1
|
Zabrodska E, Kvasilova A, Sedmera D, Olejnickova V. Electrical remodeling of atrioventricular junction: a study on retrogradely perfused chick embryonic heart. Am J Physiol Heart Circ Physiol 2024; 327:H555-H564. [PMID: 39028286 PMCID: PMC11427115 DOI: 10.1152/ajpheart.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Atrioventricular (AV) accessory pathways (APs) provide additional electrical connections between the atria and ventricles, resulting in severe electrical disturbances. It is generally accepted that APs originate in the altered annulus fibrosus maturation in the late prenatal and perinatal period. However, current experimental methods cannot address their development in specific locations around the annulus fibrosus because of the inaccessibility of late fetal hearts for electrophysiological investigation under physiological conditions. In this study, we describe an approach for optical mapping of the retrogradely perfused chick heart in the last third of the incubation period. This system showed stability for electrophysiological measurement for several hours. This feature allowed analysis of the number and functionality of the APs separately in each clinically relevant position. Under physiological conditions, we also recorded the shortening of the AV delay with annulus fibrosus maturation and analyzed ventricular activation patterns after conduction through APs at specific locations. We observed a gradual regression of AP with an area-specific rate (left-sided APs disappeared first). The results also revealed a sudden drop in the number of active APs between embryonic days 16 and 18. Accessory myocardial AV connections were histologically documented in all positions around the annulus fibrosus even after hatching. The fact that no electrically active AP was present at this stage highlights the necessity of electrophysiological evaluation of accessory atrioventricular connections in studying AP formation.NEW & NOTEWORTHY We present the use of retrograde perfusion and optical mapping to investigate, for the first time, the regression of accessory pathways during annulus fibrosus maturation, separately examining each clinically relevant location. The system enables measurements under physiological conditions and demonstrates long-lasting stability compared with other approaches. This study offers applications of the model to investigate electrical and/or functional development in late embryonic development without concern about heart viability.
Collapse
Affiliation(s)
- Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cell Mol Life Sci 2021; 78:6669-6687. [PMID: 34557935 PMCID: PMC8558220 DOI: 10.1007/s00018-021-03939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kar-Lai Poon
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore , Singapore.,Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, USA
| | - Shamba S Mondal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michał Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | - Thomas Brand
- Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, Faculty of Medicine, and Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Rivaud MR, Blok M, Jongbloed MRM, Boukens BJ. How Cardiac Embryology Translates into Clinical Arrhythmias. J Cardiovasc Dev Dis 2021; 8:jcdd8060070. [PMID: 34199178 PMCID: PMC8231901 DOI: 10.3390/jcdd8060070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
The electrophysiological signatures of the myocardium in cardiac structures, such as the atrioventricular node, pulmonary veins or the right ventricular outflow tract, are established during development by the spatial and temporal expression of transcription factors that guide expression of specific ion channels. Genome-wide association studies have shown that small variations in genetic regions are key to the expression of these transcription factors and thereby modulate the electrical function of the heart. Moreover, mutations in these factors are found in arrhythmogenic pathologies such as congenital atrioventricular block, as well as in specific forms of atrial fibrillation and ventricular tachycardia. In this review, we discuss the developmental origin of distinct electrophysiological structures in the heart and their involvement in cardiac arrhythmias.
