1
|
Hathaway CB, Voorhies WI, Sathishkumar N, Mittal C, Yao JK, Miller JA, Parker BJ, Weiner KS. Defining putative tertiary sulci in lateral prefrontal cortex in chimpanzees using human predictions. Brain Struct Funct 2024; 229:2059-2068. [PMID: 37195311 DOI: 10.1007/s00429-023-02638-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
Similarities and differences in brain structure and function across species are of major interest in systems neuroscience, comparative biology, and brain mapping. Recently, increased emphasis has been placed on tertiary sulci, which are shallow indentations of the cerebral cortex that appear last in gestation, continue to develop after birth, and are largely either human or hominoid specific. While tertiary sulcal morphology in lateral prefrontal cortex (LPFC) has been linked to functional representations and cognition in humans, it is presently unknown if small and shallow LPFC sulci also exist in non-human hominoids. To fill this gap in knowledge, we leveraged two freely available multimodal datasets to address the following main question: Can small and shallow LPFC sulci be defined in chimpanzee cortical surfaces from human predictions of LPFC tertiary sulci? We found that 1-3 components of the posterior middle frontal sulcus (pmfs) in the posterior middle frontal gyrus are identifiable in nearly all chimpanzee hemispheres. In stark contrast to the consistency of the pmfs components, we could only identify components of the paraintermediate frontal sulcus (pimfs) in two chimpanzee hemispheres. Putative LPFC tertiary sulci were relatively smaller and shallower in chimpanzees compared to humans. In both species, two of the pmfs components were deeper in the right compared to the left hemisphere. As these results have direct implications for future studies interested in the functional and cognitive role of LPFC tertiary sulci, we share probabilistic predictions of the three pmfs components to guide the definitions of these sulci in future studies.
Collapse
Affiliation(s)
| | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Neha Sathishkumar
- Cognitive Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Chahat Mittal
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Jacob A Miller
- Wu Tsai Institute for Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Willbrand EH, Maboudian SA, Elliott MV, Kellerman GM, Johnson SL, Weiner KS. Variable Presence of an Evolutionarily New Brain Structure is Related to Trait Impulsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619912. [PMID: 39484399 PMCID: PMC11527008 DOI: 10.1101/2024.10.23.619912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Impulsivity is a multidimensional construct reflecting poor constraint over one's behaviors. Clinical psychology research identifies separable impulsivity dimensions that are each unique transdiagnostic indicators for psychopathology. Yet, despite this apparent clinical importance, the shared and unique neuroanatomical correlates of these factors remain largely unknown. Concomitantly, neuroimaging research identifies variably present human brain structures implicated in cognition and disorder: the folds (sulci) of the cerebral cortex located in the latest developing and most evolutionarily expanded hominoid-specific association cortices. Methods We tethered these two fields to test whether variability in one such structure in anterior cingulate cortex (ACC)-the paracingulate sulcus (PCGS)-was related to individual differences in trait impulsivity. 120 adult participants with internalizing or externalizing psychopathology completed a magnetic resonance imaging scan and the Three-Factor Impulsivity Index. Using precision imaging techniques, we manually identified the PCGS, when present, and acquired quantitative folding metrics (PCGS length and ACC local gyrification index). Results Neuroanatomical-behavioral analyses revealed that participants with leftward or symmetrical PCGS patterns had greater severity of Lack of Follow Through (LFT)-which captures inattention and lack of perseverance-than those with rightward asymmetry. Neuroanatomical-functional analyses identified that the PCGS co-localized with a focal locus found in a neuroimaging meta-analysis on a feature underlying LFT. Both quantitative folding metrics did not relate to any impulsivity dimension. Conclusions This study advances understanding of the neuroanatomical correlates of impulsivity and establishes the notion that the topographical organization of distinct, hominoid-specific cortical expanses underlie separable impulsivity dimensions with robust, transdiagnostic implications for psychopathology.
