1
|
Xu Y, Gehlot R, Capon SJ, Albu M, Gretz J, Bloomekatz J, Mattonet K, Vucicevic D, Talyan S, Kikhi K, Günther S, Looso M, Firulli BA, Sanda M, Firulli AB, Lacadie SA, Yelon D, Stainier DYR. PDGFRA is a conserved HAND2 effector during early cardiac development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1531-1548. [PMID: 39658721 PMCID: PMC11634778 DOI: 10.1038/s44161-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
The basic helix-loop-helix transcription factor HAND2 has multiple roles during vertebrate organogenesis, including cardiogenesis. However, much remains to be uncovered about its mechanism of action. Here, we show the generation of several hand2 mutant alleles in zebrafish and demonstrate that dimerization-deficient mutants display the null phenotype but DNA-binding-deficient mutants do not. Rescue experiments with Hand2 variants using a newly identified hand2 enhancer confirmed these observations. To identify Hand2 effectors critical for cardiogenesis, we analyzed the transcriptomes of hand2 loss- and gain-of-function embryonic cardiomyocytes and tested the function of eight candidate genes in vivo; pdgfra was most effective in rescuing myocardial migration in hand2 mutants. Accordingly, we identified a putative Hand2-binding region in the zebrafish pdgfra locus that is important for its expression. In addition, Hand2 loss- and gain-of-function experiments in mouse embryonic stem cell-derived cardiac cells decreased and increased Pdgfra expression, respectively. Altogether, these results further our mechanistic understanding of HAND2 function during early cardiogenesis.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rupal Gehlot
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Samuel J Capon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Gretz
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, University of Mississippi, University, MS, USA
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dubravka Vucicevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Miloslav Sanda
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Scott Allen Lacadie
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
2
|
Uribe-Montes LC, Sanabria-Camargo CA, Piñeros-Romero CC, Otálora-Tarazona S, Ávila-Jiménez E, Acosta-Virgüez E, Garavito-Aguilar ZV. Fibronectin and Hand2 influence tubulogenesis during pronephros development and mesonephros regeneration in zebrafish (Danio rerio). PLoS One 2024; 19:e0307390. [PMID: 39240899 PMCID: PMC11379296 DOI: 10.1371/journal.pone.0307390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 09/08/2024] Open
Abstract
Worldwide incidence of kidney diseases has been rising. Thus, recent research has focused on zebrafish, whose fast development and innate regeneration capacity allow identifying factors influencing renal processes. Among these poorly studied factors are extracellular matrix (ECM) proteins like Fibronectin (Fn) essential in various tissues but not yet evaluated in a renal context. We utilized early nat and han zebrafish mutant embryos and carrier adults to investigate Fn's role during kidney development and regeneration. The locus natter (nat) encodes Fn and the locus han encodes Hand2, which results in increased Fn deposition. Our results show that Fn impacts identity maintenance and morphogenesis during development and influences conditions for neonephrogenic cluster formation during regeneration. Histological analysis revealed disrupted pronephric structures and increased blood cell accumulation in Fn mutants. Despite normal expression of specification markers (pax2, ATPα1a.1), structural abnormalities were evident. Differences between wild-type and mutation-carriers suggest a haploinsufficiency scenario. These findings reveal a novel function for ECM in renal development and regeneration, with potential implications for understanding and treating kidney diseases.
Collapse
Affiliation(s)
- Lucia Carolina Uribe-Montes
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Camilo Alfonso Sanabria-Camargo
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Cristian Camilo Piñeros-Romero
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Sebastián Otálora-Tarazona
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Estefanía Ávila-Jiménez
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Edwin Acosta-Virgüez
- Departamento de Biología, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Zayra Viviana Garavito-Aguilar
- Laboratorio de Biología del Desarrollo-BIOLDES, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
3
|
Jonker T, Barnett P, Boink GJJ, Christoffels VM. Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm. Cells 2023; 13:4. [PMID: 38201209 PMCID: PMC10777909 DOI: 10.3390/cells13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.
Collapse
Affiliation(s)
- Timo Jonker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Gerard J. J. Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| |
Collapse
|
4
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
5
|
Epigenetic Evaluation of the TBX20 Gene and Environmental Risk Factors in Mexican Paediatric Patients with Congenital Septal Defects. Cells 2023; 12:cells12040586. [PMID: 36831251 PMCID: PMC9953838 DOI: 10.3390/cells12040586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The TBX20 gene has a key role during cardiogenesis, and it has been related to epigenetic mechanisms in congenital heart disease (CHD). The purpose of this study was to assess the association between DNA methylation status and congenital septal defects. The DNA methylation of seven CpG sites in the TBX20 gene promoter was analyzed through pyrosequencing as a quantitative method in 48 patients with congenital septal defects and 104 individuals with patent ductus arteriosus (PDA). The average methylation was higher in patients than in PDA (p < 0.001). High methylation levels were associated with a higher risk of congenital septal defects (OR = 4.59, 95% CI = 1.57-13.44, p = 0.005). The ROC curve analysis indicated that methylation of the TBX20 gene could be considered a risk marker for congenital septal defects (AUC = 0.682; 95% CI = 0.58-0.77; p < 0.001). The analysis of environmental risk factors in patients with septal defects and PDA showed an association between the consumption of vitamins (OR = 0.10; 95% CI = 0.01-0.98; p = 0.048) and maternal infections (OR = 3.10; 95% CI = 1.26-7.60; p = 0.013). These results suggest that differences in DNA methylation of the TBX20 gene can be associated with septal defects.
Collapse
|
6
|
Li M, Cai Y, Pang S, Yan B. Molecular Genetic Study on HAND2 Gene Promoter in Ventricular Septal Defect. Int Heart J 2023; 64:1140-1147. [PMID: 38030295 DOI: 10.1536/ihj.22-721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Ventricular septal defect (VSD), the most common type of congenital heart disease (CHD), is primarily caused by cardiac dysplasia. Heart and neural crest derivatives expressed 2 (HAND2) participates in developing the right heart. The loss of HAND2 expression in humans is closely connected with ventricular septal defects. We used a case-control study to analyze the genetic variations in the HAND2 promoter region in VSD patients and controls. Some statistical analysis methods were used to analyze the association of single nucleotide polymorphisms (SNPs) with VSD. The dual-luciferase reporter assay and electrophoretic mobility shift assay (EMSA) were used to conduct functional analysis and molecular mechanism study of genetic variations. Through sequencing, we identified nine genetic variants in patients with VSD. The SNP rs2276940 G>T and rs2276941 G>A were associated with an increased risk of VSD. The dual-luciferase reporter assay showed that SNP rs2276940 G>T and rs138531627 C>G decreased the transcriptional activity of the HAND2 promoter. Transcription factors (TFs) predicting suggested that all three SNPs may change the binding of TFs. The result of EMSA showed that rs138531627 C>G may create a new binding site for TFs while rs2276940 G>T enhanced the binding affinity for TFs. These results indicated that genetic variants of the HAND2 promoter may increase the risk of VSD, and the molecular mechanism may be the change of the binding affinity of TFs.
Collapse
Affiliation(s)
- Meikun Li
- Cheeloo College of Medicine, Shandong University
| | - Yahui Cai
- Institute of Precision Medicine, Jining Medical University
- College of Basic Medicine, Jining Medical University
| | - Shuchao Pang
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University
| |
Collapse
|
7
|
Alam MJ, Uppulapu SK, Tiwari V, Varghese B, Mohammed SA, Adela R, Arava SK, Banerjee SK. Pregestational diabetes alters cardiac structure and function of neonatal rats through developmental plasticity. Front Cardiovasc Med 2022; 9:919293. [PMID: 36176990 PMCID: PMC9514058 DOI: 10.3389/fcvm.2022.919293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Pregestational diabetes (PGDM) leads to developmental impairment, especially cardiac dysfunction, in their offspring. The hyperglycemic microenvironment inside the uterus alters the cardiac plasticity characterized by electrical and structural remodeling of the heart. The altered expression of several transcription factors due to hyperglycemia during fetal development might be responsible for molecular defects and phenotypic changes in the heart. The molecular mechanism of the developmental defects in the heart due to PGDM remains unclear. To understand the molecular defects in the 2-days old neonatal rats, streptozotocin-induced diabetic female rats were bred with healthy male rats. We collected 2-day-old hearts from the neonates and identified the molecular basis for phenotypic changes. Neonates from diabetic mothers showed altered electrocardiography and echocardiography parameters. Transcriptomic profiling of the RNA-seq data revealed that several altered genes were associated with heart development, myocardial fibrosis, cardiac conduction, and cell proliferation. Histopathology data showed the presence of focal cardiac fibrosis and increased cell proliferation in neonates from diabetic mothers. Thus, our results provide a comprehensive map of the cellular events and molecular pathways perturbed in the neonatal heart during PGDM. All of the molecular and structural changes lead to developmental plasticity in neonatal rat hearts and develop cardiac anomalies in their early life.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shravan Kumar Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Soheb Anwar Mohammed
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay K. Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
- *Correspondence: Sanjay K. Banerjee,
| |
Collapse
|
8
|
Swimming exercise with L-arginine coated nanoparticles supplementation upregulated HAND2 and TBX5 expression in the cardiomyocytes of aging male rats. Biogerontology 2022; 23:473-484. [PMID: 35809117 DOI: 10.1007/s10522-022-09977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
We investigated possible cardioprotective mechanisms of L-arginine coated nanoparticles (L-ACN) combined with swimming exercise (SE) in aging male rats considering heart and neural crest derivatives-expressed protein 2 (HAND2) and t-box transcription factor 5 (TBX5). Thirty-five male Wistar rats were randomly assigned into five groups: young, old, old + L-ACN, old + SE, and old + L-ACN + SE (n = 7 in each). L-arginine coated with chitosan nanoparticles was given to L-ACN groups via gavage at 500 mg/kg/day. SE groups performed a swimming exercise program 5 days per week for 6 weeks. The exercise program started with 20 min, gradually increasing to 60 min after four sessions, which was then constant until the completion of the training period. After the protocol completion, the rats were sacrificed, and the heart was fixed and frozen to carry out histological, immunohistochemistry (IHC), and gene expression analyses. The expression of HAND2 protein, HAND2 mRNA, and TBX5 mRNA of the heart tissue was significantly higher in the young group than in all older groups (P < 0.05). The old + L-ACN, old + SE, and old + L-ACN + SE groups showed a significant increase in these factors compared to the old group (P < 0.05). Nano-L-arginine supplement, along with swimming exercises, seems to have cardioprotective potential and improve cardiac function in old age by strengthening cardiomyocyte signaling, especially HAND2 and TBX5. However, more research is required, particularly on human samples.
