1
|
Lu H, Wang S, Gao L, Xue Z, Liu J, Niu X, Zhou R, Guo X. Links between brain structure and function in children with autism spectrum disorder by parallel independent component analysis. Brain Imaging Behav 2024:10.1007/s11682-024-00957-9. [PMID: 39565558 DOI: 10.1007/s11682-024-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by structural and functional changes in the brain. However, the relationship between brain structure and function in children with ASD remains largely obscure. In the current study, parallel independent component analysis (pICA) was performed to identify inter-modality associations by drawing on information from different modalities. Structural and resting-state functional magnetic resonance imaging data from 105 children with ASD and 102 typically developing children (obtained from the open-access Autism Brain Imaging Data Exchange database) were combined through the pICA framework. Features of structural and functional modalities were represented by the voxel-based morphometry (VBM) and amplitude of low-frequency fluctuations (ALFF), respectively. The relationship between the structural and functional components derived from the pICA was investigated by Pearson's correlation analysis, and between-group differences in these components were analyzed through the two-sample t-test. Finally, multivariate support vector regression analysis was used to analyze the relationship between the structural/functional components and Autism Diagnostic Observation Schedule (ADOS) subscores in the ASD group. This study found a significant association between VBM and ALFF components in ASD. Significant between-group differences were detected in the loading coefficients of the VBM component. Furthermore, the ALFF component loading coefficients predicted the subscores of communication and repetitive stereotypic behaviors of the ADOS. Likewise, the VBM component loading coefficients predicted the ADOS communication subscore in ASD. These findings provide evidence of a link between brain function and structure, yielding new insights into the neural mechanisms of ASD.
Collapse
Affiliation(s)
- Huibin Lu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Sha Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Le Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China.
| | - Zaifa Xue
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Jing Liu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Xiaoxia Niu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Rongjuan Zhou
- Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
2
|
Yang Y, Tang D, Wang Z, Liu Y, Chen F, Jie B, Ni T, Xu C, Li J, Wang C. Identification of high-functioning autism spectrum disorders based on gray-white matter functional network connectivity. J Psychiatr Res 2024; 178:107-113. [PMID: 39128219 DOI: 10.1016/j.jpsychires.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
In the field of autism spectrum disorder (ASD), research on functional connectivity between gray matter and white matter remains under-researched. To address this gap, this study innovatively introduced a nested cross-validation method that integrates gray-white matter functional connectivity with an F-Score algorithm. This method calculates the correlation based on signals extracted from functional magnetic resonance imaging data using gray matter and white matter brain region templates. After applying the method to a New York University Langone Medical Center dataset consisting of 55 individuals with high-functioning ASD and 52 healthy subjects, we achieved a classification accuracy of 72.94%. This study found abnormal functional connectivity, primarily involving the left anterior prefrontal cortex and right superior corona radiata, left retrosplenial cortex and left superior corona radiata, as well as the left ventral anterior cingulate cortex and body of corpus callosum. Besides, we discovered that these abnormal connections are closely related to social impairment and restrictive and repetitive behaviors in ASD. In conclusion, this study provides a gray-white matter functional connectivity perspective for the diagnosis and understanding of ASD.
Collapse
Affiliation(s)
- Yang Yang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Detao Tang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Zhiwei Wang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Yifei Liu
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Fulong Chen
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China.
| | - Biao Jie
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Tianjiao Ni
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Chenglong Xu
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Jintao Li
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Chao Wang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| |
Collapse
|
3
|
Zhan L, Gao Y, Huang L, Zhang H, Huang G, Wang Y, Sun J, Xie Z, Li M, Jia X, Cheng L, Yu Y. Brain functional connectivity alterations of Wernicke's area in individuals with autism spectrum conditions in multi-frequency bands: A mega-analysis. Heliyon 2024; 10:e26198. [PMID: 38404781 PMCID: PMC10884452 DOI: 10.1016/j.heliyon.2024.e26198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Characterized by severe deficits in communication, most individuals with autism spectrum conditions (ASC) experience significant language dysfunctions, thereby impacting their overall quality of life. Wernicke's area, a classical and traditional brain region associated with language processing, plays a substantial role in the manifestation of language impairments. The current study carried out a mega-analysis to attain a comprehensive understanding of the neural mechanisms underpinning ASC, particularly in the context of language processing. The study employed the Autism Brain Image Data Exchange (ABIDE) dataset, which encompasses data from 443 typically developing (TD) individuals and 362 individuals with ASC. The objective was to detect abnormal functional connectivity (FC) between Wernicke's area and other language-related functional regions, and identify frequency-specific altered FC using Wernicke's area as the seed region in ASC. The findings revealed that increased FC in individuals with ASC has frequency-specific characteristics. Further, in the conventional frequency band (0.01-0.08 Hz), individuals with ASC exhibited increased FC between Wernicke's area and the right thalamus compared with TD individuals. In the slow-5 frequency band (0.01-0.027 Hz), increased FC values were observed in the left cerebellum Crus II and the right lenticular nucleus, pallidum. These results provide novel insights into the potential neural mechanisms underlying communication deficits in ASC from the perspective of language impairments.