Collapse
|
3
|
Zhang S, Jiang L, Hu Z, Liu W, Yu H, Chu Y, Wang J, Chen Y. T1w/T2w ratio maps identify children with autism spectrum disorder and the relationships between myelin-related changes and symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111040. [PMID: 38806093 DOI: 10.1016/j.pnpbp.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Modern neuroimaging methods have revealed that autistic symptoms are associated with abnormalities in brain morphology, connectivity, and activity patterns. However, the changes in brain microstructure underlying the neurobiological and behavioral deficits of autism remain largely unknown. METHODS we characterized the associated abnormalities in intracortical myelination pattern by constructing cortical T1-weighted/T2-weighted ratio maps. Voxel-wise comparisons of cortical myelination were conducted between 150 children with autism spectrum disorder (ASD) and 139 typically developing (TD) children. Group differences in cortical T1-weighted/T2-weighted ratio and gray matter volume were then examined for associations with autistic symptoms. A convolutional neural network (CNN) model was also constructed to examine the utility of these regional abnormalities in cortical myelination for ASD diagnosis. RESULTS Compared to TD children, the ASD group exhibited widespread reductions in cortical myelination within regions related to default mode, salience, and executive control networks such as the inferior frontal gyrus, bilateral insula, left fusiform gyrus, bilateral hippocampus, right calcarine sulcus, bilateral precentral, and left posterior cingulate gyrus. Moreover, greater myelination deficits in most of these regions were associated with more severe autistic symptoms. In addition, children with ASD exhibited reduced myelination in regions with greater gray matter volume, including left insula, left cerebellum_4_5, left posterior cingulate gyrus, and right calcarine sulcus. Notably, the CNN model based on brain regions with abnormal myelination demonstrated high diagnostic efficacy for ASD. CONCLUSIONS Our findings suggest that microstructural abnormalities in myelination contribute to autistic symptoms and so are potentially promising therapeutic targets as well as biomarkers for ASD diagnosis.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Liping Jiang
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Zhe Hu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Wenjing Liu
- Children Rehabilitation Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Yu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Yao Chu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Jiehuan Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| | - Yueqin Chen
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| |
Collapse
|
4
|
Willbrand EH, Tsai YH, Gagnant T, Weiner KS. Updating the sulcal landscape of the human lateral parieto-occipital junction provides anatomical, functional, and cognitive insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544284. [PMID: 38798426 PMCID: PMC11118496 DOI: 10.1101/2023.06.08.544284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent work has uncovered relationships between evolutionarily new small and shallow cerebral indentations, or sulci, and human behavior. Yet, this relationship remains unexplored in the lateral parietal cortex (LPC) and the lateral parieto-occipital junction (LPOJ). After defining thousands of sulci in a young adult cohort, we revised the previous LPC/LPOJ sulcal landscape to include four previously overlooked, small, shallow, and variable sulci. One of these sulci (ventral supralateral occipital sulcus, slocs-v) is present in nearly every hemisphere and is morphologically, architecturally, and functionally dissociable from neighboring sulci. A data-driven, model-based approach, relating sulcal depth to behavior further revealed that the morphology of only a subset of LPC/LPOJ sulci, including the slocs-v, is related to performance on a spatial orientation task. Our findings build on classic neuroanatomical theories and identify new neuroanatomical targets for future "precision imaging" studies exploring the relationship among brain structure, brain function, and cognitive abilities in individual participants.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Yi-Heng Tsai
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Gagnant
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Ramos Benitez J, Kannan S, Hastings WL, Parker BJ, Willbrand EH, Weiner KS. Ventral temporal and posteromedial sulcal morphology in autism spectrum disorder. Neuropsychologia 2024; 195:108786. [PMID: 38181845 DOI: 10.1016/j.neuropsychologia.2024.108786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Two parallel research tracks link the morphology of small and shallow indentations, or sulci, of the cerebral cortex with functional features of the cortex and human cognition, respectively. The first track identified a relationship between the mid-fusiform sulcus (MFS) in ventral temporal cortex (VTC) and cognition in individuals with Autism Spectrum Disorder (ASD). The second track identified a new sulcus, the inframarginal sulcus (IFRMS), that serves as a tripartite landmark within the posteromedial cortex (PMC). As VTC and PMC are structurally and functionally different in ASD, here, we integrated these two tracks and tested if there are morphological differences in VTC and PMC sulci in a sample of young (5-17 years old) male participants (50 participants with ASD and 50 neurotypical controls). Our approach replicates and extends recent findings in four ways. First, regarding replication, the standard deviation (STD) of MFS cortical thickness (CT) was increased in ASD. Second, MFS length was shorter in ASD. Third, the CT STD effect extended to other VTC and to PMC sulci. Fourth, additional morphological features of VTC sulci (depth, surface area, gray matter volume) and PMC sulci (mean CT) were decreased in ASD, including putative tertiary sulci, which emerge last in gestation and continue to develop after birth. To our knowledge, this study is the most extensive comparison of the sulcal landscape (including putative tertiary sulci) in multiple cortical expanses between individuals with ASD and NTs based on manually defined sulci at the level of individual hemispheres, providing novel targets for future studies of neurodevelopmental disorders more broadly.
