1
|
Newschaffer CJ, Croen LA, Fallin MD, Hertz-Picciotto I, Nguyen DV, Lee NL, Berry CA, Farzadegan H, Hess HN, Landa RJ, Levy SE, Massolo ML, Meyerer SC, Mohammed SM, Oliver MC, Ozonoff S, Pandey J, Schroeder A, Shedd-Wise KM. Infant siblings and the investigation of autism risk factors. J Neurodev Disord 2012; 4:7. [PMID: 22958474 PMCID: PMC3436647 DOI: 10.1186/1866-1955-4-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 04/18/2012] [Indexed: 12/31/2022] Open
Abstract
Infant sibling studies have been at the vanguard of autism spectrum disorders (ASD) research over the past decade, providing important new knowledge about the earliest emerging signs of ASD and expanding our understanding of the developmental course of this complex disorder. Studies focused on siblings of children with ASD also have unrealized potential for contributing to ASD etiologic research. Moving targeted time of enrollment back from infancy toward conception creates tremendous opportunities for optimally studying risk factors and risk biomarkers during the pre-, peri- and neonatal periods. By doing so, a traditional sibling study, which already incorporates close developmental follow-up of at-risk infants through the third year of life, is essentially reconfigured as an enriched-risk pregnancy cohort study. This review considers the enriched-risk pregnancy cohort approach of studying infant siblings in the context of current thinking on ASD etiologic mechanisms. It then discusses the key features of this approach and provides a description of the design and implementation strategy of one major ASD enriched-risk pregnancy cohort study: the Early Autism Risk Longitudinal Investigation (EARLI).
Collapse
Affiliation(s)
- Craig J Newschaffer
- Department of Epidemiology and Biostatistics, Drexel School of Public Health, 1505 Race Street, Mail Stop 1033, Philadelphia, PA 19102, USA
| | - Lisa A Croen
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - M Daniele Fallin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Danh V Nguyen
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Nora L Lee
- Department of Epidemiology and Biostatistics, Drexel School of Public Health, 1505 Race Street, Mail Stop 1033, Philadelphia, PA 19102, USA
| | - Carmen A Berry
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA
| | - Homayoon Farzadegan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA
| | - H Nicole Hess
- Kaiser Permanente San Jose Medical Center, 6620 Via Del Oro, San Jose, CA 95119, USA
| | - Rebecca J Landa
- Kennedy Krieger Institute, 3901 Greenspring Avenue, 2nd Floor, Baltimore, MD 21211, USA
| | - Susan E Levy
- Center for Autism Research, The Children's Hospital of Philadelphia, 3535 Market Street, Suite 860, Philadelphia, PA 19104, USA
| | - Maria L Massolo
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Stacey C Meyerer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA
| | - Sandra M Mohammed
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - McKenzie C Oliver
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Sally Ozonoff
- The MIND Institute, UC Davis Medical Center, 2825 50th Street, Sacramento, CA 95817, USA
| | - Juhi Pandey
- Center for Autism Research, The Children's Hospital of Philadelphia, 3535 Market Street, Suite 860, Philadelphia, PA 19104, USA
| | - Adam Schroeder
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Kristine M Shedd-Wise
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Campion SN, Davenport SJ, Nowland WS, Cappon GD, Bowman CJ, Hurtt ME. Sensitive windows of skeletal development in rabbits determined by hydroxyurea exposure at different times throughout gestation. ACTA ACUST UNITED AC 2012; 95:238-49. [PMID: 22495808 DOI: 10.1002/bdrb.21013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/27/2012] [Indexed: 11/07/2022]
Abstract
The critical periods of axial skeletal development in rats and mice have been well characterized, however the timing of skeletal development in rabbits is not as well known. It is important to have a more precise understanding of this timing of axial skeletal development in rabbits due to the common use of this species in standard nonclinical studies to assess embryo-fetal developmental toxicity. Hydroxyurea, a teratogen known to induce a variety of fetal skeletal malformations, was administered to New Zealand White rabbits as a single dose (500 mg/kg) on individual days during gestation (gestation day, GD 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 19) and fetal external, visceral, and skeletal morphology was examined following cesarean sections on GD 29. A wide range of fetal skeletal effects was observed following hydroxyurea treatment, with a progression of malformations from anterior to posterior structures over time, as well as from proximal to distal structures over time. The sensitive window of axial skeletal development was determined to be GD 8 to 13, while disruption of appendicular and cranio-facial skeletal development occurred primarily from GD 11 to 16 and GD 11 to 12, respectively. The results of this study provide a better understanding of the critical developmental window for different segments of the rabbit skeleton, which will aid in the design of window studies to investigate teratogenicity in rabbits.