Collapse
Affiliation(s)
- Mathilde R. Rivaud
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
| | - Michiel Blok
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
| | - Monique R. M. Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bastiaan J. Boukens
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-566-4659
| |
Collapse
|
4
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
5
|
Bhakta M, Padanad MS, Harris JP, Lubczyk C, Amatruda JF, Munshi NV. pouC Regulates Expression of bmp4 During Atrioventricular Canal Formation in Zebrafish. Dev Dyn 2018; 248:173-188. [PMID: 30444277 DOI: 10.1002/dvdy.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Many human gene mutations have been linked to congenital heart disease (CHD), yet CHD remains a major health issue worldwide due in part to an incomplete understanding of the molecular basis for cardiac malformation. RESULTS Here we identify the orthologous mouse Pou6f1 and zebrafish pouC as POU homeodomain transcription factors enriched in the developing heart. We find that pouC is a multi-functional transcriptional regulator containing separable activation, repression, protein-protein interaction, and DNA binding domains. Using zebrafish heart development as a model system, we demonstrate that pouC knockdown impairs cardiac morphogenesis and affects cardiovascular function. We also find that levels of pouC expression must be fine-tuned to enable proper heart formation. At the cellular level, we demonstrate that pouC knockdown disrupts atrioventricular canal (AVC) cardiomyocyte maintenance, although chamber myocyte specification remains intact. Mechanistically, we show that pouC binds a bmp4 intronic regulatory element to mediate transcriptional activation. CONCLUSIONS Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minoti Bhakta
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Mahesh S Padanad
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - John P Harris
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Christina Lubczyk
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - James F Amatruda
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Nikhil V Munshi
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas.,Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Hasdemir C, Juang JJM, Kose S, Kocabas U, Orman MN, Payzin S, Sahin H, Celen C, Ozcan EE, Chen CYJ, Gunduz R, Turan OE, Senol O, Burashnikov E, Antzelevitch C. Coexistence of atrioventricular accessory pathways and drug-induced type 1 Brugada pattern. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2018; 41:1078-1092. [PMID: 29953624 DOI: 10.1111/pace.13414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Atrial arrhythmias, particularly atrioventricular nodal reentrant tachycardia, can coexist with drug-induced type 1 Brugada electrocardiogram (ECG) pattern (DI-Type1-BrP). The present study was designed to determine the prevalence of DI-Type1-BrP in patients with atrioventricular accessory pathways (AV-APs) and to investigate the clinical, electrocardiographic, electrophysiologic, and genetic characteristics of these patients. METHODS One-hundred twenty-four consecutive cases of AV-APs and 84 controls underwent an ajmaline challenge test to unmask DI-Type1-BrP. Genetic screening and analysis was performed in 55 of the cases (19 with and 36 without DI-Type1-BrP). RESULTS Patients with AV-APs were significantly more likely than controls to have a Type1-BrP unmasked (16.1 vs 4.8%, P = 0.012). At baseline, patients with DI-Type1-BrP had higher prevalence of chest pain, QR/rSr' pattern in V1 and QRS notching/slurring in V2 and aVL during preexcitation, rSr' pattern in V1 -V2 , and QRS notching/slurring in aVL during orthodromic atrioventricular reentrant tachycardia (AVRT) compared to patients without DI-Type1-BrP. Abnormal QRS configuration (QRS notching/slurring and/or fragmentation) in V2 during preexcitation was present in all patients with DI-Type1 BrP. The prevalence of spontaneous preexcited atrial fibrillation (AF) and history of AF were similar (15% vs 18.3%, P = 0.726) in patients with and without DI-Type1-BrP, respectively. The prevalence of mutations in Brugada-susceptibility genes was higher (36.8% vs 8.3%, P = 0.02) in patients with DI-Type1-BrP compared to patients without DI-Type1-BrP. CONCLUSIONS DI-Type1-BrP is relatively common in patients with AV-APs. We identify 12-lead ECG characteristics during preexcitation and orthodromic AVRT that point to an underlying type1-BrP, portending an increased probability for development of malignant arrhythmias.
Collapse
Affiliation(s)
- Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | | | | | - Umut Kocabas
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Mehmet N Orman
- Department of Biostatistics and Medical Informatics, Ege University School of Medicine, Izmir, Turkey
| | - Serdar Payzin
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Hatice Sahin
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Candan Celen
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Emin E Ozcan
- Department of Cardiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ching-Yu Julius Chen
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.,Lankenau Heart Institute, Wynnewood, PA, USA.,Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Carmona R, Ariza L, Cañete A, Muñoz-Chápuli R. Comparative developmental biology of the cardiac inflow tract. J Mol Cell Cardiol 2018; 116:155-164. [PMID: 29452155 DOI: 10.1016/j.yjmcc.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 02/03/2023]
Abstract
The vertebrate heart receives the blood through the cardiac inflow tract. This area has experienced profound changes along the evolution of vertebrates; changes that have a reflection in the cardiac ontogeny. The development of the inflow tract involves dynamic changes due to the progressive addition of tissue derived from the secondary heart field. The inflow tract is the site where oxygenated blood coming from lungs is received separately from the systemic return, where the cardiac pacemaker is established and where the proepicardium develops. Differential cell migration towards the inflow tract breaks the symmetry of the primary heart tube and determines the direction of the cardiac looping. In air-breathing vertebrates, an inflow tract reorganization is essential to keep separate blood flows from systemic and pulmonary returns. Finally, the sinus venosus endocardium has recently been recognized as playing a role in the constitution of the coronary vasculature. Due to this developmental complexity, congenital anomalies of the inflow tract can cause severe cardiac diseases. We aimed to review the recent literature on the cellular and molecular mechanisms that regulate the morphogenesis of the cardiac inflow tract, together with comparative and evolutionary details, thus providing a basis for a better understanding of these mechanisms.