Collapse
Affiliation(s)
- Javier Ramos Benitez
- Neuroscience Graduate Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Sandhya Kannan
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - William L Hastings
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and Functional Dissociations between Variably Present Anterior Lateral Prefrontal Sulci. J Cogn Neurosci 2023; 35:1846-1867. [PMID: 37677051 PMCID: PMC10586811 DOI: 10.1162/jocn_a_02049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid specific. Although recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from two samples encompassing 82 young adult humans (aged 22-36 years) and show that the dorsal and ventral components of the paraintermediate frontal sulcus, or pimfs, present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in LPFC anatomy and function, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and suggest that future individual-level parcellations could benefit from incorporating sulcal anatomy when delineating LPFC cortical regions.
Collapse
|
7
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and functional dissociations between variably present anterior lateral prefrontal sulci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542301. [PMID: 37292839 PMCID: PMC10245924 DOI: 10.1101/2023.05.25.542301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid-specific. While recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from 72 young adult humans aged 22-36 and show that dorsal and ventral components of the paraintermediate frontal sulcus (pimfs) present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in anatomy and function in LPFC, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and highlight the importance of considering individual anatomy when investigating structural and functional features of the cortex.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Kevin S. Weiner
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
8
|
D'Mello AM, Frosch IR, Meisler SL, Grotzinger H, Perrachione TK, Gabrieli JDE. Diminished Repetition Suppression Reveals Selective and Systems-Level Face Processing Differences in ASD. J Neurosci 2023; 43:1952-1962. [PMID: 36759192 PMCID: PMC10027049 DOI: 10.1523/jneurosci.0608-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Repeated exposure to a stimulus results in reduced neural response, or repetition suppression, in brain regions responsible for processing that stimulus. This rapid accommodation to repetition is thought to underlie learning, stimulus selectivity, and strengthening of perceptual expectations. Importantly, reduced sensitivity to repetition has been identified in several neurodevelopmental, learning, and psychiatric disorders, including autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by challenges in social communication and repetitive behaviors and restricted interests. Reduced ability to exploit or learn from repetition in ASD is hypothesized to contribute to sensory hypersensitivities, and parallels several theoretical frameworks claiming that ASD individuals show difficulty using regularities in the environment to facilitate behavior. Using fMRI in autistic and neurotypical human adults (females and males), we assessed the status of repetition suppression across two modalities (vision, audition) and with four stimulus categories (faces, objects, printed words, and spoken words). ASD individuals showed domain-specific reductions in repetition suppression for face stimuli only, but not for objects, printed words, or spoken words. Reduced repetition suppression for faces was associated with greater challenges in social communication in ASD. We also found altered functional connectivity between atypically adapting cortical regions and higher-order face recognition regions, and microstructural differences in related white matter tracts in ASD. These results suggest that fundamental neural mechanisms and system-wide circuits are selectively altered for face processing in ASD and enhance our understanding of how disruptions in the formation of stable face representations may relate to higher-order social communication processes.SIGNIFICANCE STATEMENT A common finding in neuroscience is that repetition results in plasticity in stimulus-specific processing regions, reflecting selectivity and adaptation (repetition suppression [RS]). RS is reduced in several neurodevelopmental and psychiatric conditions including autism spectrum disorder (ASD). Theoretical frameworks of ASD posit that reduced adaptation may contribute to associated challenges in social communication and sensory processing. However, the scope of RS differences in ASD is unknown. We examined RS for multiple categories across visual and auditory domains (faces, objects, printed words, spoken words) in autistic and neurotypical individuals. We found reduced RS in ASD for face stimuli only and altered functional connectivity and white matter microstructure between cortical face-recognition areas. RS magnitude correlated with social communication challenges among autistic individuals.