Collapse
|
9
|
Giroud M, Tsokanos FF, Caratti G, Kotschi S, Khani S, Jouffe C, Vogl ES, Irmler M, Glantschnig C, Gil-Lozano M, Hass D, Khan AA, Garcia MR, Mattijssen F, Maida A, Tews D, Fischer-Posovszky P, Feuchtinger A, Virtanen KA, Beckers J, Wabitsch M, Uhlenhaut H, Blüher M, Tuckermann J, Scheideler M, Bartelt A, Herzig S. HAND2 is a novel obesity-linked adipogenic transcription factor regulated by glucocorticoid signalling. Diabetologia 2021; 64:1850-1865. [PMID: 34014371 PMCID: PMC8245394 DOI: 10.1007/s00125-021-05470-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/18/2021] [Indexed: 11/01/2022]
Abstract
AIMS/HYPOTHESIS Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY Array data have been submitted to the GEO database at NCBI (GSE148699).
Collapse
Affiliation(s)
- Maude Giroud
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Giorgio Caratti
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Sajjad Khani
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Céline Jouffe
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Elena S Vogl
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christina Glantschnig
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Gil-Lozano
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Hass
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Asrar Ali Khan
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcos Rios Garcia
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Frits Mattijssen
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Adriano Maida
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | | | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Henriette Uhlenhaut
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Metabolic Programming, TUM School of Life Sciences Weihenstephan and ZIEL Institute for Food & Health, Munich, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jan Tuckermann
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm, Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Bartelt
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.
- Molecular Metabolic Control, Medical Faculty, Technical University Munich, Munich, Germany.
| |
Collapse
|
10
|
Vincentz JW, Firulli BA, Toolan KP, Osterwalder M, Pennacchio LA, Firulli AB. HAND transcription factors cooperatively specify the aorta and pulmonary trunk. Dev Biol 2021; 476:1-10. [PMID: 33757801 DOI: 10.1016/j.ydbio.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Congenital heart defects (CHDs) affecting the cardiac outflow tract (OFT) constitute a significant cause of morbidity and mortality. The OFT develops from migratory cell populations which include the cardiac neural crest cells (cNCCs) and secondary heart field (SHF) derived myocardium and endocardium. The related transcription factors HAND1 and HAND2 have been implicated in human CHDs involving the OFT. Although Hand1 is expressed within the OFT, Hand1 NCC-specific conditional knockout mice (H1CKOs) are viable. Here we show that these H1CKOs present a low penetrance of OFT phenotypes, whereas SHF-specific Hand1 ablation does not reveal any cardiac phenotypes. Further, HAND1 and HAND2 appear functionally redundant within the cNCCs, as a reduction/ablation of Hand2 on an NCC-specific H1CKO background causes pronounced OFT defects. Double conditional Hand1 and Hand2 NCC knockouts exhibit persistent truncus arteriosus (PTA) with 100% penetrance. NCC lineage-tracing and Sema3c in situ mRNA expression reveal that Sema3c-expressing cells are mis-localized, resulting in a malformed septal bridge within the OFTs of H1CKO;H2CKO embryos. Interestingly, Hand1 and Hand2 also genetically interact within the SHF, as SHF H1CKOs on a heterozygous Hand2 background exhibit Ventricular Septal Defects (VSDs) with incomplete penetrance. Previously, we identified a BMP, HAND2, and GATA-dependent Hand1 OFT enhancer sufficient to drive reporter gene expression within the nascent OFT and aorta. Using these transcription inputs as a probe, we identify a novel Hand2 OFT enhancer, suggesting that a conserved BMP-GATA dependent mechanism transcriptionally regulates both HAND factors. These findings support the hypothesis that HAND factors interpret BMP signaling within the cNCCs to cooperatively coordinate OFT morphogenesis.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Kevin P Toolan
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; U.S. Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA; Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
11
|
Abstract
Congenital heart disease is the most common congenital defect observed in newborns. Within the spectrum of congenital heart disease are left‐sided obstructive lesions (LSOLs), which include hypoplastic left heart syndrome, aortic stenosis, bicuspid aortic valve, coarctation of the aorta, and interrupted aortic arch. These defects can arise in isolation or as a component of a defined syndrome; however, nonsyndromic defects are often observed in multiple family members and associated with high sibling recurrence risk. This clear evidence for a heritable basis has driven a lengthy search for disease‐causing variants that has uncovered both rare and common variants in genes that, when perturbed in cardiac development, can result in LSOLs. Despite advancements in genetic sequencing platforms and broadening use of exome sequencing, the currently accepted LSOL‐associated genes explain only 10% to 20% of patients. Further, the combinatorial effects of common and rare variants as a cause of LSOLs are emerging. In this review, we highlight the genes and variants associated with the different LSOLs and discuss the strengths and weaknesses of the present genetic associations. Furthermore, we discuss the research avenues needed to bridge the gaps in our current understanding of the genetic basis of nonsyndromic congenital heart disease.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
12
|
Firulli BA, George RM, Harkin J, Toolan KP, Gao H, Liu Y, Zhang W, Field LJ, Liu Y, Shou W, Payne RM, Rubart-von der Lohe M, Firulli AB. HAND1 loss-of-function within the embryonic myocardium reveals survivable congenital cardiac defects and adult heart failure. Cardiovasc Res 2020; 116:605-618. [PMID: 31286141 DOI: 10.1093/cvr/cvz182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS To examine the role of the basic Helix-loop-Helix (bHLH) transcription factor HAND1 in embryonic and adult myocardium. METHODS AND RESULTS Hand1 is expressed within the cardiomyocytes of the left ventricle (LV) and myocardial cuff between embryonic days (E) 9.5-13.5. Hand gene dosage plays an important role in ventricular morphology and the contribution of Hand1 to congenital heart defects requires further interrogation. Conditional ablation of Hand1 was carried out using either Nkx2.5 knockin Cre (Nkx2.5Cre) or α-myosin heavy chain Cre (αMhc-Cre) driver. Interrogation of transcriptome data via ingenuity pathway analysis reveals several gene regulatory pathways disrupted including translation and cardiac hypertrophy-related pathways. Embryo and adult hearts were subjected to histological, functional, and molecular analyses. Myocardial deletion of Hand1 results in morphological defects that include cardiac conduction system defects, survivable interventricular septal defects, and abnormal LV papillary muscles (PMs). Resulting Hand1 conditional mutants are born at Mendelian frequencies; but the morphological alterations acquired during cardiac development result in, the mice developing diastolic heart failure. CONCLUSION Collectively, these data reveal that HAND1 contributes to the morphogenic patterning and maturation of cardiomyocytes during embryogenesis and although survivable, indicates a role for Hand1 within the developing conduction system and PM development.