Collapse
Affiliation(s)
- Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Laura Ariza
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), 29071 Málaga (Spain), Spain.
| |
Collapse
|
8
|
Watanabe M, Rollins AM, Polo-Parada L, Ma P, Gu S, Jenkins MW. Probing the Electrophysiology of the Developing Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3010010. [PMID: 29367561 PMCID: PMC5715694 DOI: 10.3390/jcdd3010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes.
Collapse
Affiliation(s)
- Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65201, USA.
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Sánchez O, Domínguez C, Ruiz A, Ribera I, Alijotas J, Cabero L, Carreras E, Llurba E. Angiogenic Gene Expression in Down Syndrome Fetal Hearts. Fetal Diagn Ther 2015; 40:21-7. [PMID: 26513650 DOI: 10.1159/000441356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Forty percent of Down syndrome (DS) fetuses have congenital heart defects (CHD). An abnormal angiogenic environment has been described in euploid fetuses with CHD. However, the underlying pathophysiologic pathway that contributes to CHD in DS remains unknown. The objective was to compare the expression of angiogenic factors and chronic hypoxia genes in heart tissue from DS and euploid fetuses with and without CHD. METHODS The gene expression profile was determined by real-time PCR quantification in heart tissue from 33 fetuses with DS, 23 euploid fetuses with CHD and 23 control fetuses. RESULTS Angiogenic factors mRNA expression was significantly increased in the DS group compared to the controls (soluble fms-like tyrosine kinase-1, 81%, p = 0.007; vascular endothelial growth factor A, 57%, p = 0.006, and placental growth factor, 32%, p = 0.0227). Significant increases in the transcript level of hypoxia-inducible factor-2α and heme oxygenase 1 were also observed in the DS group compared to the controls. The expression of angiogenic factors was similar in DS fetuses and CHD euploid fetuses with CHD. CONCLUSION Abnormal angiogenesis was detected in the hearts of DS fetuses with and without CHD. Our results suggest that DS determines an intrinsically angiogenic impairment that may be present in the fetal heart.
Collapse
Affiliation(s)
- Olga Sánchez
- Maternal and Child Health and Development Network II (SAMID II) RD12/0026, Institute of Health Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. Cell Mol Life Sci 2015; 72:3871-81. [PMID: 26126786 PMCID: PMC4575685 DOI: 10.1007/s00018-015-1974-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Heart progenitor cells differentiate into various cell types including pacemaker and working cardiomyocytes. Cell-type specific gene expression is achieved by combinatorial interactions between tissue-specific transcription factors (TFs), co-factors, and chromatin remodelers and DNA binding elements in regulatory regions. Dysfunction of these transcriptional networks may result in congenital heart defects. Functional analysis of the regulatory DNA sequences has contributed substantially to the identification of the transcriptional network components and combinatorial interactions regulating the tissue-specific gene programs. GATA TFs have been identified as central players in these networks. In particular, GATA binding elements have emerged as a platform to recruit broadly active histone modification enzymes and cell-type-specific co-factors to drive cell-type-specific gene programs. Here, we discuss the role of GATA factors in cell fate decisions and differentiation in the developing heart.
Collapse
|
11
|
Grant EK, Berul CI. Transcatheter therapies for arrhythmias in patients with complex congenital heart disease. Interv Cardiol 2015. [DOI: 10.2217/ica.15.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nat Commun 2014; 5:3680. [PMID: 24770533 PMCID: PMC4015328 DOI: 10.1038/ncomms4680] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
The embryonic vertebrate heart tube develops an atrioventricular canal that divides the atrial and ventricular chambers, forms atrioventricular conduction tissue and organizes valve development. Here we assess the transcriptional mechanism underlying this localized differentiation process. We show that atrioventricular canal-specific enhancers are GATA-binding site-dependent and act as switches that repress gene activity in the chambers. We find that atrioventricular canal-specific gene loci are enriched in H3K27ac, a marker of active enhancers, in atrioventricular canal tissue and depleted in H3K27ac in chamber tissue. In the atrioventricular canal, Gata4 activates the enhancers in synergy with Bmp2/Smad signalling, leading to H3K27 acetylation. In contrast, in chambers, Gata4 cooperates with pan-cardiac Hdac1 and Hdac2 and chamber-specific Hey1 and Hey2, leading to H3K27 deacetylation and repression. We conclude that atrioventricular canal-specific enhancers are platforms integrating cardiac transcription factors, broadly active histone modification enzymes and localized co-factors to drive atrioventricular canal-specific gene activity. The atrioventricular canal partitions the developing vertebrate heart. Here, the authors show that the cardiac transcription factor Gata4 together with histone modification enzymes and localized co-factors binds atrioventricular canal-specific enhancers, thereby repressing gene activity in the cardiac chambers.
