1
|
Swanson MA, Jiang H, Busquet N, Carlsen J, Brindley C, Benke TA, Van Hove RA, Friederich MW, MacLean KN, Mesches MH, Van Hove JLK. Deep postnatal phenotyping of a new mouse model of nonketotic hyperglycinemia. J Inherit Metab Dis 2024; 47:971-990. [PMID: 38840294 PMCID: PMC11563928 DOI: 10.1002/jimd.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Nonketotic hyperglycinemia due to deficient glycine cleavage enzyme activity causes a severe neonatal epileptic encephalopathy. Current therapies based on mitigating glycine excess have only limited impact. An animal model with postnatal phenotyping is needed to explore new therapeutic approaches. We developed a Gldc p.Ala394Val mutant model and bred it to congenic status in two colonies on C57Bl/6J (B6) and J129X1/SvJ (J129) backgrounds. Mutant mice had reduced P-protein and enzyme activity indicating a hypomorphic mutant. Glycine levels were increased in blood and brain regions, exacerbated by dietary glycine, with higher levels in female than male J129 mice. Birth defects were more prevalent in mutant B6 than J129 mice, and hydrocephalus was more frequent in B6 (40%) compared to J129 (none). The hydrocephalus rate was increased by postnatal glycine challenge in B6 mice, more so when delivered from the first neonatal week than from the fourth. Mutant mice had reduced weight gain following weaning until the eighth postnatal week, which was exacerbated by glycine loading. The electrographic spike rate was increased in mutant mice following glycine loading, but no seizures were observed. The alpha/delta band intensity ratio was decreased in the left cortex in female J129 mice, which were less active in an open field test and explored less in a Y-maze, suggesting an encephalopathic effect. Mutant mice showed no evidence of memory dysfunction. This partial recapitulation of human symptoms and biochemistry will facilitate the evaluation of new therapeutic approaches with an early postnatal time window likely most effective.
Collapse
Affiliation(s)
- Michael A Swanson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hua Jiang
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicolas Busquet
- NeuroTechnology Center, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Carlsen
- NeuroTechnology Center, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Connie Brindley
- NeuroTechnology Center, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tim A Benke
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Roxanne A Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth N MacLean
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael H Mesches
- NeuroTechnology Center, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Swanson MA, Jiang H, Busquet N, Carlsen J, Brindley C, Benke TA, Van Hove RA, Friederich MW, MacLean KN, Mesches MH, Van Hove JLK. Deep postnatal phenotyping of a new mouse model of nonketotic hyperglycinemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586818. [PMID: 38586005 PMCID: PMC10996592 DOI: 10.1101/2024.03.26.586818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nonketotic hyperglycinemia due to deficient glycine cleavage enzyme activity causes a severe neonatal epileptic encephalopathy. Current therapies based on mitigating glycine excess have only limited impact. An animal model with postnatal phenotyping is needed to explore new therapeutic approaches. We developed a Gldc p.Ala394Val mutant model and bred it to congenic status in 2 colonies on C57Bl/6J (B6) and J129X1/SvJ (J129) backgrounds. Mutant mice had reduced P-protein and enzyme activity indicating a hypomorphic mutant. Glycine levels were increased in blood and brain regions, exacerbated by dietary glycine, with higher levels in female than male J129 mice. Birth defects were more prevalent in mutant B6 than J129 mice, and hydrocephalus was more frequent in B6 (40%) compared to J129 (none). The hydrocephalus rate was increased by postnatal glycine challenge in B6 mice, more so when delivered from the first neonatal week than from the fourth. Mutant mice had reduced weight gain following weaning until the eighth postnatal week, which was exacerbated by glycine loading. The electrographic spike rate was increased in mutant mice following glycine loading, but no seizures were observed. The alpha/delta band intensity ratio was decreased in the left cortex in female J129 mice, which were less active in an open field test and explored less in a Y-maze, suggesting an encephalopathic effect. Mutant mice showed no evidence of memory dysfunction. This partial recapitulation of human symptoms and biochemistry will facilitate the evaluation of new therapeutic approaches with an early postnatal time window likely most effective. Take home message A mouse model of nonketotic hyperglycinemia is described