1
|
Bourque VR, Schmilovich Z, Huguet G, England J, Okewole A, Poulain C, Renne T, Jean-Louis M, Saci Z, Zhang X, Rolland T, Labbé A, Vorstman J, Rouleau GA, Baron-Cohen S, Mottron L, Bethlehem RAI, Warrier V, Jacquemont S. Integrating genomic variants and developmental milestones to predict cognitive and adaptive outcomes in autistic children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.31.24311250. [PMID: 39211846 PMCID: PMC11361213 DOI: 10.1101/2024.07.31.24311250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although the first signs of autism are often observed as early as 18-36 months of age, there is a broad uncertainty regarding future development, and clinicians lack predictive tools to identify those who will later be diagnosed with co-occurring intellectual disability (ID). Here, we developed predictive models of ID in autistic children (n=5,633 from three cohorts), integrating different classes of genetic variants alongside developmental milestones. The integrated model yielded an AUC ROC=0.65, with this predictive performance cross-validated and generalised across cohorts. Positive predictive values reached up to 55%, accurately identifying 10% of ID cases. The ability to stratify the probabilities of ID using genetic variants was up to twofold greater in individuals with delayed milestones compared to those with typical development. These findings underscore the potential of models in neurodevelopmental medicine that integrate genomics and clinical observations to predict outcomes and target interventions.
Collapse
|
2
|
Ben-Sasson A, Guedalia J, Ilan K, Shefer G, Cohen R, Gabis LV. Early developmental milestone clusters of autistic children based on electronic health records. Autism Res 2024; 17:1616-1627. [PMID: 38932567 DOI: 10.1002/aur.3177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Autistic children vary in symptoms, co-morbidities, and response to interventions. This study aimed to identify clusters of autistic children with a distinct pattern of attaining early developmental milestones (EDMs). The clustering of 5836 autistic children was based on the attainment of 43 gross motor, fine motor, language, and social developmental milestones during the first 3 years of life as recorded in baby wellness visits. K-means cluster analysis detected four EDM clusters: mild (n = 1686); moderate (n = 1691); severe (n = 2265); and global (n = 194). The most prominent cluster differences were in the language domain. The global cluster showed earlier and greater developmental delay across domains, unique early gross motor delays, and more were born preterm via cesarean section. The severe cluster had poor language development prominently in the second year of life, and later fine motor delays. Moderate cluster had mainly language delays in the third year of life. The mild cluster mostly passed milestones. EDM clusters differed demographically, with higher socioeconomic status in mild cluster and lowest in global cluster. However, the severe cluster had more immigrant and non-Jewish mothers followed by the moderate cluster. The rates of parental concerns and provider developmental referrals were significantly higher in the global, followed by the severe, moderate, and mild EDM clusters. Autistic children's language and motor delay in the first 3 years can be grouped by common magnitude and onset profiles as distinct groups that may link to specific etiologies (like prematurity or genetics) and specific intervention programs. Early autism screening should be tailored to these different developmental profiles.
Collapse
Affiliation(s)
| | | | | | - Galit Shefer
- TIMNA-Israel Ministry of Health's Big Data Platform, Jerusalem, Israel
| | - Roe Cohen
- TIMNA-Israel Ministry of Health's Big Data Platform, Jerusalem, Israel
| | - Lidia V Gabis
- Maccabi Healthcare Services, Tel-Aviv, Israel
- Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
3
|
Benavidez HR, Johansson M, Jones E, Rea H, Kurtz-Nelson EC, Miles C, Whiting A, Eayrs C, Earl R, Bernier RA, Eichler EE, Neuhaus E. Predicting Intervention Use in Youth with Rare Variants in Autism-Associated Genes. J Autism Dev Disord 2024:10.1007/s10803-024-06414-2. [PMID: 38809474 DOI: 10.1007/s10803-024-06414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Specialized multidisciplinary supports are important for long-term outcomes for autistic youth. Although family and child factors predict service utilization in autism, little is known with respect to youth with rare, autism-associated genetic variants, who frequently have increased psychiatric, developmental, and behavioral needs. We investigate the impact of family factors on service utilization to determine whether caregiver (autistic features, education, income) and child (autistic features, sex, age, IQ, co-occurring conditions) factors predicted service type (e.g., speech, occupational, behavioral) and intensity (hours/year) among children with autism-associated variants (N = 125), some of whom also had a confirmed ASD diagnosis. Analyses revealed variability in the types of services used across a range of child demographic, behavioral, and mental health characteristics. Speech therapy was the most received service (87.2%). Importantly, behavior therapy was the least received service and post-hoc analyses revealed that use of this therapy was uniquely predicted by ASD diagnosis. However, once children received a particular service, there was largely comparable intensity of services, independent of caregiver and child factors. Findings suggest that demographic and clinical factors impact families' ability to obtain services, with less impact on the intensity of services received. The low receipt of therapies that specifically address core support needs in autism (i.e., behavior therapy) indicates more research is needed on the availability of these services for youth with autism-associated variants, particularly for those who do not meet criteria for an ASD diagnosis but do demonstrate elevated and impactful child autistic features as compared to the general population.
