematic blocks considering (i) the effect of polyphenols in GDM and (ii) the effect of GDM to mental disorders in the offspring. A positive relationship was observed between the intake of polyphenols and the prevention and control of cardiometabolic complications during pregnancy, such as GDM, which could be related to thwarted inflammatory and oxidative processes, as well as neuronal factors. GDM is related to a greater risk of suffering from diseases related to neurodevelopment, such as attention deficit hyperactivity disorder, autism spectrum disorder and learning disorder. Further clinical research on the molecule protective mechanism of polyphenols on pregnant women is required to understand the transgenerational impact on fetal neurodevelopment.
Collapse
Affiliation(s)
- Blanca Salinas-Roca
- Global Research on Wellbeing (GRoW) Research Group, Blanquerna School of Health Science, Ramon Llull University, Padilla, 326-332, 08025 Barcelona, Spain
- Department of Nursing and Physiotherapy, University of Lleida, Montserrat Roig 2, 25198 Lleida, Spain
| | - Laura Rubió-Piqué
- Antioxidants Research Group, Food Technology Department, AGROTECNIO-CERCA Center, University of Lleida, Av/Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Anna Montull-López
- Department of Nursing and Physiotherapy, University of Lleida, Montserrat Roig 2, 25198 Lleida, Spain
| |
Collapse
|
11
|
Raghavan R, Anand NS, Wang G, Hong X, Pearson C, Zuckerman B, Xie H, Wang X. Association between cord blood metabolites in tryptophan pathway and childhood risk of autism spectrum disorder and attention-deficit hyperactivity disorder. Transl Psychiatry 2022; 12:270. [PMID: 35810183 PMCID: PMC9271093 DOI: 10.1038/s41398-022-01992-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in tryptophan and serotonin have been implicated in various mental disorders; but studies are limited on child neurodevelopmental disabilities such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). This prospective cohort study examined the associations between levels of tryptophan and select metabolites (5-methoxytryptophol (5-MTX), 5-hydroxytryptophan (5-HTP), serotonin, N-acetyltrytophan) in cord plasma (collected at birth) and physician-diagnosed ASD, ADHD and other developmental disabilities (DD) in childhood. The study sample (n = 996) derived from the Boston Birth Cohort, which included 326 neurotypical children, 87 ASD, 269 ADHD, and 314 other DD children (mutually exclusive). These participants were enrolled at birth and followed-up prospectively (from October 1, 1998 to June 30, 2018) at the Boston Medical Center. Higher levels of cord 5-MTX was associated with a lower risk of ASD (aOR: 0.56, 95% CI: 0.41, 0.77) and ADHD (aOR: 0.79, 95% CI: 0.65, 0.96) per Z-score increase, after adjusting for potential confounders. Similarly, children with cord 5-MTX ≥ 25th percentile (vs. <25th percentile) had a reduction in ASD (aOR: 0.27, 95% CI: 0.14, 0.49) and ADHD risks (aOR: 0.45, 95% CI: 0.29, 0.70). In contrast, higher levels of cord tryptophan, 5-HTP and N-acetyltryptophan were associated with higher risk of ADHD, with aOR: 1.25, 95% CI: 1.03, 1.51; aOR: 1.32, 95% CI: 1.08, 1.61; and aOR: 1.27, 95% CI: 1.05, 1.53, respectively, but not with ASD and other DD. Cord serotonin was not associated with ASD, ADHD, and other DD. Most findings remained statistically significant in the sensitivity and subgroup analyses.