that shows postnatal abnormalities in glycine levels, neural tube defects, body weight, electroencephalographic recordings, and in activity in young mice making it amenable for the evaluation of novel treatment interventions. Author contributions Study concept and design: JVH, MHM, NB, KNMAnimal study data: MAS, HJ, NB, MHM, JC, CBBiochemical and genetic studies: MAS, RAVH, MWFStatistical analysis: NB, JVHFirst draft writing: JVH, NB, MHMCritical rewriting: MAS, NB, MHM, TAB, JC, MWF, KNM, JVHFinal responsibility, guarantor, and communicating author: JVH. Competing interest statement The University of Colorado (JVH, MS, KNM, HJ) has the intention to file Intellectual property protection for certain biochemical treatments of NKH. Otherwise, the authors have stated that they had no interests that might be perceived as posing a conflict or bias to this subject matter. Funding support Financial support is acknowledged form the NKH Crusaders, Brodyn's Friends, Nora Jane Almany Foundation, the Dickens Family Foundation, the Lucas John Foundation, Les Petits Bourdons, Joseph's Fund, the Barnett Family, Maud & Vic Foundation, Lucy's BEElievers fund, Hope for NKH, Madi's Mission NKH fund, and from Dr. and Ms. Shaw, and the University of Colorado Foundation NKH research fund. The study was supported by a grant (CNS-X-19-103) from the University of Colorado School of Medicine and the Colorado Clinical Translational Science Institute, which is supported by NIH/NCATS Colorado CTSA Grant Number UL1 TR002535. Contents are the authors' sole responsibility and do not necessarily represent official NIH views. All funding sources had no role in the design or execution of the study, the interpretation of data, or the writing of the study. Ethics approval on Laboratory Animal Studies Mouse studies were carried out with approval from the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus (IACUC# 00413). Data sharing statement The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
|
3
|
Zheng Y, Cantley LC. Toward a better understanding of folate metabolism in health and disease. J Exp Med 2019; 216:253-266. [PMID: 30587505 PMCID: PMC6363433 DOI: 10.1084/jem.20181965] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Folate metabolism is crucial for many biochemical processes, including purine and thymidine monophosphate (dTMP) biosynthesis, mitochondrial protein translation, and methionine regeneration. These biochemical processes in turn support critical cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. Not surprisingly, abnormal folate metabolism has been causally linked with a myriad of diseases. In this review, we provide a historical perspective, delve into folate chemistry that is often overlooked, and point out various missing links and underdeveloped areas in folate metabolism for future exploration.
Collapse
Affiliation(s)
- Yuxiang Zheng
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Lewis C Cantley
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
4
|
Zhang H, Guo Y, Gu H, Wei X, Ma W, Liu D, Yu K, Luo W, Ma L, Liu Y, Xue J, Huang J, Wang Y, Jia S, Dong N, Wang H, Yuan Z. TRIM4 is associated with neural tube defects based on genome-wide DNA methylation analysis. Clin Epigenetics 2019; 11:17. [PMID: 30709423 PMCID: PMC6359777 DOI: 10.1186/s13148-018-0603-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are complex abnormalities associated with gene-environment interactions. The underlying cause has not been determined. METHODS Spinal cord tissues from cases with NTDs and healthy controls were collected. Methylation patterns between cases and normal individuals were compared using 450K Infinium Methylation BeadChip Illumina. DNA methylation analysis by pyrosequencing (PyroMark Q96) and mRNA and protein expression were analyzed using real-time quantitative PCR and Western blotting, respectively. Next-generation and Sanger sequencing were used to determine genetic variants in the target genes. RESULTS Spinal cord tissues from cases with NTDs had more hypomethylated than hypermethylated genes. Further evaluation showed that the exon 1 region of TRIM4 was hypomethylated, and TRIM4 mRNA and protein levels were significantly increased in NTDs compared to controls. A rare missense variant (rs76665876) in TRIM4 was found in 3 of the 14 NTD cases but was not related to TRIM4 expression. TRIM4 mRNA levels were significantly increased in cases with hypomethylation and without the rs76665876 variant. CONCLUSION These findings suggest that spinal cord tissues in cases with NTDs had a different genome-wide methylation pattern compared to controls. Abnormal methylation patterns in TRIM4 in immunity pathways might be involved in NTD pathogenesis. Genetic variants in TRIM4 genes only slightly contribute to the etiology of human NTDs.