Collapse
Affiliation(s)
| | - Margaret Johansson
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Jones
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Hannah Rea
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
- Center on Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Conor Miles
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Alana Whiting
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Curtis Eayrs
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Rachel Earl
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA.
- Center on Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
4
|
Neuhaus E, Rea H, Jones E, Benavidez H, Miles C, Whiting A, Johansson M, Eayrs C, Kurtz-Nelson EC, Earl R, Bernier RA, Eichler EE. Shared and divergent mental health characteristics of ADNP-, CHD8- and DYRK1A-related neurodevelopmental conditions. J Neurodev Disord 2024; 16:15. [PMID: 38622540 PMCID: PMC11017562 DOI: 10.1186/s11689-024-09532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Neurodevelopmental conditions such as intellectual disability (ID) and autism spectrum disorder (ASD) can stem from a broad array of inherited and de novo genetic differences, with marked physiological and behavioral impacts. We currently know little about the psychiatric phenotypes of rare genetic variants associated with ASD, despite heightened risk of psychiatric concerns in ASD more broadly. Understanding behavioral features of these variants can identify shared versus specific phenotypes across gene groups, facilitate mechanistic models, and provide prognostic insights to inform clinical practice. In this paper, we evaluate behavioral features within three gene groups associated with ID and ASD - ADNP, CHD8, and DYRK1A - with two aims: (1) characterize phenotypes across behavioral domains of anxiety, depression, ADHD, and challenging behavior; and (2) understand whether age and early developmental milestones are associated with later mental health outcomes. METHODS Phenotypic data were obtained for youth with disruptive variants in ADNP, CHD8, or DYRK1A (N = 65, mean age = 8.7 years, 40% female) within a long-running, genetics-first study. Standardized caregiver-report measures of mental health features (anxiety, depression, attention-deficit/hyperactivity, oppositional behavior) and developmental history were extracted and analyzed for effects of gene group, age, and early developmental milestones on mental health features. RESULTS Patterns of mental health features varied by group, with anxiety most prominent for CHD8, oppositional features overrepresented among ADNP, and attentional and depressive features most prominent for DYRK1A. For the full sample, age was positively associated with anxiety features, such that elevations in anxiety relative to same-age and same-sex peers may worsen with increasing age. Predictive utility of early developmental milestones was limited, with evidence of early language delays predicting greater difficulties across behavioral domains only for the CHD8 group. CONCLUSIONS Despite shared associations with autism and intellectual disability, disruptive variants in ADNP, CHD8, and DYRK1A may yield variable psychiatric phenotypes among children and adolescents. With replication in larger samples over time, efforts such as these may contribute to improved clinical care for affected children and adolescents, allow for earlier identification of emerging mental health difficulties, and promote early intervention to alleviate concerns and improve quality of life.