Collapse
Affiliation(s)
- Beth A Firulli
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Rajani M George
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Jade Harkin
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Kevin P Toolan
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Hongyu Gao
- Department of and Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Yunlong Liu
- Department of and Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Wenjun Zhang
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Loren J Field
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Ying Liu
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Weinian Shou
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Ronald Mark Payne
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Michael Rubart-von der Lohe
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut St, Indianapolis, IN 46202-5225, USA
| |
Collapse
|
13
|
Chu L, Yin H, Gao L, Gao L, Xia Y, Zhang C, Chen Y, Liu T, Huang J, Boheler KR, Zhou Y, Yang HT. Cardiac Na +-Ca 2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. SCIENCE CHINA-LIFE SCIENCES 2020; 64:255-268. [PMID: 32648190 DOI: 10.1007/s11427-019-1706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/22/2020] [Indexed: 10/23/2022]
Abstract
Ca2+ signaling is critical for heart development; however, the precise roles and regulatory pathways of Ca2+ transport proteins in cardiogenesis remain largely unknown. Sodium-calcium exchanger 1 (Ncx1) is responsible for Ca2+ efflux in cardiomyocytes. It is involved in cardiogenesis, while the mechanism is unclear. Here, using the forward genetic screening in zebrafish, we identified a novel mutation at a highly-conserved leucine residue in ncx1 gene (mutantLDD353/ncx1hL154P) that led to smaller hearts with reduced heart rate and weak contraction. Mechanistically, the number of ventricular but not atrial cardiomyocytes was reduced in ncx1hL154P zebrafish. These defects were mimicked by knockdown or knockout of ncx1h. Moreover, ncx1hL154P had cytosolic and mitochondrial Ca2+ overloading and Ca2+ transient suppression in cardiomyocytes. Furthermore, ncx1hL154P and ncx1h morphants downregulated cardiac transcription factors hand2 and gata4 in the cardiac regions, while overexpression of hand2 and gata4 partially rescued cardiac defects including the number of ventricular myocytes. These findings demonstrate an essential role of the novel 154th leucine residue in the maintenance of Ncx1 function in zebrafish, and reveal previous unrecognized critical roles of the 154th leucine residue and Ncx1 in the formation of ventricular cardiomyocytes by at least partially regulating the expression levels of gata4 and hand2.
Collapse
Affiliation(s)
- Liming Chu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Huimin Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Lei Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Li Gao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Chiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingxi Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Jijun Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| |
Collapse
|
14
|
Yamak A, Hu D, Mittal N, Buikema JW, Ditta S, Lutz PG, Moog-Lutz C, Ellinor PT, Domian IJ. Loss of Asb2 Impairs Cardiomyocyte Differentiation and Leads to Congenital Double Outlet Right Ventricle. iScience 2020; 23:100959. [PMID: 32179481 PMCID: PMC7078385 DOI: 10.1016/j.isci.2020.100959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Defining the pathways that control cardiac development facilitates understanding the pathogenesis of congenital heart disease. Herein, we identify enrichment of a Cullin5 Ub ligase key subunit, Asb2, in myocardial progenitors and differentiated cardiomyocytes. Using two conditional murine knockouts, Nkx+/Cre.Asb2fl/fl and AHF-Cre.Asb2fl/fl, and tissue clarifying technique, we reveal Asb2 requirement for embryonic survival and complete heart looping. Deletion of Asb2 results in upregulation of its target Filamin A (Flna), and concurrent Flna deletion partially rescues embryonic lethality. Conditional AHF-Cre.Asb2 knockouts harboring one Flna allele have double outlet right ventricle (DORV), which is rescued by biallelic Flna excision. Transcriptomic and immunofluorescence analyses identify Tgfβ/Smad as downstream targets of Asb2/Flna. Finally, using CRISPR/Cas9 genome editing, we demonstrate Asb2 requirement for human cardiomyocyte differentiation suggesting a conserved mechanism between mice and humans. Collectively, our study provides deeper mechanistic understanding of the role of the ubiquitin proteasome system in cardiac development and suggests a previously unidentified murine model for DORV. Flna removal partially rescues embryonic lethality of Asb2-heart-specific knockout AHF-Asb2 knockouts harboring one Flna allele have double outlet right ventricle Asb2-Flna regulate TGFβ-Smad2 signaling in the heart Conserved role of Asb2 in heart morphogenesis between mice and humans
Collapse
Affiliation(s)
- Abir Yamak
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Nikhil Mittal
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA
| | - Jan W Buikema
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Sheraz Ditta
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Department of Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Pierre G Lutz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Moog-Lutz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick T Ellinor
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ibrahim J Domian
- Harvard Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN3200, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Congenital heart diseases: genetics, non-inherited risk factors, and signaling pathways. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-0050-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Congenital heart diseases (CHDs) are the most common congenital anomalies with an estimated prevalence of 8 in 1000 live births. CHDs occur as a result of abnormal embryogenesis of the heart. Congenital heart diseases are associated with significant mortality and morbidity. The damage of the heart is irreversible due to a lack of regeneration potential, and usually, the patients may require surgical intervention. Studying the developmental biology of the heart is essential not only in understanding the mechanisms and pathogenesis of congenital heart diseases but also in providing us with insight towards developing new preventive and treatment methods.
Main body
The etiology of congenital heart diseases is still elusive. Both genetic and environmental factors have been implicated to play a role in the pathogenesis of the diseases. Recently, cardiac transcription factors, cardiac-specific genes, and signaling pathways, which are responsible for early cardiac morphogenesis have been extensively studied in both human and animal experiments but leave much to be desired. The discovery of novel genetic methods such as next generation sequencing and chromosomal microarrays have led to further study the genes, non-coding RNAs and subtle chromosomal changes, elucidating their implications to the etiology of congenital heart diseases. Studies have also implicated non-hereditary risk factors such as rubella infection, teratogens, maternal age, diabetes mellitus, and abnormal hemodynamics in causing CHDs.
These etiological factors raise questions on multifactorial etiology of CHDs. It is therefore important to endeavor in research based on finding the causes of CHDs. Finding causative factors will enable us to plan intervention strategies and mitigate the consequences associated with CHDs. This review, therefore, puts forward the genetic and non-genetic causes of congenital heart diseases. Besides, it discusses crucial signaling pathways which are involved in early cardiac morphogenesis. Consequently, we aim to consolidate our knowledge on multifactorial causes of CHDs so as to pave a way for further research regarding CHDs.
Conclusion
The multifactorial etiology of congenital heart diseases gives us a challenge to explicitly establishing specific causative factors and therefore plan intervention strategies. More well-designed studies and the use of novel genetic technologies could be the way through the discovery of etiological factors implicated in the pathogenesis of congenital heart diseases.
Collapse
|
16
|
Kim CW, Go RE, Ko EB, Jeung EB, Kim MS, Choi KC. Effects of cigarette smoke components on myocardial differentiation of mouse embryonic stem cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:66-77. [PMID: 31507073 DOI: 10.1002/tox.22843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
The heart is the first organ formed in the developing fetus, and abnormal development of the heart is a major cause of fetal death. The adverse effects of cigarette smoke on the heart have been well established, but it is not well understood how cigarette smoke components regulate signaling molecules and cardiac specific functions during the early differentiation stage of the embryonic heart. In this study, we identified changes in the size of mouse embryoid bodies (mEBs) in response to treatment with cigarette smoke extract (CSE) via regulation of HDAC2, p53, p21, and cyclin D1 protein expression, which are cardiac differentiation and cell-cycle markers, respectively. In addition, exposure of mouse embryonic stem cells (mESCs) to cigarette smoke components inhibited myocardial differentiation and development through the expression of HDAC1, HDAC2, GATA4, NKX2-5, TBX5, HAND1, and Troponin I. Long-term exposure studies showed that CSE and nicotine may delay the development of mouse cardiomyocytes from mESCs and inhibit the contractibility, which is a fundamental function of the heart. Taken together, these findings suggest that cigarette smoke components, including nicotine, may affect abnormal myocardial differentiation and development.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eul Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Jeonbuk Department of Inhalation Research, Jeongeup, Korea Institute of Toxicology, Jeonbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
17
|
Partially Penetrant Cardiac Neural Crest Defects in Hand1 Phosphomutant Mice: Dimer Choice That Is Not So Critical. Pediatr Cardiol 2019; 40:1339-1344. [PMID: 31338559 PMCID: PMC6786956 DOI: 10.1007/s00246-019-02162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Hand1 is a basic Helix-loop-Helix transcription factor that exhibits post-translationally regulated dimer partner choice that allows for a diverse set of Hand1 transcriptional complexes. Indeed, when Hand1 phosphoregulation is altered, conditionally activated hypophorylation (Hand1PO4-) and phosphorylation mimic (Hand1PO4+) Hand1 alleles disrupt both craniofacial and limb morphogenesis with 100% penetrance. Interestingly, activation of conditional Hand1 Phosphomutant alleles within post-migratory neural crest cells produce heart defects that include ventricular septal defects, double-outlet right ventricle, persistent truncus arteriosus with partial penetrance. Single versus double-lobed thymus is a distinguishing feature between Wnt1-Cre;Hand1PO4-/+ and Wnt1-Cre;Hand1PO4+/+ mice. These data show that although Hand1 dimer regulation plays critical and consistent roles in disrupting craniofacial and limb morphogenesis, Hand1 dimer regulation during cardiac outflow track formation is less critical for normal morphogenesis. This review will present the OFT phenotypes observed in Hand1 Phosphomutant mice, and discuss possible mechanisms of how penetrance differences within the same tissues within the same embryos could be variable.