Collapse
Affiliation(s)
- Ramkripa Raghavan
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Neha S Anand
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Hehuang Xie
- Department of Biomedical Sciences & Pathobiology, Fralin Life Sciences Institute at Virginia Technology, Blacksburg, VA, USA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Wang Y, Guo X, Hong X, Wang G, Pearson C, Zuckerman B, Clark AG, O'Brien KO, Wang X, Gu Z. Association of mitochondrial DNA content, heteroplasmies and inter-generational transmission with autism. Nat Commun 2022; 13:3790. [PMID: 35778412 PMCID: PMC9249801 DOI: 10.1038/s41467-022-30805-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/19/2022] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are essential for brain development. While previous studies linked dysfunctional mitochondria with autism spectrum disorder (ASD), the role of the mitochondrial genome (mtDNA) in ASD risk is largely unexplored. This study investigates the association of mtDNA heteroplasmies (co-existence of mutated and unmutated mtDNA) and content with ASD, as well as its inter-generational transmission and sex differences among two independent samples: a family-based study (n = 1,938 families with parents, probands and sibling controls) and a prospective birth cohort (n = 997 mother-child pairs). In both samples, predicted pathogenic (PP) heteroplasmies in children are associated with ASD risk (Meta-OR = 1.56, P = 0.00068). Inter-generational transmission of mtDNA reveals attenuated effects of purifying selection on maternal heteroplasmies in children with ASD relative to controls, particularly among males. Among children with ASD and PP heteroplasmies, increased mtDNA content shows benefits for cognition, communication, and behaviors (P ≤ 0.02). These results underscore the value of exploring maternal and newborn mtDNA in ASD.
Collapse
Affiliation(s)
- Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xiaoxian Guo
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | | | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
- Center for Mitochondrial Genetics and Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
| |
Collapse
|
13
|
Schmidt RJ, Liang D, Busgang SA, Curtin P, Giulivi C. Maternal Plasma Metabolic Profile Demarcates a Role for Neuroinflammation in Non-Typical Development of Children. Metabolites 2021; 11:545. [PMID: 34436486 PMCID: PMC8400060 DOI: 10.3390/metabo11080545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Maternal and cord plasma metabolomics were used to elucidate biological pathways associated with increased diagnosis risk for autism spectrum disorders (ASD). Metabolome-wide associations were assessed in both maternal and umbilical cord plasma in relation to diagnoses of ASD and other non-typical development (Non-TD) compared to typical development (TD) in the Markers of Autism risk in Babies: Learning Early Signs (MARBLES) cohort study of children born to mothers who already have at least one child with ASD. Analyses were stratified by sample matrix type, machine mode, and annotation confidence level. Dimensionality reduction techniques were used [i.e, principal component analysis (PCA) and random subset weighted quantile sum regression (WQSRS)] to minimize the high multiple comparison burden. With WQSRS, a metabolite mixture obtained from the negative mode of maternal plasma decreased the odds of Non-TD compared to TD. These metabolites, all related to the prostaglandin pathway, underscored the relevance of neuroinflammation status. No other significant findings were observed. Dimensionality reduction strategies provided confirming evidence that a set of maternal plasma metabolites are important in distinguishing Non-TD compared to TD diagnosis. A lower risk for Non-TD was linked to anti-inflammatory elements, thereby linking neuroinflammation to detrimental brain function consistent with studies ranging from neurodevelopment to neurodegeneration.
Collapse
Affiliation(s)
- Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA;
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Stefanie A. Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.A.B.); (P.C.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.A.B.); (P.C.)