Collapse
Affiliation(s)
- Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Center On Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Hannah Rea
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth Jones
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah Benavidez
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Conor Miles
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alana Whiting
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Margaret Johansson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Curtis Eayrs
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Rachel Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
5
|
Liu M, Brady NC, Boorom O, Fleming K, Yue J, Liu Q. Prelinguistic communication complexity predicts expressive language in initial minimally verbal autistic children. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:413-425. [PMID: 37743638 DOI: 10.1111/1460-6984.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Prelinguistic communication complexity refers to the use of different communication forms such as eye gaze, gestures and vocalisations and the degree to which these forms are coordinated and how directed to a communication partner. To date, little is known about the relationship between prelinguistic communication complexity and expressive language in minimally verbal autistic children. AIMS To test the hypothesis that prelinguistic communication complexity predicts expressive language 12 months later in autistic children and explore whether there are any differences in specific prelinguistic intentional communicative behaviours that are related to later expressive language levels. METHODS & PROCEDURES This longitudinal study examined 37 minimally verbal autistic children (29-71 months old). The Communication Complexity Scale (CCS) was used to measure participants' prelinguistic communication behaviours, which were extracted from a semi-structured play interaction at Time 1. The Chinese Communicative Development Inventory (CCDI) was used to examine participants' expressive language at Time 1 and Time 2 (12 months later). According to Time 2 vocabulary size, participants were divided into two groups: Low CCDI, between 0 and 62 words, and High CCDI, more than 100 words. Linear regression was used to examine the relationship between early prelinguistic communication complexity and later expressive language. Binary logistic regression was used to determine which of the early communication behaviours were uniquely significantly related to later expressive language levels. OUTCOMES & RESULTS There was a significant positive relationship between prelinguistic communication complexity and expressive language 12 months later, even after controlling for age and concurrent language. Findings revealed a group difference in the frequency of gesture and vocalisation combinations between the Low and High CCDI groups at Time 1. Gesture-vocalisation combinations also predicted better expressive language levels at Time 2. CONCLUSIONS & IMPLICATIONS Our findings suggest that it may be beneficial to incorporate different complex communication behaviours into prelinguistic intervention targets for minimally verbal autistic children. The CCS hierarchies can be used as a reference for the intervention goals of minimally verbal autistic children. These findings highlight the importance of targeting gesture and vocalisation combinations when autistic children transition from single prelinguistic communication behaviours to multimodal behaviours. WHAT THIS PAPER ADDS What is already known on this subject Children use eye gaze, gestures and vocalisations to communicate with others before they learn spoken language. There is strong evidence suggest that the frequency of prelinguistic communication predicts later linguistic achievements in autistic children. However, less is known about whether prelinguistic communication complexity also predicts later language and which specific behaviours are most predictive of language outcomes. What this study adds Minimally verbal autistic children who exhibit more complex prelinguistic communication behaviours have better expressive language 12 months later. Gestures combined with vocalisations predict better expressive language in minimally verbal autistic children. What are the clinical implications of this work? When identifying intervention targets for minimally verbal autistic children, the clinicians may reference the prelinguistic communication behaviours from the CCS. The gesture and vocalisation combinations are the key behaviours when targets transit from single form to two-form behaviours.
Collapse
Affiliation(s)
- Min Liu
- Department of Rehabilitation Science, Institute of AI for Education, Faculty of Education, East China Normal University, Shanghai, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nancy C Brady
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, Kansas, USA
| | - Olivia Boorom
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, Kansas, USA
| | - Kandace Fleming
- Research Design and Analysis Unit, The Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, Kansas, USA
| | - Jiaojiao Yue
- Department of Rehabilitation Science, Institute of AI for Education, Faculty of Education, East China Normal University, Shanghai, China
| | - Qiaoyun Liu
- Department of Rehabilitation Science, Institute of AI for Education, Faculty of Education, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Ganaiem M, Gildor ND, Shazman S, Karmon G, Ivashko-Pachima Y, Gozes I. NAP (Davunetide): The Neuroprotective ADNP Drug Candidate Penetrates Cell Nuclei Explaining Pleiotropic Mechanisms. Cells 2023; 12:2251. [PMID: 37759476 PMCID: PMC10527813 DOI: 10.3390/cells12182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Recently, we showed aberrant nuclear/cytoplasmic boundaries/activity-dependent neuroprotective protein (ADNP) distribution in ADNP-mutated cells. This malformation was corrected upon neuronal differentiation by the ADNP-derived fragment drug candidate NAP (davunetide). Here, we investigated the mechanism of NAP nuclear protection. (2) Methods: CRISPR/Cas9 DNA-editing established N1E-115 neuroblastoma cell lines that express two different green fluorescent proteins (GFPs)-labeled mutated ADNP variants (p.Tyr718* and p.Ser403*). Cells were exposed to NAP conjugated to Cy5, followed by live imaging. Cells were further characterized using quantitative morphology/immunocytochemistry/RNA and protein quantifications. (3) Results: NAP rapidly distributed in the cytoplasm and was also seen in the nucleus. Furthermore, reduced microtubule content was observed in the ADNP-mutated cell lines. In parallel, disrupting microtubules by zinc or nocodazole intoxication mimicked ADNP mutation phenotypes and resulted in aberrant nuclear-cytoplasmic boundaries, which were rapidly corrected by NAP treatment. No NAP effects were noted on ADNP levels. Ketamine, used as a control, was ineffective, but both NAP and ketamine exhibited direct interactions with ADNP, as observed via in silico docking. (4) Conclusions: Through a microtubule-linked mechanism, NAP rapidly localized to the cytoplasmic and nuclear compartments, ameliorating mutated ADNP-related deficiencies. These novel findings explain previously published gene expression results and broaden NAP (davunetide) utilization in research and clinical development.