Collapse
|
18
|
HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. Eur J Med Genet 2019; 62:103540. [DOI: 10.1016/j.ejmg.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
|
19
|
Inman KE, Caiaffa CD, Melton KR, Sandell LL, Achilleos A, Kume T, Trainor PA. Foxc2 is required for proper cardiac neural crest cell migration, outflow tract septation, and ventricle expansion. Dev Dyn 2019; 247:1286-1296. [PMID: 30376688 DOI: 10.1002/dvdy.24684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Proper development of the great vessels of the heart and septation of the cardiac outflow tract requires cardiac neural crest cells. These cells give rise to the parasympathetic cardiac ganglia, the smooth muscle layer of the great vessels, some cardiomyocytes, and the conotruncal cushions and aorticopulmonary septum of the outflow tract. Ablation of cardiac neural crest cells results in defective patterning of each of these structures. Previous studies have shown that targeted deletion of the forkhead transcription factor C2 (Foxc2), results in cardiac phenotypes similar to that derived from cardiac neural crest cell ablation. RESULTS We report that Foxc2-/- embryos on the 129s6/SvEv inbred genetic background display persistent truncus arteriosus and hypoplastic ventricles before embryonic lethality. Foxc2 loss-of-function resulted in perturbed cardiac neural crest cell migration and their reduced contribution to the outflow tract as evidenced by lineage tracing analyses together with perturbed expression of the neural crest cell markers Sox10 and Crabp1. Foxc2 loss-of-function also resulted in alterations in PlexinD1, Twist1, PECAM1, and Hand1/2 expression in association with vascular and ventricular defects. CONCLUSIONS Our data indicate Foxc2 is required for proper migration of cardiac neural crest cells, septation of the outflow tract, and development of the ventricles. Developmental Dynamics 247:1286-1296, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kimberly E Inman
- Department of Natural Sciences, Shawnee State University, Portsmouth, Ohio
| | | | - Kristin R Melton
- Section of Neonatology, Pulmonary and Perinatal Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Lisa L Sandell
- Department of Oral Immunology & Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky
| | - Annita Achilleos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
20
|
Xia M, Luo W, Jin H, Yang Z. HAND2-mediated epithelial maintenance and integrity in cardiac outflow tract morphogenesis. Development 2019; 146:dev.177477. [PMID: 31201155 DOI: 10.1242/dev.177477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023]
Abstract
During embryogenesis, epithelial organization is the prerequisite for organogenesis, in particular, for establishing the tubular structure. Recent studies provided hints about epithelial formation in early heart development, which has not been systemically explored. Here, we revealed a gradient of HAND2 protein in the cardiac progenitors in the anterior dorsal pericardial wall (aDPW) and adjacent transition zone (TZ) in the outflow tract (OFT). Deletion of Hand2 caused cell arrest and accumulation in the TZ leading to defective morphogenesis. While apicobasal cell polarity was unaffected, the key epithelial elements of adherens junction and cell-matrix adhesion were disrupted in the TZ of Hand2 mutant mice, indicating poorly formed epithelium. RNA-seq analysis revealed altered regulation of the contractile fiber and actin cytoskeleton, which affected cardiomyocyte differentiation. Furthermore, we have identified Stars as being transcriptionally controlled by HAND2. STARS facilitates actin polymerization that is essential for anchoring the adhesive molecules to create cell adhesion. Thus, we have uncovered a new function of HAND2 in mediating epithelial maintenance and integrity in OFT morphogenesis. Meanwhile, this study provides insights to understanding cardiac progenitor contribution to OFT development.
Collapse
Affiliation(s)
- Meng Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Wen Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Hengwei Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| |
Collapse
|
21
|
Double de novo mutations in dilated cardiomyopathy with cardiac arrest. J Electrocardiol 2018; 53:40-43. [PMID: 30611920 DOI: 10.1016/j.jelectrocard.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 01/27/2023]
Abstract
Here we report the identification of two novel mutations in a previously asymptomatic young man who suffered an out-of-hospital sudden cardiac arrest. During following evaluation, diagnosis of early stage dilated cardiomyopathy was established, while electrocardiogram monitoring showed frequent complex ventricular arrhythmias, incomplete right bundle branch block and prolonged QT duration. No reversible causes explaining the clinical presentation were established and an automatic implantable cardioverter defibrillator was therefore implanted. Heterozygous mutations in human protein coding genes NKX2-5 and RBM20 are associated with a wide array of pathological phenotypes some of which are sudden cardiac death, unexplained syncope and either combined or isolated congenital heart diseases such as dilated cardiomyopathy.
Collapse
|
22
|
Sharma PP, MacLean AL, Meinecke L, Clouthier DE, Nie Q, Schilling TF. Transcriptomics reveals complex kinetics of dorsal-ventral patterning gene expression in the mandibular arch. Genesis 2018; 57:e23275. [PMID: 30561090 DOI: 10.1002/dvg.23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/06/2022]
Abstract
The mandibular or first pharyngeal arch forms the upper and lower jaws in all gnathostomes. A gene regulatory network that defines ventral, intermediate, and dorsal domains along the dorsal-ventral (D-V) axis of the arch has emerged from studies in zebrafish and mice, but the temporal dynamics of this process remain unclear. To define cell fate trajectories in the arches we have performed quantitative gene expression analyses of D-V patterning genes in pharyngeal arch primordia in zebrafish and mice. Using NanoString technology to measure transcript numbers per cell directly we show that, in many cases, genes expressed in similar D-V domains and induced by similar signals vary dramatically in their temporal profiles. This suggests that cellular responses to D-V patterning signals are likely shaped by the baseline kinetics of target gene expression. Furthermore, similarities in the temporal dynamics of genes that occupy distinct pathways suggest novel shared modes of regulation. Incorporating these gene expression kinetics into our computational models for the mandibular arch improves the accuracy of patterning, and facilitates temporal comparisons between species. These data suggest that the magnitude and timing of target gene expression help diversify responses to patterning signals during craniofacial development.
Collapse
Affiliation(s)
- Praveer P Sharma
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Adam L MacLean
- Department of Mathematics, University of California, Irvine, Irvine, California
| | - Lina Meinecke
- Department of Mathematics, University of California, Irvine, Irvine, California
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California.,Department of Mathematics, University of California, Irvine, Irvine, California
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| |
Collapse
|
23
|
Firulli BA, Toolan KP, Harkin J, Millar H, Pineda S, Firulli AB. The HAND1 frameshift A126FS mutation does not cause hypoplastic left heart syndrome in mice. Cardiovasc Res 2018; 113:1732-1742. [PMID: 29016838 DOI: 10.1093/cvr/cvx166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Aims To test if a human Hand1 frame shift mutation identified in human samples is causative of hypoplastic left heart syndrome (HLHS). Methods and results HLHS is a poorly understood single ventricle congenital heart defect that affects two to three infants in every 10 000 live births. The aetiologies of HLHS are largely unknown. The basic helix-loop-helix transcription factor HAND1 is required for normal heart development. Interrogation of HAND1 sequence from fixed HLHS tissues identified a somatic frame-shift mutation at Alanine 126 (NP_004812.1 p.Ala126Profs13X defined as Hand1A126fs). Hand1A126fs creates a truncated HAND1 protein that predictively functions as dominant negative. To determine if this mutation is causative of HLHS, we engineered a conditional Hand1A126fs mouse allele. Activation of this allele with Nkx2.5Cre results in E14.5 lethality accompanied by cardiac outflow tract and intraventricular septum abnormalities. Using αMHC-Cre or Mef2CAHF-Cre to activate Hand1A126fs results in reduced phenotype and limited viability. Left ventricles of Hand1A126FS mutant mice are not hypoplastic. Conclusions Somatically acquired Hand1A126FS mutation is not causative of HLHS. Hand1A126FS mutation does exhibit embryonic lethal cardiac defects that reflect a dominant negative function supporting the critical role of Hand1 in cardiogenesis.