Collapse
|
13
|
Al-Biltagi MA. Echocardiography in children with Down syndrome. World J Clin Pediatr 2013; 2:36-45. [PMID: 25254173 PMCID: PMC4145652 DOI: 10.5409/wjcp.v2.i4.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease is a common problem in children with Down syndrome (DS). Echocardiography plays an important role in the detection of both structural and functional abnormalities in this group of patients. Fetal echocardiography can help in the early recognition of DS by detecting soft markers of DS, but its main role is to define the exact nature of the suspected cardiac problem in the fetus. Postnatal echocardiography is mandatory in the first month of life for all neonates with DS. It is also indicated before any cardiac surgery and for serial follow-up after cardiac surgery. In this article, we discuss the types and mechanism of cardiac abnormalities in DS children and the role of both fetal and postnatal echocardiography in the detection of these abnormalities.
Collapse
|
14
|
Al-Biltagi MA. Echocardiography in children with Down syndrome. World J Clin Pediatr 2013. [PMID: 25254173 DOI: 10.5409/wjcp.v2.i4.36.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital heart disease is a common problem in children with Down syndrome (DS). Echocardiography plays an important role in the detection of both structural and functional abnormalities in this group of patients. Fetal echocardiography can help in the early recognition of DS by detecting soft markers of DS, but its main role is to define the exact nature of the suspected cardiac problem in the fetus. Postnatal echocardiography is mandatory in the first month of life for all neonates with DS. It is also indicated before any cardiac surgery and for serial follow-up after cardiac surgery. In this article, we discuss the types and mechanism of cardiac abnormalities in DS children and the role of both fetal and postnatal echocardiography in the detection of these abnormalities.
Collapse
Affiliation(s)
- Mohammed A Al-Biltagi
- Mohammed A Al-Biltagi, Paediatric Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
15
|
Boukens BJ, Janse MJ. Brief history of arrhythmia in the WPW syndrome - the contribution of George Ralph Mines. J Physiol 2013; 591:4067-71. [PMID: 23858007 PMCID: PMC3779102 DOI: 10.1113/jphysiol.2013.259598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/09/2013] [Indexed: 11/08/2022] Open
Abstract
George Ralph Mines studied the basic principles of reentry and published his data in The Journal of Physiology in 1913. Exactly 100 years later we discuss his first electrophysiological experiments and how his results lead to the insight that was the basis for the treatment of the clinical arrhythmias seen in Wolff-Parkinson-White syndrome.
Collapse
Affiliation(s)
- Bas J Boukens
- B. J. D. Boukens: Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, St Louis, MO 63119, USA.
| | | |
Collapse
|
16
|
Rosenquist TH. Folate, Homocysteine and the Cardiac Neural Crest. Dev Dyn 2013; 242:201-18. [DOI: 10.1002/dvdy.23922] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Affiliation(s)
- Thomas H. Rosenquist
- Department of Genetics; Cell Biology and Anatomy; University of Nebraska Medical Center; Omaha; Nebraska
| |
Collapse
|
17
|
Evolution and development of the building plan of the vertebrate heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:783-94. [PMID: 23063530 DOI: 10.1016/j.bbamcr.2012.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
Early cardiac development involves the formation of a heart tube, looping of the tube and formation of chambers. These processes are highly similar among all vertebrates, which suggest the existence of evolutionary conservation of the building plan of the heart. From the jawless lampreys to man, T-box transcription factors like Tbx5 and Tbx20 are fundamental for heart formation, whereas Tbx2 and Tbx3 repress chamber formation on the sinu-atrial and atrioventricular borders. Also, electrocardiograms from different vertebrates are alike, even though the fish heart only has two chambers whereas the mammalian heart has four chambers divided by septa and in addition has much higher heart rates. We conclude that most features of the high-performance hearts of mammals and birds can be traced back to less developed traits in the hearts of ectothermic vertebrates. This article is part of a Special Issue entitled: Cardiomyocyte biology: Cardiac pathways of differentiation, metabolism and contraction.