Collapse
Affiliation(s)
- Maram Ganaiem
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Nina D. Gildor
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana 4353107, Israel;
- Department of Information Systems, The Max Stern Yezreel Valley College, Yezreel Valley, Afula 1930600, Israel
| | - Gidon Karmon
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Yanina Ivashko-Pachima
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| |
Collapse
|
7
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Levine J, Hakim F, Kooy RF, Gozes I. Vineland Adaptive Behavior Scale in a Cohort of Four ADNP Syndrome Patients Implicates Age-Dependent Developmental Delays with Increased Impact of Activities of Daily Living. J Mol Neurosci 2022; 72:1531-1546. [PMID: 35920977 DOI: 10.1007/s12031-022-02048-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP) is one of the lead genes in autism spectrum disorder/intellectual disability. Heterozygous, de novo ADNP mutations cause the ADNP syndrome. Here, to evaluate natural history of the syndrome, mothers of two ADNP syndrome boys aged 6 and a half and two adults aged 27 years (man and woman) were subjected to Vineland III questionnaire assessing adaptive behavior. The boys were assessed again about 2 years after the first measurements. The skill measures, presented as standard scores (SS) included domains of communication, daily living, socialization, motor skills and a sum of adaptive behavior composite. The age equivalent (AE) and growth scale values (GSV) encompassing 11 subdomains assess the age level at which the subject's raw score is found at a norm sample median and the individual temporal progression, respectively. The norm referenced standard scores age-matched, mean 100 ± 15 of the two children showed the lowest outcome in communication (SS: 20-30). Daily living skills presented SS of 50-60, with a possible potential loss of some activities as the child ages, especially in interpersonal relationships with people outside of the immediate family (boy A). In contrast, in socialization, both children were at the SS of 38, with some positive increase to SS of ~ 45 (interpersonal relations with family members and coping skills, depending on the particular individual), 2 years later. Interestingly, there was an apparent large difference in motor skills (gross and fine) at the young age, with subject B showing a relatively higher level of skills (SS: 70), decreasing to subject A level (SS: 40) 2 years later. Together, the adaptive behavior composite suggested a level of SS: 39-48 with B showing a potential increase (SS: 41-44) and A, a substantial decrease (SS: 48-39), suggesting a strong impact of daily living skills. Adults were at SS: 20, which is the lowest possible score. AE showed minor improvements for subject A and B, with all AE values being below 3 years. GSVs for subject A showed some improvement with age, especially in interpersonal, play and leisure, and gross motor subdomains. GSV for subject B showed minor improvements in the various subdomains. Notably, all subjects showed a percentile rank < 1 compared with age-matched norms except for subject B as to motor domain (2nd percentile) at the age of 6 years. In summary, the results, especially comparing SS and AEs between childhood and adulthood, implied a continuous deterioration of activities compared to the general population, encompassing a slower developmental process coupled to possible neurodegeneration, strongly supporting a great need for disease modifying medicinal procedures.