Collapse
Affiliation(s)
- Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Yanyan Gao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Yang Yu
- Psychiatry Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
4
|
Chen B, Olson L, Rios A, Salmina M, Linke A, Fishman I. Reduced covariation between brain morphometry and local spontaneous activity in young children with ASD. Cereb Cortex 2024; 34:bhae005. [PMID: 38282456 PMCID: PMC10839841 DOI: 10.1093/cercor/bhae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
While disruptions in brain maturation in the first years of life in ASD are well documented, little is known about how the brain structure and function are related in young children with ASD compared to typically developing peers. We applied a multivariate pattern analysis to examine the covariation patterns between brain morphometry and local brain spontaneous activity in 38 toddlers and preschoolers with ASD and 31 typically developing children using T1-weighted structural MRI and resting-state fMRI data acquired during natural sleep. The results revealed significantly reduced brain structure-function correlations in ASD. The resultant brain structure and function composite indices were associated with age among typically developing children, but not among those with ASD, suggesting mistiming of typical brain maturational trajectories early in life in autism. Additionally, the brain function composite indices were associated with the overall developmental and adaptive behavior skills in the ASD group, highlighting the neurodevelopmental significance of early local brain activity in autism.
Collapse
Affiliation(s)
- Bosi Chen
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY 10016, United States
| | - Lindsay Olson
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94107, United States
| | - Adriana Rios
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University, San Diego, CA 92120, United States
| | - Madison Salmina
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University, San Diego, CA 92120, United States
| | - Annika Linke
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University, San Diego, CA 92120, United States
- SDSU Center for Autism and Developmental Disorders, San Diego State University, San Diego, CA 92120, United States
| | - Inna Fishman
- Department of Psychology, Brain Development Imaging Laboratories, San Diego State University, San Diego, CA 92120, United States
- SDSU Center for Autism and Developmental Disorders, San Diego State University, San Diego, CA 92120, United States
| |
Collapse
|
5
|
Li B, Chen H, Huang J, He B. CD47Binder: Identify CD47 Binding Peptides by Combining Next-Generation Phage Display Data and Multiple Peptide Descriptors. Interdiscip Sci 2023; 15:578-589. [PMID: 37389722 DOI: 10.1007/s12539-023-00575-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl .
Collapse
Affiliation(s)
- Bowen Li
- Medical College, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Heng Chen
- Medical College, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 6173001, Sichuan, China.
| | - Bifang He
- Medical College, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
- State Key Laboratory of Public Big Data, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
6
|
Schilling KG, Li M, Rheault F, Gao Y, Cai L, Zhao Y, Xu L, Ding Z, Anderson AW, Landman BA, Gore JC. Whole-brain, gray, and white matter time-locked functional signal changes with simple tasks and model-free analysis. Proc Natl Acad Sci U S A 2023; 120:e2219666120. [PMID: 37824529 PMCID: PMC10589709 DOI: 10.1073/pnas.2219666120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/11/2023] [Indexed: 10/14/2023] Open
Abstract
Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.