Collapse
Affiliation(s)
- Anila M D'Mello
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Isabelle R Frosch
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Steven L Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, 02115
| | - Hannah Grotzinger
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts 02215
| | - John D E Gabrieli
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
9
|
Hominoid-specific sulcal variability is related to face perception ability. Brain Struct Funct 2023; 228:677-685. [PMID: 36786881 DOI: 10.1007/s00429-023-02611-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
The relationship among brain structure, brain function, and behavior is of major interest in neuroscience, evolutionary biology, and psychology. This relationship is especially intriguing when considering hominoid-specific brain structures because they cannot be studied in widely examined models in neuroscience such as mice, marmosets, and macaques. The fusiform gyrus (FG) is a hominoid-specific structure critical for face processing that is abnormal in individuals with developmental prosopagnosia (DPs)-individuals who have severe deficits recognizing the faces of familiar people in the absence of brain damage. While previous studies have found anatomical and functional differences in the FG between DPs and NTs, no study has examined the shallow tertiary sulcus (mid-fusiform sulcus, MFS) within the FG that is a microanatomical, macroanatomical, and functional landmark in humans, as well as was recently shown to be present in non-human hominoids. Here, we implemented pre-registered analyses of neuroanatomy and face perception in NTs and DPs. Results show that the MFS was shorter in DPs than NTs. Furthermore, individual differences in MFS length in the right, but not left, hemisphere predicted individual differences in face perception. These results support theories linking brain structure and function to perception, as well as indicate that individual differences in MFS length can predict individual differences in face processing. Finally, these findings add to growing evidence supporting a relationship between morphological variability of late developing, tertiary sulci and individual differences in cognition.
Collapse
|
10
|
Willbrand EH, Parker BJ, Voorhies WI, Miller JA, Lyu I, Hallock T, Aponik-Gremillion L, Koslov SR, Bunge SA, Foster BL, Weiner KS. Uncovering a tripartite landmark in posterior cingulate cortex. SCIENCE ADVANCES 2022; 8:eabn9516. [PMID: 36070384 PMCID: PMC9451146 DOI: 10.1126/sciadv.abn9516] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/21/2022] [Indexed: 05/18/2023]
Abstract
Understanding brain structure-function relationships, and their development and evolution, is central to neuroscience research. Here, we show that morphological differences in posterior cingulate cortex (PCC), a hub of functional brain networks, predict individual differences in macroanatomical, microstructural, and functional features of PCC. Manually labeling 4511 sulci in 572 hemispheres, we found a shallow cortical indentation (termed the inframarginal sulcus; ifrms) within PCC that is absent from neuroanatomical atlases yet colocalized with a focal, functional region of the lateral frontoparietal network implicated in cognitive control. This structural-functional coupling generalized to meta-analyses consisting of hundreds of studies and thousands of participants. Additional morphological analyses showed that unique properties of the ifrms differ across the life span and between hominoid species. These findings support a classic theory that shallow, tertiary sulci serve as landmarks in association cortices. They also beg the question: How many other cortical indentations have we missed?
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Benjamin J. Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jacob A. Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Tyler Hallock
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
| | | | - Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
11
|
Ammons CJ, Winslett ME, Kana RK. Neural responses to viewing human faces in autism spectrum disorder: A quantitative meta-analysis of two decades of research. Neuropsychologia 2020; 150:107694. [PMID: 33249169 DOI: 10.1016/j.neuropsychologia.2020.107694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/15/2022]
Abstract
The human face communicates a wealth of socially relevant information such as person identity, emotion, and intention. A consistent behavioral finding in autism spectrum disorder (ASD) is reduced attention to or difficulty drawing meaning from faces. However, neuroimaging research into the neural correlates of face processing differences in ASD has returned mixed results. While many studies find hypo-activation or hypo-connectivity of core and extended face network regions, others show hyper-activation, equal activation, or even activation shifted to object-selective fusiform gyrus (FG) regions in ASD during face processing. This study consolidates two decades of literature to reveal common and consistent patterns of brain activation when viewing human faces in ASD. It also addresses whether face processing in ASD is routinely shifted to object-centric regions of the FG. To do so, we conducted an extensive search of the neuroimaging literature according to PRISMA guidelines. Peak activation coordinates from a final set of 23 studies, yielding a sample of 713 participants (338 ASD), were included for quantitative meta-analysis using Activation Likelihood Estimation (ALE). ASD within-group results across studies revealed a single activation cluster in the left FG, which presented laterally to the mid-fusiform sulcus (MFS). Typically developing groups displayed common activations across core and extended face network regions. Exploratory analysis of between group findings from the literature did not yield significant results. Overall, our results suggest that individuals with ASD consistently activate at least one typical face network region, the left FG, when processing faces and this activation is not routinely shifted to object-centric areas of the FG.
Collapse
Affiliation(s)
- Carla J Ammons
- Department of Psychology, University of Alabama at Birmingham, USA; Department of Neuropsychology, Children's Healthcare of Atlanta, USA; Emory University School of Medicine, USA.
| | | | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, USA; Department of Psychology and the Center for Innovative Research in Autism, University of Alabama, USA.
| |
Collapse
|