Collapse
Affiliation(s)
- Beth A Firulli
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Kevin P Toolan
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Jade Harkin
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Hannah Millar
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Santiago Pineda
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
24
|
Song T, Wan S, Li Y, Xu Y, Dang Y, Zheng Y, Li C, Zheng J, Chen B, Zhang J. Detection of copy number variants using chromosomal microarray analysis for the prenatal diagnosis of congenital heart defects with normal karyotype. J Clin Lab Anal 2018; 33:e22630. [PMID: 30047171 DOI: 10.1002/jcla.22630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/04/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND With the increasing availability of chromosomal microarray analysis (CMA) for congenital heart defect (CHD), genetic testing now faces new challenges due to results with uncertain clinical impact. Studies are needed to better define the penetrance of genetic variants. The aim of the study was to examine the association between CMA and CHDs in fetuses with normal karyotype. METHODS This was a retrospective study of 190 fetuses with normal karyotype that underwent CMA after a diagnosis of CHD by fetal ultrasound. Invasive prenatal diagnosis was performed between January 2015 and December 2016 at the first affiliated hospital of Air Force Medical University. RESULTS Chromosomal microarray analysis detected pathogenic copy number variants (pCNVs) in 13/190 (6.84%) fetuses, likely pCNVs in 5/190 (2.63%), and variants of unknown significance (VOUS) in 14/190 (7.37%). Among those with pCNVs, none (0%) yielded a normal live birth. Among those with likely pCNVs, 2/5 (40.0%) yielded a live birth. Among the fetuses with VOUS, 10/14 (71.5%) yielded a live birth. CONCLUSION These results highlight the usefulness of CMA for prenatal genetic diagnosis of fetuses with CHDs and normal karyotype. In fetuses with CHD, the application of CMA could increase the detection rate of pCNVs causing CHDs. In this study, some VOUS were likely pathogenic, but additional studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Tingting Song
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Shanning Wan
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Yu Li
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Yinghui Dang
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Yunyun Zheng
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Chunyan Li
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, the first affiliated hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
25
|
An inactivating mutation in the histone deacetylase SIRT6 causes human perinatal lethality. Genes Dev 2018; 32:373-388. [PMID: 29555651 PMCID: PMC5900711 DOI: 10.1101/gad.307330.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
Ferrer et al. demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. Human induced pluripotent stem cells derived from D63H homozygous fetuses fail to differentiate into embryoid bodies, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise. Here, we demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. In vitro, the amino acid change at Asp63 to a histidine results in virtually complete loss of H3K9 deacetylase and demyristoylase functions. Functionally, SIRT6 D63H mouse embryonic stem cells (mESCs) fail to repress pluripotent gene expression, direct targets of SIRT6, and exhibit an even more severe phenotype than Sirt6-deficient ESCs when differentiated into embryoid bodies (EBs). When terminally differentiated toward cardiomyocyte lineage, D63H mutant mESCs maintain expression of pluripotent genes and fail to form functional cardiomyocyte foci. Last, human induced pluripotent stem cells (iPSCs) derived from D63H homozygous fetuses fail to differentiate into EBs, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. Altogether, our study described a germline mutation in SIRT6 as a cause for fetal demise, defining SIRT6 as a key factor in human development and identifying the first mutation in a chromatin factor behind a human syndrome of perinatal lethality.
Collapse
|
26
|
Chai H, Yan Z, Huang K, Jiang Y, Zhang L. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect. Mol Cell Biochem 2017; 439:171-187. [PMID: 28822034 DOI: 10.1007/s11010-017-3146-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.
Collapse
Affiliation(s)
- Hui Chai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Zhaoyuan Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Ke Huang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | | | - Lin Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China.
| |
Collapse
|
27
|
Abstract
As the most prevalent form of birth defect in humans worldwide, congenital heart disease (CHD) is responsible for substantial morbidity and is still the leading cause of birth defect-related demises. Increasing evidence demonstrates that genetic defects play an important role in the pathogenesis of CHD, and mutations in multiple genes, especially in those coding for cardiac core transcription factors, have been causally linked to various CHDs. Nevertheless, CHD is a genetically heterogeneous disease and the genetic determinants underpinning CHD in an overwhelming majority of patients remain elusive. In the current study, genomic DNA was extracted from venous blood samples of 165 unrelated patients with CHD, and the coding exons and splicing junction sites of the HAND1 gene, which encodes a basic helix-loop-helix transcription factor essential for cardiovascular development, were sequenced. As a result, a novel heterozygous mutation, p.R118C, was identified in a patient with tetralogy of Fallot (TOF). The missense mutation, which was absent in 600 referential chromosomes, altered the amino acid that was completely conserved evolutionarily. Biological assays with a dual-luciferase reporter assay system revealed that the R118C-mutant HAND1 protein had significantly reduced transcriptional activity when compared with its wild-type counterpart. Furthermore, the mutation significantly decreased the synergistic activation of a downstream target gene between HAND1 and GATA4, another cardiac core transcription factor associated with TOF. To our knowledge, this is the first report on the association of a HAND1 loss-of-function mutation with enhanced susceptibility to TOF in humans. The findings provide novel insight into the molecular etiology underlying TOF, suggesting potential implications for the improved prophylactic and therapeutic strategies for TOF.
Collapse
|
28
|
Xie HM, Werner P, Stambolian D, Bailey-Wilson JE, Hakonarson H, White PS, Taylor DM, Goldmuntz E. Rare copy number variants in patients with congenital conotruncal heart defects. Birth Defects Res 2017; 109:271-295. [PMID: 28398664 PMCID: PMC5407323 DOI: 10.1002/bdra.23609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/22/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. METHODS Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. RESULTS Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. CONCLUSION Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongbo M Xie
- The Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dwight Stambolian
- Department of Ophthalmology and Human Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joan E Bailey-Wilson
- Statistical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - Hakon Hakonarson
- The Center for Applied Genomics, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S White
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Department of Biomedical Informatics, University of Cincinnati, Cincinnati, Ohio
| | - Deanne M Taylor
- The Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Abstract
Genetic and environmental factors may be similar in certain CHD. It has been widely accepted that it is the cumulative effect of these risk factors that results in disease. Pulmonary atresia is a rare type of complex cyanotic CHD with a poor prognosis. Understanding the molecular mechanism of pulmonary atresia is essential for future diagnosis, prevention, and therapeutic approaches. In this article, we reviewed several related copy number variants and related genetic mutations, which were identified in patients with pulmonary atresia, including pulmonary atresia with ventricular septal defect and pulmonary atresia with intact ventricular septum.
Collapse
|
30
|
Hoelscher SC, Doppler SA, Dreßen M, Lahm H, Lange R, Krane M. MicroRNAs: pleiotropic players in congenital heart disease and regeneration. J Thorac Dis 2017; 9:S64-S81. [PMID: 28446969 DOI: 10.21037/jtd.2017.03.149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of infant death, affecting approximately 4-14 live births per 1,000. Although surgical techniques and interventions have improved significantly, a large number of infants still face poor clinical outcomes. MicroRNAs (miRs) are known to coordinately regulate cardiac development and stimulate pathological processes in the heart, including fibrosis or hypertrophy and impair angiogenesis. Dysregulation of these regulators could therefore contribute (I) to the initial development of CHD and (II) at least partially to the observed clinical outcomes of many CHD patients by stimulating the aforementioned pathways. Thus, miRs may exhibit great potential as therapeutic targets in regenerative medicine. In this review we provide an overview of miR function and elucidate their role in selected CHDs, including hypoplastic left heart syndrome (HLHS), tetralogy of Fallot (TOF), ventricular septal defects (VSDs) and Holt-Oram syndrome (HOS). We then bridge this knowledge to the potential usefulness of miRs and/or their targets in therapeutic strategies for regenerative purposes in CHDs.
Collapse
Affiliation(s)
- Sarah C Hoelscher
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Stefanie A Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Martina Dreßen
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Harald Lahm
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Rüdiger Lange
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
31
|
CXXC5 is required for cardiac looping relating to TGFβ signaling pathway in zebrafish. Int J Cardiol 2016; 214:246-53. [DOI: 10.1016/j.ijcard.2016.03.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 11/21/2022]
|
32
|
Blech-Hermoni Y, Sullivan CB, Jenkins MW, Wessely O, Ladd AN. CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. Dev Dyn 2016; 245:854-73. [PMID: 27144987 DOI: 10.1002/dvdy.24413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND CUG-BP, Elav-like family member 1 (CELF1) is a multifunctional RNA binding protein found in a variety of adult and embryonic tissues. In the heart, CELF1 is found exclusively in the myocardium. However, the roles of CELF1 during cardiac development have not been completely elucidated. RESULTS Myofibrillar organization is disrupted and proliferation is reduced following knockdown of CELF1 in cultured chicken primary embryonic cardiomyocytes. In vivo knockdown of Celf1 in developing Xenopus laevis embryos resulted in myofibrillar disorganization and a trend toward reduced proliferation in heart muscle, indicating conserved roles for CELF1 orthologs in embryonic cardiomyocytes. Loss of Celf1 also resulted in morphogenetic abnormalities in the developing heart and gut. Using optical coherence tomography, we showed that cardiac contraction was impaired following depletion of Celf1, while heart rhythm remained unperturbed. In contrast to cardiac muscle, loss of Celf1 did not disrupt myofibril organization in skeletal muscle cells, although it did lead to fragmentation of skeletal muscle bundles. CONCLUSIONS CELF1 is required for normal myofibril organization, proliferation, morphogenesis, and contractile performance in the developing myocardium. Developmental Dynamics 245:854-873, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Program in Cell Biology, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Connor B Sullivan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Andrea N Ladd
- Program in Cell Biology, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
33
|
A HAND2 Loss-of-Function Mutation Causes Familial Ventricular Septal Defect and Pulmonary Stenosis. G3-GENES GENOMES GENETICS 2016; 6:987-92. [PMID: 26865696 PMCID: PMC4825666 DOI: 10.1534/g3.115.026518] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Congenital heart disease (CHD) is the most common developmental abnormality, and is the leading noninfectious cause of mortality in neonates. Increasing evidence demonstrates that genetic defects play an important role in the pathogenesis of CHD. However, CHD exhibits substantial heterogeneity, and the genetic determinants for CHD remain unknown in the overwhelming majority of cases. In the current study, the coding exons and flanking introns of the HAND2 gene, which encodes a basic helix-loop-helix transcription factor essential for normal cardiovascular development, were sequenced in 192 unrelated patients with CHD, and a novel heterozygous mutation, p.S65I, was identified in a patient with congenital ventricular septal defect (VSD). Genetic analysis of the index patient’s pedigree revealed that the mutation was present in all seven affected family members available, but absent in the 13 unaffected family members examined. Besides, in addition to VSD, five of the proband’s close relatives also had pulmonary stenosis (PS), and the proband’s son also had double outlet right ventricle (DORV). The missense mutation, which altered an evolutionarily conserved amino acid, was absent in 300 unrelated, ethnically matched healthy individuals. Biological analyses using a dual-luciferase reporter assay system showed that the mutant HAND2 was associated with significantly diminished transcriptional activity. Furthermore, the mutation abolished the synergistic activation between HAND2 and GATA4, as well as NKX2.5—two other cardiac core transcriptional factors that have been causally linked to CHD. These findings indicate that HAND2 loss-of-function mutation contributes to human CHD, perhaps via its interaction with GATA4 and NKX2.5.