Collapse
Affiliation(s)
- Kurt G. Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Francois Rheault
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN37235
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Leon Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Bennett A. Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN37235
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
7
|
Du S, Wang Y, Li G, Wei H, Yan H, Li X, Wu Y, Zhu J, Wang Y, Cai Z, Wang N. Olfactory functional covariance connectivity in Parkinson's disease: Evidence from a Chinese population. Front Aging Neurosci 2023; 14:1071520. [PMID: 36688163 PMCID: PMC9846552 DOI: 10.3389/fnagi.2022.1071520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Central anosmia is a potential marker of the prodrome and progression of Parkinson's disease (PD). Resting-state functional magnetic resonance imaging studies have shown that olfactory dysfunction is related to abnormal changes in central olfactory-related structures in patients with early PD. Methods This study, which was conducted at Guanyun People's Hospital, analyzed the resting-state functional magnetic resonance data using the functional covariance connection strength method to decode the functional connectivity between the white-gray matter in a Chinese population comprising 14 patients with PD and 13 controls. Results The following correlations were observed in patients with PD: specific gray matter areas related to smell (i.e., the brainstem, right cerebellum, right temporal fusiform cortex, bilateral superior temporal gyrus, right Insula, left frontal pole and right superior parietal lobule) had abnormal connections with white matter fiber bundles (i.e., the left posterior thalamic radiation, bilateral posterior corona radiata, bilateral superior corona radiata and right superior longitudinal fasciculus); the connection between the brainstem [region of interest (ROI) 1] and right cerebellum (ROI2) showed a strong correlation. Right posterior corona radiation (ROI11) showed a strong correlation with part 2 of the Unified Parkinson's Disease Rating Scale, and right superior longitudinal fasciculus (ROI14) showed a strong correlation with parts 1, 2, and 3 of the Unified Parkinson's Disease Rating Scale and Hoehn and Yahr Scale. Discussion The characteristics of olfactory-related brain networks can be potentially used as neuroimaging biomarkers for characterizing PD states. In the future, dynamic testing of olfactory function may help improve the accuracy and specificity of olfactory dysfunction in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shouyun Du
- Department of Neurology, Guanyun County People's Hospital, Lianyungang, China
| | - Yiqing Wang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China,Department of Neurology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guodong Li
- Department of Neurology, Guanyun County People's Hospital, Lianyungang, China
| | - Hongyu Wei
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaojing Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Yijie Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Jianbing Zhu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Yi Wang
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China
| | - Zenglin Cai
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou, China,Department of Neurology, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China,*Correspondence: Zenglin Cai, ✉
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China,Nizhuan Wang, ✉
| |
Collapse
|
8
|
Bhalla S, Mehan S. 4-hydroxyisoleucine mediated IGF-1/GLP-1 signalling activation prevents propionic acid-induced autism-like behavioural phenotypes and neurochemical defects in experimental rats. Neuropeptides 2022; 96:102296. [PMID: 36307249 DOI: 10.1016/j.npep.2022.102296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Autism is a neuropsychiatric disorder characterized by a neurotransmitter imbalance that impairs neurodevelopment processes. Autism development is marked by communication difficulties, poor socio-emotional health, and cognitive impairment. Insulin-like growth factor-1 (IGF-1) and glucagon-like growth factor-1 (GLP-1) are responsible for regular neuronal growth and homeostasis. Autism progression has been linked to dysregulation of IGF-1/GLP-1 signalling. 4-hydroxyisoleucine (HI), a pharmacologically active amino acid produced from Trigonella foenum graecum, works as an insulin mimic and has neuroprotective properties. The GLP-1 analogue liraglutide (LRG) was employed in our investigation to compare the efficacy of 4-HI in autism prevention. The current study explores the protective effects of 4-HI 50 and 100 mg/kg orally on IGF-1/GLP-1 signalling activation in a PPA-induced experimental model of autism. Propionic acid (PPA) injections to rats by intracerebroventricular (ICV) route for the first 11 days of the experiment resulted in autism-like neurobehavioral, neurochemical, gross morphological, and histopathological abnormalities. In addition, we investigated the dose-dependent neuroprotective effects of 4-HI on the levels of several neurotransmitters and neuroinflammatory cytokines in rat brain homogenate and blood plasma. Neuronal apoptotic and anti-oxidant cellular markers were also studied in blood plasma and brain homogenate samples. Furthermore, the luxol fast blue (LFB) staining results demonstrated significant demyelination in the brains of PPA-induced rats reversed by 4-HI treatment. Rats were assessed for spontaneous locomotor impairments, neuromuscular coordination, stress-like behaviour, learning, and memory to assess neurobehavioral abnormalities. The administration of 4-HI and LRG significantly reversed the behavioural, gross and histological abnormalities in the PPA-treated rat brains. After treatment with 4-HI and LRG, LFB-stained photomicrographs of PPA-treated rats' brains demonstrated the recovery of white matter loss. Our findings indicate that 4-HI protects neurons in rats with autism by enhancing the IGF-1 and GLP-1 protein levels.