Collapse
Affiliation(s)
- Joseph Levine
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 6997801, Tel Aviv, Israel.,Psychiatric Division, Ben Gurion University, Beersheba, Israel
| | | | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
9
|
Wickstrom J, Farmer C, Snyder LG, Mitz AR, Sanders SJ, Bishop S, Thurm A. Patterns of delay in early gross motor and expressive language milestone attainment in probands with genetic conditions versus idiopathic ASD from SFARI registries. J Child Psychol Psychiatry 2021; 62:1297-1307. [PMID: 34382689 PMCID: PMC9939014 DOI: 10.1111/jcpp.13492] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent large-scale initiatives have led to systematically collected phenotypic data for several rare genetic conditions implicated in autism spectrum disorder (ASD). The onset of developmentally expected skills (e.g. walking, talking) serve as readily quantifiable aspects of the behavioral phenotype. This study's aims were: (a) describe the distribution of ages of attainment of gross motor and expressive language milestones in several rare genetic conditions, and (b) characterize the likelihood of delays in these conditions compared with idiopathic ASD. METHODS Participants aged 3 years and older were drawn from two Simons Foundation Autism Research Initiative registries that employed consistent phenotyping protocols. Inclusion criteria were a confirmed genetic diagnosis of one of 16 genetic conditions (Simons Searchlight) or absence of known pathogenic genetic findings in individuals with ASD (SPARK). Parent-reported age of acquisition of three gross motor and two expressive language milestones was described and categorized as on-time or delayed, relative to normative expectations. RESULTS Developmental milestone profiles of probands with genetic conditions were marked by extensive delays (including nonattainment), with highest severity in single gene conditions and more delays than idiopathic ASD in motor skills. Compared with idiopathic ASD, the median odds of delay among the genetic groups were higher by 8.3 times (IQR 5.8-16.3) for sitting, 12.4 times (IQR 5.3-19.5) for crawling, 26.8 times (IQR 7.7-41.1) for walking, 2.7 times (IQR 1.7-5.5) for single words, and 5.7 times (IQR 2.7-18.3) for combined words. CONCLUSIONS Delays in developmental milestones, particularly in gross motor skills, are frequent and may be among the earliest indicators of differentially affected developmental processes in specific genetically defined conditions associated with ASD, as compared with those with clinical diagnoses of idiopathic ASD. The possibility of different developmental pathways leading to ASD-associated phenotypes should be considered when deciding how to employ specific genetic conditions as models for ASD.
Collapse
Affiliation(s)
- Jordan Wickstrom
- Neurodevelopmental and Behavioral Phenotyping Service, National Institutes of Health, Bethesda, MD, USA
| | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institutes of Health, Bethesda, MD, USA
| | | | - Andrew R. Mitz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Stephan J. Sanders
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Somer Bishop
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Johnson CN, Ramphal B, Koe E, Raudales A, Goldsmith J, Margolis AE. Cognitive correlates of autism spectrum disorder symptoms. Autism Res 2021; 14:2405-2411. [PMID: 34269525 DOI: 10.1002/aur.2577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 01/12/2023]
Abstract
Due to the diverse behavioral presentation of autism spectrum disorder (ASD), identifying ASD subtypes using patterns of cognitive abilities has become an important point of research. Some previous studies on cognitive profiles in ASD suggest that the discrepancy between verbal intelligence quotient (VIQ) and performance IQ (PIQ) is associated with ASD symptoms, while others have pointed to VIQ as the critical predictor. Given that VIQ is a component of the VIQ-PIQ discrepancy, it was unclear which was most driving these associations. This study tested whether VIQ, PIQ, or the VIQ-PIQ discrepancy was most associated with ASD symptoms in children and adults with ASD (N = 527). Using data from the Autism Brain Imaging Data Exchange (ABIDE), we tested the independent contribution of each IQ index and their discrepancy to ASD symptom severity using multiple linear regressions predicting ASD symptoms. VIQ was most associated with lower symptom severity as measured by the Autism Diagnostic Observation Schedule (ADOS) total score, and when VIQ was included in models predicting ASD symptoms, associations with PIQ and IQ discrepancy were not significant. An association between VIQ and ASD communication symptoms drove the association with ASD symptom severity. These results suggest that associations between ASD communication symptoms and IQ discrepancy or PIQ reported in prior studies likely resulted from variance shared with VIQ. Subtyping ASD on the basis of VIQ should be a point of future research, as it may allow for the development of more personalized approaches to intervention. LAY SUMMARY: Previous research on links between autism severity and verbal and nonverbal intelligence has produced mixed results. Our study examined whether verbal intelligence, nonverbal intelligence, or the discrepancy between the two was most related to autism symptoms. We found that higher verbal intelligence was most associated with less severe autism communication symptoms. Given the relevance of verbal intelligence in predicting autism symptom severity, subtyping autism on the basis of verbal intelligence could lead to more personalized treatments.