Collapse
|
34
|
Werner P, Latney B, Deardorff MA, Goldmuntz E. MESP1 Mutations in Patients with Congenital Heart Defects. Hum Mutat 2016; 37:308-14. [PMID: 26694203 DOI: 10.1002/humu.22947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022]
Abstract
Identifying the genetic etiology of congenital heart disease (CHD) has been challenging despite being one of the most common congenital malformations in humans. We previously identified a microdeletion in a patient with a ventricular septal defect containing over 40 genes including MESP1 (mesoderm posterior basic helix-loop-helix transcription factor 1). Because of the importance of MESP1 as an early regulator of cardiac development in both in vivo and in vitro studies, we tested for MESP1 mutations in 647 patients with congenital conotruncal and related heart defects. We identified six rare, nonsynonymous variants not seen in ethnically matched controls and one likely race-specific nonsynonymous variant. Functional analyses revealed that three of these variants altered activation of transcription by MESP1. Two of the deleterious variants are located within the conserved HLH domain and thus impair the protein-protein interaction of MESP1 and E47. The third deleterious variant was a loss-of-function frameshift mutation. Our results suggest that pathologic variants in MESP1 may contribute to the development of CHD and that additional protein partners and downstream targets could likewise contribute to the wide range of causes for CHD.
Collapse
Affiliation(s)
- Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Brande Latney
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Matthew A Deardorff
- Division of Genetics, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
35
|
LU CAIXIA, GONG HAIRONG, LIU XINGYUAN, WANG JUAN, ZHAO CUIMEI, HUANG RITAI, XUE SONG, YANG YIQING. A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot. Int J Mol Med 2015; 37:445-51. [DOI: 10.3892/ijmm.2015.2436] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
|
36
|
Different Cardiac Anomalies in Mother and Son with 4q-Syndrome. Case Rep Genet 2015; 2015:932651. [PMID: 26417463 PMCID: PMC4568327 DOI: 10.1155/2015/932651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/03/2022] Open
Abstract
We report a female patient with asymptomatic cor triatriatum sinister, associated with 4q34.3 deletion. Her child, carrying the same imbalance, suffers from tetralogy of Fallot. To the best of our knowledge, this is the first reported case of cor triatriatum associated with deletion of the long arm of the chromosome 4; furthermore, the majority of patients with chromosome 4 long arm syndrome have de novo deletions and only few familial cases have been reported so far.
Collapse
|
37
|
Reho JJ, Shetty A, Dippold RP, Mahurkar A, Fisher SA. Unique gene program of rat small resistance mesenteric arteries as revealed by deep RNA sequencing. Physiol Rep 2015; 3:3/7/e12450. [PMID: 26156969 PMCID: PMC4552530 DOI: 10.14814/phy2.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deep sequencing of RNA samples from rat small mesenteric arteries (MA) and aorta (AO) identified common and unique features of their gene programs. ∼5% of mRNAs were quantitatively differentially expressed in MA versus AO. Unique transcriptional control in MA smooth muscle is suggested by the selective or enriched expression of transcription factors Nkx2-3, HAND2, and Tcf21 (Capsulin). Enrichment in AO of PPAR transcription factors and their target genes of mitochondrial function, lipid metabolism, and oxidative phosphorylation is consistent with slow (oxidative) tonic smooth muscle. In contrast MA was enriched in contractile and calcium channel mRNAs suggestive of components of fast (glycolytic) phasic smooth muscle. Myosin phosphatase regulatory subunit paralogs Mypt1 and p85 were expressed at similar levels, while smooth muscle MLCK was the only such kinase expressed, suggesting functional redundancy of the former but not the latter in accordance with mouse knockout studies. With regard to vaso-regulatory signals, purinergic receptors P2rx1 and P2rx5 were reciprocally expressed in MA versus AO, while the olfactory receptor Olr59 was enriched in MA. Alox15, which generates the EDHF HPETE, was enriched in MA while eNOS was equally expressed, consistent with the greater role of EDHF in the smaller arteries. mRNAs that were not expressed at a level consistent with impugned function include skeletal myogenic factors, IKK2, nonmuscle myosin, and Gnb3. This screening analysis of gene expression in the small mesenteric resistance arteries suggests testable hypotheses regarding unique aspects of small artery function in the regional control of blood flow.
Collapse
Affiliation(s)
- John J Reho
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland-Baltimore, Baltimore, Maryland, 21201
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland-Baltimore, Baltimore, Maryland, 21201
| | - Rachael P Dippold
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland-Baltimore, Baltimore, Maryland, 21201
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland-Baltimore, Baltimore, Maryland, 21201
| | - Steven A Fisher
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland-Baltimore, Baltimore, Maryland, 21201
| |
Collapse
|
38
|
Osterwalder M, Speziale D, Shoukry M, Mohan R, Ivanek R, Kohler M, Beisel C, Wen X, Scales SJ, Christoffels VM, Visel A, Lopez-Rios J, Zeller R. HAND2 targets define a network of transcriptional regulators that compartmentalize the early limb bud mesenchyme. Dev Cell 2014; 31:345-357. [PMID: 25453830 DOI: 10.1016/j.devcel.2014.09.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 08/29/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatiotemporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb, heart, and branchial arch development. Here, we identify the genomic regions enriched in HAND2 chromatin complexes from mouse embryos and limb buds. Then we analyze the HAND2 target CRMs in the genomic landscapes encoding transcriptional regulators required in early limb buds. HAND2 controls the expression of genes functioning in the proximal limb bud and orchestrates the establishment of anterior and posterior polarity of the nascent limb bud mesenchyme by impacting Gli3 and Tbx3 expression. TBX3 is required downstream of HAND2 to refine the posterior Gli3 expression boundary. Our analysis uncovers the transcriptional circuits that function in establishing distinct mesenchymal compartments downstream of HAND2 and upstream of SHH signaling.
Collapse
Affiliation(s)
- Marco Osterwalder
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Dario Speziale
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Malak Shoukry
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rajiv Mohan
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Robert Ivanek
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Manuel Kohler
- Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich, 4058 Basel, Switzerland
| | - Christian Beisel
- Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich, 4058 Basel, Switzerland
| | - Xiaohui Wen
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Suzie J Scales
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology, and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands
| | - Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Javier Lopez-Rios
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.
| |
Collapse
|
39
|
Li D, Ji L, Liu L, Liu Y, Hou H, Yu K, Sun Q, Zhao Z. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS One 2014; 9:e106318. [PMID: 25165856 PMCID: PMC4148428 DOI: 10.1371/journal.pone.0106318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 08/04/2014] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Ventricular septal defect (VSD), one of the most common types of congenital heart disease (CHD), results from a combination of environmental and genetic factors. Recent studies demonstrated that microRNAs (miRNAs) are involved in development of CHD. This study was to characterize the expression of miRNAs that might be involved in the development or reflect the consequences of VSD. METHODS MiRNA microarray analysis and reverse transcription-polymerase chain reaction (RT-PCR) were employed to determine the miRNA expression profile from 3 patients with VSD and 3 VSD-free controls. 3 target gene databases were employed to predict the target genes of differentially expressed miRNAs. miRNAs that were generally consensus across the three databases were selected and then independently validated using real time PCR in plasma samples from 20 VSD patients and 15 VSD-free controls. Target genes of validated 8 miRNAs were predicted using bioinformatic methods. RESULTS 36 differentially expressed miRNAs were found in the patients with VSD and the VSD-free controls. Compared with VSD-free controls, expression of 15 miRNAs were up-regulated and 21 miRNAs were downregulated in the VSD group. 15 miRNAs were selected based on database analysis results and expression levels of 8 miRNAs were validated. The results of the real time PCR were consistent with those of the microarray analysis. Gene ontology analysis indicated that the top target genes were mainly related to cardiac right ventricle morphogenesis. NOTCH1, HAND1, ZFPM2, and GATA3 were predicted as targets of hsa-let-7e-5p, hsa-miR-222-3p and hsa-miR-433. CONCLUSION We report for the first time the circulating miRNA profile for patients with VSD and showed that 7 miRNAs were downregulated and 1 upregulated when matched to VSD-free controls. Analysis revealed target genes involved in cardiac development were probably regulated by these miRNAs.