Collapse
Affiliation(s)
- Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
9
|
Ma H, Xie Z, Huang L, Gao Y, Zhan L, Hu S, Zhang J, Ding Q. The White Matter Functional Abnormalities in Patients with Transient Ischemic Attack: A Reinforcement Learning Approach. Neural Plast 2022; 2022:1478048. [PMID: 36300173 PMCID: PMC9592236 DOI: 10.1155/2022/1478048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Transient ischemic attack (TIA) is a known risk factor for stroke. Abnormal alterations in the low-frequency range of the gray matter (GM) of the brain have been studied in patients with TIA. However, whether there are abnormal neural activities in the low-frequency range of the white matter (WM) in patients with TIA remains unknown. The current study applied two resting-state metrics to explore functional abnormalities in the low-frequency range of WM in patients with TIA. Furthermore, a reinforcement learning method was used to investigate whether altered WM function could be a diagnostic indicator of TIA. Methods We enrolled 48 patients with TIA and 41 age- and sex-matched healthy controls (HCs). Resting-state functional magnetic resonance imaging (rs-fMRI) and clinical/physiological/biochemical data were collected from each participant. We compared the group differences between patients with TIA and HCs in the low-frequency range of WM using two resting-state metrics: amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The altered ALFF and fALFF values were defined as features of the reinforcement learning method involving a Q-learning algorithm. Results Compared with HCs, patients with TIA showed decreased ALFF in the right cingulate gyrus/right superior longitudinal fasciculus/left superior corona radiata and decreased fALFF in the right cerebral peduncle/right cingulate gyrus/middle cerebellar peduncle. Based on these two rs-fMRI metrics, an optimal Q-learning model was obtained with an accuracy of 82.02%, sensitivity of 85.42%, specificity of 78.05%, precision of 82.00%, and area under the curve (AUC) of 0.87. Conclusion The present study revealed abnormal WM functional alterations in the low-frequency range in patients with TIA. These results support the role of WM functional neural activity as a potential neuromarker in classifying patients with TIA and offer novel insights into the underlying mechanisms in patients with TIA from the perspective of WM function.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
- Integrated Medical School, Jiamusi University, Jiamusi, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Lina Huang
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Heilongjiang 150080, China
| | - Su Hu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Qingguo Ding
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| |
Collapse
|
10
|
Li J, Li J, Huang P, Huang LN, Ding QG, Zhan L, Li M, Zhang J, Zhang H, Cheng L, Li H, Liu DQ, Zhou HY, Jia XZ. Increased functional connectivity of white-matter in myotonic dystrophy type 1. Front Neurosci 2022; 16:953742. [PMID: 35979335 PMCID: PMC9377538 DOI: 10.3389/fnins.2022.953742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common and dominant inherited neuromuscular dystrophy disease in adults, involving multiple organs, including the brain. Although structural measurements showed that DM1 is predominantly associated with white-matter damage, they failed to reveal the dysfunction of the white-matter. Recent studies have demonstrated that the functional activity of white-matter is of great significance and has given us insights into revealing the mechanisms of brain disorders. Materials and methods Using resting-state fMRI data, we adopted a clustering analysis to identify the white-matter functional networks and calculated functional connectivity between these networks in 16 DM1 patients and 18 healthy controls (HCs). A two-sample t-test was conducted between the two groups. Partial correlation analyzes were performed between the altered white-matter FC and clinical MMSE or HAMD scores. Results We identified 13 white-matter functional networks by clustering analysis. These white-matter functional networks can be divided into a three-layer network (superficial, middle, and deep) according to their spatial distribution. Compared to HCs, DM1 patients showed increased FC within intra-layer white-matter and inter-layer white-matter networks. For intra-layer networks, the increased FC was mainly located in the inferior longitudinal fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer networks, the increased FC of DM1 patients is mainly located in the superior corona radiata and deep networks. Conclusion Results demonstrated the abnormalities of white-matter functional connectivity in DM1 located in both intra-layer and inter-layer white-matter networks and suggested that the pathophysiology mechanism of DM1 may be related to the white-matter functional dysconnectivity. Furthermore, it may facilitate the treatment development of DM1.