Collapse
Affiliation(s)
- Sarah N Campion
- Drug Safety Research and Development, Pfizer Worldwide Research & Development, Groton, CT 06340, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Campion SN, Bowman CJ, Cappon GD, Harrison A, Finch GL, Hurtt ME. Developmental Toxicity of Lersivirine in Rabbits when Administered throughout Organogenesis and when Limited to Sensitive Windows of Axial Skeletal Development. ACTA ACUST UNITED AC 2012; 95:250-61. [DOI: 10.1002/bdrb.21014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/27/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Sarah N. Campion
- Drug Safety Research and Development; Pfizer Worldwide Research & Development; Groton; CT
| | - Christopher J. Bowman
- Drug Safety Research and Development; Pfizer Worldwide Research & Development; Groton; CT
| | - Gregg D. Cappon
- Drug Safety Research and Development; Pfizer Worldwide Research & Development; Groton; CT
| | - Anthony Harrison
- Pharmacokinetics; Dynamics and Metabolism; Pfizer Worldwide Research & Development; Sandwich; UK
| | - Gregory L. Finch
- Drug Safety Research and Development; Pfizer Worldwide Research & Development; Groton; CT
| | - Mark E. Hurtt
- Drug Safety Research and Development; Pfizer Worldwide Research & Development; Groton; CT
| |
Collapse
|
4
|
Weston AD, Ozolins TRS, Brown NA. Thoracic skeletal defects and cardiac malformations: a common epigenetic link? ACTA ACUST UNITED AC 2007; 78:354-70. [PMID: 17315248 DOI: 10.1002/bdrc.20084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital heart defects (CHDs) are the most common birth defects in humans. In addition, cardiac malformations represent the most frequently identified anomaly in teratogenicity experiments with laboratory animals. To explore the mechanisms of these drug-induced defects, we developed a model in which pregnant rats are treated with dimethadione, resulting in a high incidence of heart malformations. Interestingly, these heart defects were accompanied by thoracic skeletal malformations (cleft sternum, fused ribs, extra or missing ribs, and/or wavy ribs), which are characteristic of anterior-posterior (A/P) homeotic transformations and/or disruptions at one or more stages in somite development. A review of other teratogenicity studies suggests that the co-occurrence of these two disparate malformations is not unique to dimethadione, rather it may be a more general phenomenon caused by various structurally unrelated agents. The coexistence of cardiac and thoracic skeletal malformations has also presented clinically, suggesting a mechanistic link between cardiogenesis and skeletal development. Evidence from genetically modified mice reveals that several genes are common to heart development and to formation of the axial skeleton. Some of these genes are important in regulating chromatin architecture, while others are tightly controlled by chromatin-modifying proteins. This review focuses on the role of these epigenetic factors in development of the heart and axial skeleton, and examines the hypothesis that posttranslational modifications of core histones may be altered by some developmental toxicants.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/etiology
- Abnormalities, Drug-Induced/genetics
- Abnormalities, Drug-Induced/metabolism
- Abnormalities, Multiple/etiology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Animals
- Bone and Bones/abnormalities
- Chromosomal Proteins, Non-Histone
- Epigenesis, Genetic
- Female
- Heart Defects, Congenital/etiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Histones/metabolism
- Humans
- MicroRNAs/genetics
- Models, Biological
- Pregnancy
- Protein Processing, Post-Translational
- Ribs/abnormalities
- Sternum/abnormalities
- Teratogens/toxicity
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Andrea D Weston
- Developmental and Reproductive Toxicology Center of Emphasis, Drug Safety Research, and Development, Pfizer Global Research and Development, Groton, Connecticut 06340, USA
| | | | | |
Collapse
|
6
|
Clark RL, White TEK, A Clode S, Gaunt I, Winstanley P, Ward SA. Developmental toxicity of artesunate and an artesunate combination in the rat and rabbit. ACTA ACUST UNITED AC 2005; 71:380-94. [PMID: 15617018 DOI: 10.1002/bdrb.20027] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The artemisinins are playing an increasingly important role in treating multidrug-resistant malaria. The artemisinin, artesunate, is currently in use in Southeast Asia and is advocated for use in Africa. In these areas, more than one million people die of malaria each year, with the highest mortality occurring in children and pregnant women. To test the developmental toxicity in ICH-compliant animal studies, embryofetal development studies were conducted in rats and rabbits treated with artesunate alone or a three-drug combination (CDA) consisting of chlorproguanil hydrochloride, Dapsone, and artesunate in the ratio 1.00:1.25:2.00. Developmental toxicity seen with CDA could be attributed to the administered dose of artesunate. The hallmark effect of artesunate exposure was a dramatic induction of embryo loss, apparent as abortions in rabbits and resorptions in both rats and rabbits. In addition, low incidences of cardiovascular malformations and a syndrome of skeletal defects were induced at or close to embryolethal doses of artesunate in both rats and rabbits. The cardiovascular malformations consisted of ventricular septal and vessel defects. The skeletal syndrome consisted of shortened and/or bent long bones and scapulae, misshapen ribs, cleft sternebrae, and incompletely ossified pelvic bones. These developmental effects were observed largely in the absence of any apparent maternal toxicity. The no or low adverse effect levels were in the range of 5 to 7 mg/kg/day artesunate. Encouragingly, no adverse drug-related developmental effects have been observed in a limited number of pregnant women (more than 100 first trimester and 600 second and third trimester) treated with artemisinins, primarily artesunate. Investigations of the mechanism of developmental toxicity are ongoing to attempt to determine whether rats and rabbits are more sensitive to artemisinins than humans.
Collapse
Affiliation(s)
- Robert L Clark
- Safety Assessment, GlaxoSmithKline, King of Prussia, PA 19406-0939, USA.
| | | | | | | | | | | |
Collapse
|