Collapse
Affiliation(s)
- Dong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, Shandong Province, China
- School of Public Health, Taishan Medical University, Tai’an, Shandong Province, China
| | - Long Ji
- School of Public Health, Taishan Medical University, Tai’an, Shandong Province, China
| | - Lianbo Liu
- Tai’an Children’s Hospital, Tai’an, Shandong Province, China
| | - Yizhi Liu
- School of Public Health, Taishan Medical University, Tai’an, Shandong Province, China
| | - Haifeng Hou
- School of Public Health, Taishan Medical University, Tai’an, Shandong Province, China
| | - Kunkun Yu
- School of Public Health, Taishan Medical University, Tai’an, Shandong Province, China
| | - Qiang Sun
- School of Public Health, Taishan Medical University, Tai’an, Shandong Province, China
| | - Zhongtang Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
40
|
Shindoh H, Okada H, Tsuzuki T, Nishigaki A, Kanzaki H. Requirement of heart and neural crest derivatives-expressed transcript 2 during decidualization of human endometrial stromal cells in vitro. Fertil Steril 2014; 101:1781-90.e1-5. [PMID: 24745730 DOI: 10.1016/j.fertnstert.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the role of heart and neural crest derivatives-expressed transcript 2 (HAND2) during decidualization of human endometrial stromal cells (ESCs). DESIGN In vitro experiment. SETTING Research laboratory. PATIENT(S) Twenty-six patients undergoing hysterectomy for benign reasons. INTERVENTION(S) ESCs were cultured for 12 days with HAND2 small interfering RNA (siRNA) or nonsilencing RNA during decidualization by medroxyprogesterone acetate (MPA) and E2. MAIN OUTCOME MEASURE(S) Decidualization was monitored by changes in cellular morphology and the expression of several decidual-specific genes. RESULT(S) HAND2 siRNA effectively suppressed HAND2 levels in ESCs after 12 days of E2 + MPA treatment. ESCs cultured with HAND2 siRNA retained a long fibroblast-like shape, whereas the cells cultured with control siRNA transformed into enlarged polygonal cells. Silencing of HAND2 expression significantly reduced connexin-43 involved in the morphologic changes. HAND2 silencing significantly reduced the mRNA levels of fibulin-1, prolactin, tissue inhibitor of metalloproteinase 3, interleukin-15, and forkhead box O1A (FOXO1A), but had no effect on the mRNA levels of dickkopf-1, serum glucocorticoid kinase 1, and insulin-like growth factor-binding protein 5. HAND2 siRNA effectively suppressed the levels of nuclear FOXO1A protein as a regulator of decidualization. CONCLUSION(S) These results suggest that HAND2 plays a key role in the regulation of progestin-induced decidualization of human ESCs.
Collapse
Affiliation(s)
- Hisayuu Shindoh
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan.
| | - Tomoko Tsuzuki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Akemi Nishigaki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hideharu Kanzaki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
41
|
Jiang Y, Habibollah S, Tilgner K, Collin J, Barta T, Al-Aama JY, Tesarov L, Hussain R, Trafford AW, Kirkwood G, Sernagor E, Eleftheriou CG, Przyborski S, Stojković M, Lako M, Keavney B, Armstrong L. An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Transl Med 2014; 3:416-23. [PMID: 24591732 DOI: 10.5966/sctm.2013-0105] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a serious congenital cardiovascular malformation resulting in hypoplasia or atresia of the left ventricle, ascending aorta, and aortic and mitral valves. Diminished flow through the left side of the heart is clearly a key contributor to the condition, but any myocardial susceptibility component is as yet undefined. Using recent advances in the field of induced pluripotent stem cells (iPSCs), we have been able to generate an iPSC model of HLHS malformation and characterize the properties of cardiac myocytes (CMs) differentiated from these and control-iPSC lines. Differentiation of HLHS-iPSCs to cardiac lineages revealed changes in the expression of key cardiac markers and a lower ability to give rise to beating clusters when compared with control-iPSCs and human embryonic stem cells (hESCs). HLHS-iPSC-derived CMs show a lower level of myofibrillar organization, persistence of a fetal gene expression pattern, and changes in commitment to ventricular versus atrial lineages, and they display different calcium transient patterns and electrophysiological responses to caffeine and β-adrenergic antagonists when compared with hESC- and control-iPSC-derived CMs, suggesting that alternative mechanisms to release calcium from intracellular stores such as the inositol trisphosphate receptor may exist in HLHS in addition to the ryanodine receptor thought to function in control-iPSC-derived CMs. Together our findings demonstrate that CMs derived from an HLHS patient demonstrate a number of marker expression and functional differences to hESC/control iPSC-derived CMs, thus providing some evidence that cardiomyocyte-specific factors may influence the risk of HLHS.
Collapse
Affiliation(s)
- Yan Jiang
- Institute of Genetic Medicine and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom; Soochow University, Su Zhou, China; Princess Al Jawhara Center of Excellence in Research, King Abdulaziz University, Jeddah, Saudi Arabia; Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic; Institute of Cardiovascular Science, Manchester Academic Health Science Centre, CoreTechnology Facility, Manchester, United Kingdom; School of Biomedical Sciences, University of Durham, Durham, United Kingdom; Department of Human Genetics, University of Kragujevac, Kragujevac, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Loss of Hand2 in a population of Periostin lineage cells results in pronounced bradycardia and neonatal death. Dev Biol 2014; 388:149-58. [PMID: 24565998 DOI: 10.1016/j.ydbio.2014.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/26/2014] [Accepted: 02/08/2014] [Indexed: 11/21/2022]
Abstract
The Periostin Cre (Postn-Cre) lineage includes endocardial and neural crest derived mesenchymal cells of the cardiac cushions, neural crest-derived components of the sympathetic and enteric nervous systems, and cardiac fibroblasts. In this study, we use the Postn-Cre transgenic allele to conditionally ablate Hand2 (H2CKO). We find that Postn-Cre H2CKOs die shortly after birth despite a lack of obvious cardiac structural defects. To ascertain the cause of death, we performed a detailed comparison of the Postn-Cre lineage and Hand2 expression at mid and late stages of embryonic development. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla as well as the sphenopalatine ganglia of the head. In both cases, Hand2 loss-of-function dramatically reduces expression of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Expression of the genes Tyrosine Hydroxylase (Th) and Phenylethanolamine N-methyltransferase (Pnmt), which also encode essential catecholaminergic enzymes, were severely reduced in postnatal adrenal glands. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit sinus bradycardia. In conjunction with the aforementioned gene expression analyses, these results strongly suggest that the observed postnatal lethality occurs due to a catecholamine deficiency and subsequent heart failure.
Collapse
|
43
|
Costamagna D, Quattrocelli M, Duelen R, Sahakyan V, Perini I, Palazzolo G, Sampaolesi M. Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity. Cell Mol Life Sci 2014; 71:615-27. [PMID: 23949444 PMCID: PMC11113798 DOI: 10.1007/s00018-013-1445-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023]
Abstract
Regenerative medicine for skeletal and cardiac muscles still constitutes a fascinating and ambitious frontier. In this perspective, understanding the possibilities of intrinsic cell plasticity, present in post-natal muscles, is vital to define and improve novel therapeutic strategies for acute and chronic diseases. In addition, many somatic stem cells are now crossing the boundaries of basic/translational research to enter the first clinical trials. However, it is still an open question whether a lineage switch between skeletal and cardiac adult myogenesis is possible. Therefore, this review focuses on resident somatic stem cells of post-natal skeletal and cardiac muscles and their plastic potential toward the two lineages. Furthermore, examples of myogenic lineage switch in adult stem cells are also reported and discussed.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Mattia Quattrocelli
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Vardine Sahakyan
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Ilaria Perini
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Giacomo Palazzolo
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Department of Development and Regeneration, Stem Cell Institute Leuven, Embryo and Stem Cell Biology, KU Leuven, Herestraat 49, O&N4, Bus 814, 3000 Leuven, Belgium
| |
Collapse
|
44
|
Transcriptional networks regulating the costamere, sarcomere, and other cytoskeletal structures in striated muscle. Cell Mol Life Sci 2013; 71:1641-56. [PMID: 24218011 DOI: 10.1007/s00018-013-1512-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
Abstract
Structural abnormalities in striated muscle have been observed in numerous transcription factor gain- and loss-of-function phenotypes in animal and cell culture model systems, indicating that transcription is important in regulating the cytoarchitecture. While most characterized cytoarchitectural defects are largely indistinguishable by histological and ultrastructural criteria, analysis of dysregulated gene expression in each mutant phenotype has yielded valuable information regarding specific structural gene programs that may be uniquely controlled by each of these transcription factors. Linking the formation and maintenance of each subcellular structure or subset of proteins within a cytoskeletal compartment to an overlapping but distinct transcription factor cohort may enable striated muscle to control cytoarchitectural function in an efficient and specific manner. Here we summarize the available evidence that connects transcription factors, those with established roles in striated muscle such as MEF2 and SRF, as well as other non-muscle transcription factors, to the regulation of a defined cytoskeletal structure. The notion that genes encoding proteins localized to the same subcellular compartment are coordinately transcriptionally regulated may prompt rationally designed approaches that target specific transcription factor pathways to correct structural defects in muscle disease.