Collapse
Affiliation(s)
- Jing Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jie Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Pei Huang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Na Huang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qing-Guo Ding
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum, Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, China
| | - Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
11
|
Wang Y, Wei H, Du S, Yan H, Li X, Wu Y, Zhu J, Wang Y, Cai Z, Wang N. Functional Covariance Connectivity of Gray and White Matter in Olfactory-Related Brain Regions in Parkinson’s Disease. Front Neurosci 2022; 16:853061. [PMID: 35310108 PMCID: PMC8930839 DOI: 10.3389/fnins.2022.853061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Before the onset of motor symptoms, Parkinson’s disease (PD) involves dysfunction of the anterior olfactory nucleus and olfactory bulb, causing olfactory disturbance, commonly resulting in hyposmia in the early stages of PD. Accumulating evidence has shown that blood oxygen level dependent (BOLD) signals in white matter are altered by olfactory disorders and related stimuli, and the signal changes in brain white matter pathways show a certain degree of specificity, which can reflect changes of early olfactory dysfunction in Parkinson’s disease. In this study, we apply the functional covariance connectivity (FCC) method to decode FCC of gray and white matter in olfactory-related brain regions in Parkinson’s disease. Our results show that the dorsolateral prefrontal, anterior entorhinal cortex and fronto-orbital cortices in the gray matter have abnormal connectivity with the posterior corona radiata and superior corona radiata in white matter in patients with Parkinson’s hyposmia. The functional covariance connection strength (FCS) of the right dorsolateral prefrontal cortex and white matter, and the covariance connection strength of the left superior corona radiata and gray matter function have potential diagnostic value. These results demonstrate that alterations in FCC of gray and white matter in olfactory-related brain regions can reflect the change of olfactory function in the early stages of Parkinson’s disease, indicating that it could be a potential neuroimaging marker for early diagnosis.
Collapse
Affiliation(s)
- Yiqing Wang
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- Department of Neurology, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hongyu Wei
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Shouyun Du
- Department of Neurology, Guanyun People’s Hospital, Lianyungang, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaojing Li
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Yijie Wu
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Jianbing Zhu
- Department of Radiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Yi Wang
- Department of Radiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Zenglin Cai
- Department of Neurology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- Department of Neurology, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Zenglin Cai,
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- Nizhuan Wang,
| |
Collapse
|
12
|
Li J, Wu GR, Li B, Fan F, Zhao X, Meng Y, Zhong P, Yang S, Biswal BB, Chen H, Liao W. Transcriptomic and macroscopic architectures of intersubject functional variability in human brain white-matter. Commun Biol 2021; 4:1417. [PMID: 34931033 PMCID: PMC8688465 DOI: 10.1038/s42003-021-02952-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Intersubject variability is a fundamental characteristic of brain organizations, and not just "noise". Although intrinsic functional connectivity (FC) is unique to each individual and varies across brain gray-matter, the underlying mechanisms of intersubject functional variability in white-matter (WM) remain unknown. This study identified WMFC variabilities and determined the genetic basis and macroscale imaging in 45 healthy subjects. The functional localization pattern of intersubject variability across WM is heterogeneous, with most variability observed in the heteromodal cortex. The variabilities of heteromodal regions in expression profiles of genes are related to neuronal cells, involved in synapse-related and glutamic pathways, and associated with psychiatric disorders. In contrast, genes overexpressed in unimodal regions are mostly expressed in glial cells and were related to neurological diseases. Macroscopic variability recapitulates the functional and structural specializations and behavioral phenotypes. Together, our results provide clues to intersubject variabilities of the WMFC with convergent transcriptomic and cellular signatures, which relate to macroscale brain specialization.
Collapse
Affiliation(s)
- Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, 400715, P.R. China
| | - Bing Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Feiyang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Xiaopeng Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Peng Zhong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07103, USA
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| |
Collapse
|
13
|
Power spectra reveal distinct BOLD resting-state time courses in white matter. Proc Natl Acad Sci U S A 2021; 118:2103104118. [PMID: 34716261 DOI: 10.1073/pnas.2103104118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Accurate characterization of the time courses of blood-oxygen-level-dependent (BOLD) signal changes is crucial for the analysis and interpretation of functional MRI data. While several studies have shown that white matter (WM) exhibits distinct BOLD responses evoked by tasks, there have been no comprehensive investigations into the time courses of spontaneous signal fluctuations in WM. We measured the power spectra of the resting-state time courses in a set of regions within WM identified as showing synchronous signals using independent components analysis. In each component, a clear separation between voxels into two categories was evident, based on their power spectra: one group exhibited a single peak, and the other had an additional peak at a higher frequency. Their groupings are location specific, and their distributions reflect unique neurovascular and anatomical configurations. Importantly, the two categories of voxels differed in their engagement in functional integration, revealed by differences in the number of interregional connections based on the two categories separately. Taken together, these findings suggest WM signals are heterogeneous in nature and depend on local structural-vascular-functional associations.
Collapse
|