Collapse
|
18
|
Ripoll C, Rivals I, Ait Yahya-Graison E, Dauphinot L, Paly E, Mircher C, Ravel A, Grattau Y, Bléhaut H, Mégarbane A, Dembour G, de Fréminville B, Touraine R, Créau N, Potier MC, Delabar JM. Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways. PLoS One 2012; 7:e41616. [PMID: 22912673 PMCID: PMC3415405 DOI: 10.1371/journal.pone.0041616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022] Open
Abstract
Forty percent of people with Down syndrome exhibit heart defects, most often an atrioventricular septal defect (AVSD) and less frequently a ventricular septal defect (VSD) or atrial septal defect (ASD). Lymphoblastoid cell lines (LCLs) were established from lymphocytes of individuals with trisomy 21, the chromosomal abnormality causing Down syndrome. Gene expression profiles generated from DNA microarrays of LCLs from individuals without heart defects (CHD−; n = 22) were compared with those of LCLs from patients with cardiac malformations (CHD+; n = 21). After quantile normalization, principal component analysis revealed that AVSD carriers could be distinguished from a combined group of ASD or VSD (ASD+VSD) carriers. From 9,758 expressed genes, we identified 889 and 1,016 genes differentially expressed between CHD− and AVSD and CHD− and ASD+VSD, respectively, with only 119 genes in common. A specific chromosomal enrichment was found in each group of affected genes. Among the differentially expressed genes, more than 65% are expressed in human or mouse fetal heart tissues (GEO dataset). Additional LCLs from new groups of AVSD and ASD+VSD patients were analyzed by quantitative PCR; observed expression ratios were similar to microarray results. Analysis of GO categories revealed enrichment of genes from pathways regulating clathrin-mediated endocytosis in patients with AVSD and of genes involved in semaphorin-plexin-driven cardiogenesis and the formation of cytoplasmic microtubules in patients with ASD-VSD. A pathway-oriented search revealed enrichment in the ciliome for both groups and a specific enrichment in Hedgehog and Jak-stat pathways among ASD+VSD patients. These genes or related pathways are therefore potentially involved in normal cardiogenesis as well as in cardiac malformations observed in individuals with trisomy 21.
Collapse
Affiliation(s)
- Clémentine Ripoll
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI ParisTech, Paris, France
| | - Emilie Ait Yahya-Graison
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Luce Dauphinot
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Evelyne Paly
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Clothilde Mircher
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Aimé Ravel
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Yann Grattau
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Henri Bléhaut
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - André Mégarbane
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | - Guy Dembour
- Cardiologie pédiatrique, Cliniques Universitaires St Luc, Bruxelles, Belgique
| | | | - Renaud Touraine
- Service de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Marie Claude Potier
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean Maurice Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
- * E-mail:
| |
Collapse
|
19
|
de la Pompa JL, Epstein JA. Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell 2012; 22:244-54. [PMID: 22340493 DOI: 10.1016/j.devcel.2012.01.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2012] [Indexed: 01/08/2023]
Abstract
The Notch pathway is a crucial cell-fate regulator in the developing heart. Attention in the past centered on Notch function in cardiomyocytes. However, recent advances demonstrate that region-specific endocardial Notch activity orchestrates the patterning and morphogenesis of cardiac chambers and valves through regulatory interaction with multiple myocardial and neural crest signals. Notch also regulates cardiomyocyte proliferation and differentiation during ventricular chamber development and is required for coronary vessel specification. Here, we review these data and highlight disease connections, including evidence that Notch-Hey-Bmp2 interplay impacts adult heart valve disease and that Notch contributes to cardiac arrhythmia and pre-excitation syndromes.
Collapse
Affiliation(s)
- José Luis de la Pompa
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, E-28029 Madrid, Spain.
| | | |
Collapse
|
20
|
Wessels A, van den Hoff MJB, Adamo RF, Phelps AL, Lockhart MM, Sauls K, Briggs LE, Norris RA, van Wijk B, Perez-Pomares JM, Dettman RW, Burch JBE. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol 2012; 366:111-24. [PMID: 22546693 DOI: 10.1016/j.ydbio.2012.04.020] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 12/27/2022]
Abstract
The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart, we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12. The migration of epicardially derived fibroblasts toward the interface between compact and trabecular myocardium is completed around ED14. Remarkably, epicardially derived fibroblasts do not migrate into the trabecular myocardium until after ED17. Migration of EPDCs into the atrioventricular cushion mesenchyme commences around ED12. As development progresses, the number of EPDCs increases significantly, specifically in the leaflets which derive from the lateral atrioventricular cushions. In these developing leaflets the epicardially derived fibroblasts eventually largely replace the endocardially derived cells. Importantly, the contribution of EPDCs to the leaflets derived from the major AV cushions is very limited. The differential contribution of EPDCs to the various leaflets of the atrioventricular valves provides a new paradigm in valve development and could lead to new insights into the pathogenesis of abnormalities that preferentially affect individual components of this region of the heart. The notion that there is a significant difference in the contribution of epicardially and endocardially derived cells to the individual leaflets of the atrioventricular valves has also important pragmatic consequences for the use of endocardial and epicardial cre-mouse models in studies of heart development.
Collapse
Affiliation(s)
- Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|