Collapse
|
45
|
Sylva M, van den Hoff MJB, Moorman AFM. Development of the human heart. Am J Med Genet A 2013; 164A:1347-71. [PMID: 23633400 DOI: 10.1002/ajmg.a.35896] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/07/2013] [Indexed: 11/12/2022]
Abstract
Molecular and genetic studies around the turn of this century have revolutionized the field of cardiac development. We now know that the primary heart tube, as seen in the early embryo contains little more than the precursors for the left ventricle, whereas the precursor cells for the remainder of the cardiac components are continuously added, to both the venous and arterial pole of the heart tube, from a single center of growth outside the heart. While the primary heart tube is growing by addition of cells, it does not show significant cell proliferation, until chamber differentiation and expansion starts locally in the tube, by which the chambers balloon from the primary heart tube. The transcriptional repressors Tbx2 and Tbx3 locally repress the chamber-specific program of gene expression, by which these regions are allowed to differentiate into the distinct components of the conduction system. Molecular genetic lineage analyses have been extremely valuable to assess the distinct developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Despite the enormous advances in our knowledge on cardiac development, even the most common congenital cardiac malformations are only poorly understood. The challenge of the newly developed molecular genetic techniques is to unveil the basic gene regulatory networks underlying cardiac morphogenesis.
Collapse
Affiliation(s)
- Marc Sylva
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Cho H, Okada H, Tsuzuki T, Nishigaki A, Yasuda K, Kanzaki H. Progestin-induced heart and neural crest derivatives expressed transcript 2 is associated with fibulin-1 expression in human endometrial stromal cells. Fertil Steril 2012; 99:248-255.e2. [PMID: 23036802 DOI: 10.1016/j.fertnstert.2012.08.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate whether heart and neural crest derivatives expressed transcript 2 (HAND2) regulates fibulin-1 (FBLN1) expression during decidualization of human endometrial stromal cells (ESCs). DESIGN In vitro experiment. SETTING Research laboratory. PATIENT(S) Twenty-four patients undergoing hysterectomy for benign reasons. INTERVENTION(S) ESCs were cultured with various progestins (medroxyprogesterone acetate [MPA], norethisterone, levonorgestrel, dienogest, and P), E(2), dexamethasone, and/or 8-bromoadenosine 3', 5'-cyclic monophosphate (8-Br-cAMP). HAND2 and FBLN1 were silenced by small interfering RNA technology. MAIN OUTCOME MEASURE(S) HAND2 and FBLN1 expression levels were assessed by real-time polymerase chain reaction and Western blot analysis. RESULT(S) MPA or E(2) + MPA increased HAND2 mRNA levels in ESCs in a time- and dose-dependent manner, and this stimulatory effect was blocked by RU-486 (P receptor antagonist). HAND2 was increased by E(2) + MPA earlier than FBLN1. Simultaneous MPA and 8-Br-cAMP treatment synergistically enhanced HAND2 mRNA levels. P and all the progestins significantly increased HAND2 mRNA levels, whereas E(2), 8-Br-cAMP, or dexamethasone alone had no effect. Silencing of HAND2 expression significantly reduced FBLN1 expression, whereas FBLN1 silencing had no effect on HAND2 expression. CONCLUSION(S) These results suggest that progestin-induced HAND2 contributes to FBLN1 expression in human ESCs.
Collapse
Affiliation(s)
- Hisayuu Cho
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan.
| | - Tomoko Tsuzuki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Akemi Nishigaki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Katsuhiko Yasuda
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hideharu Kanzaki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
47
|
Kim KH, Rosen A, Bruneau BG, Hui CC, Backx PH. Iroquois homeodomain transcription factors in heart development and function. Circ Res 2012; 110:1513-24. [PMID: 22628575 DOI: 10.1161/circresaha.112.265041] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous cardiac transcription factors play overlapping roles in both the specification and proliferation of the cardiac tissues and chambers during heart development. It has become increasingly apparent that cardiac transcription factors also play critical roles in the regulation of expression of many functional genes in the prenatal and postnatal hearts. Accordingly, mutations of cardiac transcription factors cannot only result in congenital heart defects but also alter heart function thereby predisposing to heart disease and cardiac arrhythmias. In this review, we summarize the roles of Iroquois homeobox (Irx) family of transcription factors in heart development and function. In all, 6 Irx genes are expressed with distinct and overlapping patterns in the mammalian heart. Studies in several animal models demonstrate that Irx genes are important for the establishment of ventricular chamber properties, the ventricular conduction system, as well as heterogeneity of the ventricular repolarization. The molecular mechanisms by which Irx proteins regulate gene expression and the clinical relevance of Irx functions in the heart are discussed.
Collapse
Affiliation(s)
- Kyoung-Han Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
48
|
De Kock J, Najar M, Bolleyn J, Al Battah F, Rodrigues RM, Buyl K, Raicevic G, Govaere O, Branson S, Meganathan K, Gaspar JA, Roskams T, Sachinidis A, Lagneaux L, Vanhaecke T, Rogiers V. Mesoderm-derived stem cells: the link between the transcriptome and their differentiation potential. Stem Cells Dev 2012; 21:3309-23. [PMID: 22651824 DOI: 10.1089/scd.2011.0723] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human adult stem cells (hASCs) have become an attractive source for autologous cell transplantation, tissue engineering, developmental biology, and the generation of human-based alternative in vitro models. Among the 3 germ cell layers, the mesoderm is the origin of today's most widely used and characterized hASC populations. A variety of isolated nonhematopoietic mesoderm-derived stem cell populations exist, and all of them show important differences in terms of function, efficacy, and differentiation potential both in vivo and in vitro. To better understand whether the intrinsic properties of these cells contribute to the overall differentiation potential of hASCs, we compared the global gene expression profiles of 4 mesoderm-derived stem cell populations: human adipose tissue-derived stromal cells, human bone marrow-derived stromal cells (hBMSCs), human (fore)skin-derived precursor cells (hSKPs), and human Wharton's jelly-derived mesenchymal stem cells (hWJs). Significant differences in gene expression profiles were detected between distinct stem cell types. hSKPs predominantly expressed genes involved in neurogenesis, skin, and bone development, whereas hWJs and, to some extent, hBMSCs showed an increased expression of genes involved in cardiovascular and liver development. Interestingly, the observed differential gene expression of distinct hASCs could be linked to existing differentiation data in which hASCs were differentiated toward specific cell types. As such, our data suggest that the intrinsic gene expression of the undifferentiated stem cells has an important impact on their overall differentiation potential as well as their application in stem cell-based research. Yet, the factors that define these intrinsic properties remain to be determined.
Collapse
Affiliation(s)
- Joery De Kock
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
VanDusen NJ, Firulli AB. Twist factor regulation of non-cardiomyocyte cell lineages in the developing heart. Differentiation 2012; 84:79-88. [PMID: 22516205 DOI: 10.1016/j.diff.2012.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation and cardiac morphogenesis. During cardiogenesis members of the Twist-family of basic helix-loop-helix (bHLH) transcription factors play distinct roles within cardiac lineages such as the endocardium and extra-cardiac lineages such as the cardiac neural crest (cNCC) and epicardium. While the study of these cell populations is often eclipsed by that of cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarizes what is known regarding Twist-family bHLH function in extra-cardiac cell populations and the endocardium, with a focus on regulatory mechanisms, downstream targets, and expression profiles. Improving our understanding of the molecular pathways that Twist-family bHLH factors mediate in these lineages will be necessary to ascertain how their dysfunction leads to congenital disease and adult pathologies such as myocardial infarctions and cardiac fibroblast induced fibrosis. Indeed, this knowledge will prove to be critical to clinicians seeking to improve current treatments.
Collapse
Affiliation(s)
- Nathan J VanDusen
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
50
|
el-Fiky SM, Kolkaila AM, Dawd DS, Wahab RM. Histochemical aspects of hydatidiform mole and choriocarcinoma. Acta Histochem 1974; 64:436-48. [PMID: 4134946 DOI: 10.1016/j.jacc.2014.04.056] [Citation(s) in RCA: 86] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/31/2014] [Accepted: 04/30/2014] [Indexed: 01/13/2023]
|