| | - Cecilia Giulivi
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Anand NS, Ji Y, Wang G, Hong X, van der Rijn M, Riley A, Pearson C, Zuckerman B, Wang X. Maternal and cord plasma branched-chain amino acids and child risk of attention-deficit hyperactivity disorder: a prospective birth cohort study. J Child Psychol Psychiatry 2021; 62:868-875. [PMID: 32960988 PMCID: PMC10108604 DOI: 10.1111/jcpp.13332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Branched-chain amino acids (BCAA: leucine, isoleucine, and valine) are essential amino acids involved in biological functions of brain development and recently linked with autism. However, their role in attention-deficit hyperactivity disorder (ADHD) is not well-studied. We investigated individual and combined relationships of maternal plasma and newborn cord plasma BCAAs with childhood development of ADHD. METHODS We utilized the Boston Birth Cohort, a predominantly urban, low-income, US minority population. Child developmental outcomes were defined in three mutually exclusive groups - ADHD, neurotypical (NT), or other developmental disabilities based on physician diagnoses per ICD-9 or 10 in medical records. The final sample included 626 children (299 ADHD, 327 NT) excluding other developmental disabilities. BCAAs were measured by liquid chromatography-tandem mass spectrometry. We used factor analysis to create composite scores of maternal and cord BCAA, which we divided into tertiles. Logistic regressions analyzed relationships between maternal or cord BCAA tertiles with child ADHD risk, controlling for maternal race, age, parity, smoking, education, low birth weight, preterm birth, and child sex. Additionally, we analyzed maternal and cord plasma BCAAs jointly on child ADHD risk. RESULTS Adjusted logistic regression found significantly increased odds of child ADHD diagnosis for the second (OR 1.63, 95% CI: 1.04, 2.54, p = .032) and third tertiles (OR 2.01, 95% CI: 1.28, 3.15, p = .002) of cord BCAA scores compared to the first tertile. This finding held for the third tertile when further adjusting for maternal BCAA score. There was no significant association between maternal BCAA score and child ADHD risk, nor a significant interaction between maternal and cord BCAA scores. CONCLUSIONS In this prospective US birth cohort, higher cord BCAA levels were associated with a greater risk of developing ADHD in childhood. These results have implications for further research into mechanisms of ADHD development and possible early life screening and interventions.
Collapse
Affiliation(s)
- Neha S Anand
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yuelong Ji
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Madeleine van der Rijn
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, USA
| | - Anne Riley
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, USA
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, USA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neurosci Res 2021; 168:3-19. [PMID: 33992660 DOI: 10.1016/j.neures.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The maternal gut microbiome plays a critical role in fetal and early postnatal development, shaping fundamental processes including immune maturation and brain development, among others. Consequently, it also contributes to fetal programming of health and disease. Over the last decade, epidemiological studies and work in preclinical animal models have begun to uncover a link between dysbiosis of the maternal gut microbiome and neurodevelopmental disorders in offspring. Neurodevelopmental disorders are caused by both genetic and environmental factors, and their interactions; however, clinical heterogeneity, phenotypic variability, and comorbidities make identification of underlying mechanisms difficult. Among environmental factors, exposure to maternal obesity in utero confers a significant increase in risk for neurodevelopmental disorders. Obesogenic diets in humans, non-human primates, and rodents induce functional modifications in maternal gut microbiome composition, which animal studies suggest are causally related to adverse mental health outcomes in offspring. Here, we review evidence linking maternal diet-induced gut dysbiosis to neurodevelopmental disorders and discuss how it could affect pre- and early postnatal brain development. We are hopeful that this burgeoning field of research will revolutionize antenatal care by leading to accessible prophylactic strategies, such as prenatal probiotics, to improve mental health outcomes in children affected by maternal diet-induced obesity.
Collapse
|
16
|
Hollowood-Jones K, Adams JB, Coleman DM, Ramamoorthy S, Melnyk S, James SJ, Woodruff BK, Pollard EL, Snozek CL, Kruger U, Chuah J, Hahn J. Altered metabolism of mothers of young children with Autism Spectrum Disorder: a case control study. BMC Pediatr 2020; 20:557. [PMID: 33317469 PMCID: PMC7734806 DOI: 10.1186/s12887-020-02437-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Background Previous research studies have demonstrated abnormalities in the metabolism of mothers of young children with autism. Methods Metabolic analysis was performed on blood samples from 30 mothers of young children with Autism Spectrum Disorder (ASD-M) and from 29 mothers of young typically-developing children (TD-M). Targeted metabolic analysis focusing on the folate one-carbon metabolism (FOCM) and the transsulfuration pathway (TS) as well as broad metabolic analysis were performed. Statistical analysis of the data involved both univariate and multivariate statistical methods. Results Univariate analysis revealed significant differences in 5 metabolites from the folate one-carbon metabolism and the transsulfuration pathway and differences in an additional 48 metabolites identified by broad metabolic analysis, including lower levels of many carnitine-conjugated molecules. Multivariate analysis with leave-one-out cross-validation allowed classification of samples as belonging to one of the two groups of mothers with 93% sensitivity and 97% specificity with five metabolites. Furthermore, each of these five metabolites correlated with 8–15 other metabolites indicating that there are five clusters of correlated metabolites. In fact, all but 5 of the 50 metabolites with the highest area under the receiver operating characteristic curve were associated with the five identified groups. Many of the abnormalities appear linked to low levels of folate, vitamin B12, and carnitine-conjugated molecules. Conclusions Mothers of children with ASD have many significantly different metabolite levels compared to mothers of typically developing children at 2–5 years after birth.