Collapse
Affiliation(s)
- Camille N Johnson
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Emily Koe
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amarelis Raudales
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Amy E Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Transcriptional subtyping explains phenotypic variability in genetic subtypes of autism spectrum disorder. Dev Psychopathol 2021; 32:1353-1361. [PMID: 32912353 DOI: 10.1017/s0954579420000784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by deficits in social communication and presence of restricted, repetitive behaviors, and interests. However, individuals with ASD vary significantly in their challenges and abilities in these and other developmental domains. Gene discovery in ASD has accelerated in the past decade, and genetic subtyping has yielded preliminary evidence of utility in parsing phenotypic heterogeneity through genomic subtypes. Recent advances in transcriptomics have provided additional dimensions with which to refine genetic subtyping efforts. In the current study, we investigate phenotypic differences among transcriptional subtypes defined by neurobiological spatiotemporal co-expression patterns. Of the four transcriptional subtypes examined, participants with mutations to genes typically expressed highly in all brain regions prenatally, and those with differential postnatal cerebellar expression relative to other brain regions, showed lower cognitive and adaptive skills, higher severity of social communication deficits, and later acquisition of speech and motor milestones, compared to those with mutations to genes highly expressed during the postnatal period across brain regions. These findings suggest higher-order characterization of genetic subtypes based on neurobiological expression patterns may be a promising approach to parsing phenotypic heterogeneity among those with ASD and related neurodevelopmental disorders.
Collapse
|
12
|
Gozes I. The ADNP Syndrome and CP201 (NAP) Potential and Hope. Front Neurol 2020; 11:608444. [PMID: 33329371 PMCID: PMC7732499 DOI: 10.3389/fneur.2020.608444] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) syndrome, also known as Helsmoortel-Van Der Aa syndrome, is a rare condition, which is diagnosed in children exhibiting signs of autism. Specifically, the disease is suspected when a child is suffering from developmental delay and/or intellectual disability. The syndrome occurs when one of the two copies of the ADNP gene carries a pathogenic sequence variant, mostly a de novo mutation resulting in loss of normal functions. Original data showed that Adnp+/− mice suffer from learning and memory deficiencies, muscle weakness, and communication problems. Further studies showed that the ADNP microtubule-interacting fragment NAP (called here CP201) resolves, in part, Adnp deficiencies and protects against ADNP pathogenic sequence variant abnormalities. With a clean toxicology and positive human adult experience, CP201 is planned for future clinical trials in the ADNP syndrome.
Collapse
Affiliation(s)
- Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Kapitansky O, Karmon G, Sragovich S, Hadar A, Shahoha M, Jaljuli I, Bikovski L, Giladi E, Palovics R, Iram T, Gozes I. Single Cell ADNP Predictive of Human Muscle Disorders: Mouse Knockdown Results in Muscle Wasting. Cells 2020; 9:E2320. [PMID: 33086621 PMCID: PMC7603382 DOI: 10.3390/cells9102320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) mutations are linked with cognitive dysfunctions characterizing the autistic-like ADNP syndrome patients, who also suffer from delayed motor maturation. We thus hypothesized that ADNP is deregulated in versatile myopathies and that local ADNP muscle deficiency results in myopathy, treatable by the ADNP fragment NAP. Here, single-cell transcriptomics identified ADNP as a major constituent of the developing human muscle. ADNP transcript concentrations further predicted multiple human muscle diseases, with concentrations negatively correlated with the ADNP target interacting protein, microtubule end protein 1 (EB1). Reverting back to modeling at the single-cell level of the male mouse transcriptome, Adnp mRNA concentrations age-dependently correlated with motor disease as well as with sexual maturation gene transcripts, while Adnp expressing limb muscle cells significantly decreased with aging. Mouse Adnp heterozygous deficiency exhibited muscle microtubule reduction and myosin light chain (Myl2) deregulation coupled with motor dysfunction. CRISPR knockdown of adult gastrocnemius muscle Adnp in a Cas9 mouse resulted in treadmill (male) and gait (female) dysfunctions that were specifically ameliorated by treatment with the ADNP snippet, microtubule interacting, Myl2-regulating, NAP (CP201). Taken together, our studies provide new hope for personalized diagnosis/therapeutics in versatile myopathies.
Collapse
Affiliation(s)
- Oxana Kapitansky
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Gidon Karmon
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Shlomo Sragovich
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Adva Hadar
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Meishar Shahoha
- Intradepartmental Viral Infection Unit, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Iman Jaljuli
- Department of Statistics and Operations Research, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Eliezer Giladi
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Robert Palovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 95343, USA; (R.P.); (T.I.)
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 95343, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 95343, USA; (R.P.); (T.I.)
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 95343, USA
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| |
Collapse
|