Collapse
Affiliation(s)
- Kathryn Hollowood-Jones
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - James B Adams
- School for Engineering of Matter, Transport and Energy, Arizona State University, P.O. Box 879309, ECG 302, 501 E Tyler Mall, Tempe, AZ, 85287-9309, USA.
| | - Devon M Coleman
- School for Engineering of Matter, Transport and Energy, Arizona State University, P.O. Box 879309, ECG 302, 501 E Tyler Mall, Tempe, AZ, 85287-9309, USA
| | | | - Stepan Melnyk
- University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - S Jill James
- University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | | | - Elena L Pollard
- School for Engineering of Matter, Transport and Energy, Arizona State University, P.O. Box 879309, ECG 302, 501 E Tyler Mall, Tempe, AZ, 85287-9309, USA
| | | | - Uwe Kruger
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Joshua Chuah
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA.
| |
Collapse
|
17
|
Magdalena H, Beata K, Justyna P, Agnieszka KG, Szczepara-Fabian M, Buczek A, Ewa EW. Preconception Risk Factors for Autism Spectrum Disorder - A Pilot Study. Brain Sci 2020; 10:E293. [PMID: 32423096 PMCID: PMC7288185 DOI: 10.3390/brainsci10050293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of multifactorial etiology. Preconception risk factors are still poorly understood. A survey on preconception risk factors for ASD was conducted among parents of 121 ASD patients aged 3-12 years and parents of 100 healthy children aged 3-12 years. The exclusion criteria were as follows: the presence of associated problems such as intellectual disability, epilepsy or other genetic and neurological diseases. Thirteen parameters were considered, a few among which were conception problems, conception with assisted reproductive techniques, the use and duration of oral contraception, the number of previous pregnancies and miscarriages, time since the previous pregnancy (in months), the history of mental illness in the family (including ASD), other chronic diseases in the mother or father and maternal and paternal treatment in specialist outpatient clinics. Three factors statistically significantly increased the risk of developing ASD: mental illness in the mother/mother's family (35.54% vs. 16.0%, p = 0.0002), maternal thyroid disease (16.67% vs. 5.0%, p = 0.009) and maternal oral contraception (46.28% vs. 29.0%, p = 0.01). Children of mothers with thyroid disorders or with mental illness in relatives should be closely monitored for ASD. Further studies are warranted to assess a potential effect of oral contraception on the development of offspring.
Collapse
Affiliation(s)
- Hankus Magdalena
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 42-600 Katowice, Poland; (H.M.); (E.-W.E.)
| | - Kazek Beata
- Persevere—Child Development Support Center, 42-600 Katowice, Poland;
| | - Paprocka Justyna
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 42-600 Katowice, Poland; (H.M.); (E.-W.E.)
| | | | | | - Agata Buczek
- Department of Neurological Rehabilitation, John Paul II Upper Silesian Child Health Centre, 42-600 Katowice, Poland;
| | - Emich-Widera Ewa
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 42-600 Katowice, Poland; (H.M.); (E.-W.E.)
| |
Collapse
|