Collapse
Affiliation(s)
- Henan Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yi Guo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Kun Yu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ling Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jia Xue
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Jieting Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yanfu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Naixuan Dong
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
5
|
Fang Y, Zhang R, Zhi X, Zhao L, Cao L, Wang Y, Cai C. Association of main folate metabolic pathway gene polymorphisms with neural tube defects in Han population of Northern China. Childs Nerv Syst 2018; 34:725-729. [PMID: 29392422 DOI: 10.1007/s00381-018-3730-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Neural tube defects (NTDs) are one of the most prevalent and the most severe congenital malformations worldwide. Studies have confirmed that folic acid supplementation could effectively reduce NTDs risk, but the genetic mechanism remains unclear. In this study, we explored association of single nucleotide polymorphisms (SNP) within folate metabolic pathway genes with NTDs in Han population of Northern China. METHODS We performed a case-control study to compare genotype and allele distributions of SNPs in 152 patients with NTDs and 169 controls. A total of 16 SNPs within five genes were genotyped by the Sequenom MassARRAY assay. RESULTS Our results indicated that three SNPs associated significantly with NTDs (P<0.05). For rs2236225 within MTHFD1, children with allele A or genotype AA had a high NTDs risk (OR=1.500, 95%CI=1.061~2.120; OR=2.862, 95%CI=1.022~8.015, respectively). For rs1801133 within MTHFR, NTDs risk markedly increased in patients with allele T or genotype TT (OR=1.552, 95%CI=1.130~2.131; OR=2.344, 95%CI=1.233~4.457, respectively). For rs1801394 within MTRR, children carrying allele G and genotype GG had a higher NTDs risk (OR=1.533, 95%CI=1.102~2.188; OR=2.355, 95%CI=1.044~5.312, respectively). CONCLUSIONS Our results suggest that rs2236225 of MTHFD1 gene, rs1801133 of MTHFR gene and rs1801394 of MTRR gene were associated with NTDs in Han population of Northern China.
Collapse
Affiliation(s)
- Yulian Fang
- Institute of Pediatrics, Tianjin Children's Hospital, Beichen District, Tianjin, China
| | - Ruiping Zhang
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Xiufang Zhi
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Linsheng Zhao
- Department of Pathology, Tianjin Children's Hospital, Beichen District, Tianjin, China
| | - Lirong Cao
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Yizheng Wang
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Chunquan Cai
- Department of Neurosurgery, Tianjin Children's Hospital, Beichen District, Tianjin, China.
| |
Collapse
|
6
|
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations of the central nervous system. The etiology is complex, with both genetic and environmental factors having important contributions. Researchers have known for the past two decades that maternal periconceptional use of the B vitamin folic acid can prevent many NTDs. Though this finding is arguably one of the most important recent discoveries in birth defect research, the mechanism by which folic acid exerts this benefit remains unknown. Research to date has focused on the hypothesis that an underlying genetic susceptibility interacts with folate-sensitive metabolic processes at the time of neural tube closure. Little progress has been made searching for risk-causative variants in candidate genes; therefore, more complex genetic and epigenetic methodologies are now being considered. This article reviews the research to date that has been targeted on this important gene-nutrient locus.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, The University of Dublin, 2 Ireland;
| | - Faith Pangilinan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| | - Lawrence C Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| |
Collapse
|
7
|
NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat Chem Biol 2016; 12:546-51. [PMID: 27214402 DOI: 10.1038/nchembio.2099] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/15/2016] [Indexed: 12/18/2022]
Abstract
In human mitochondria, the AUA codon encodes methionine via a mitochondrial transfer RNA for methionine (mt-tRNA(Met)) that contains 5-formylcytidine (f(5)C) at the first position of the anticodon (position 34). f(5)C34 is required for deciphering the AUA codon during protein synthesis. Until now, the biogenesis and physiological role of f(5)C34 were unknown. We demonstrate that biogenesis of f(5)C34 is initiated by S-adenosylmethionine (AdoMet)-dependent methylation catalyzed by NSUN3, a putative methyltransferase in mitochondria. NSUN3-knockout cells showed strong reduction in mitochondrial protein synthesis and reduced oxygen consumption, leading to deficient mitochondrial activity. We reconstituted formation of 5-methylcytidine (m(5)C) at position 34 (m(5)C34) on mt-tRNA(Met) with recombinant NSUN3 in the presence of AdoMet, demonstrating that NSUN3-mediated m(5)C34 formation initiates f(5)C34 biogenesis. We also found two disease-associated point mutations in mt-tRNA(Met) that impaired m(5)C34 formation by NSUN3, indicating that a lack of f(5)C34 has pathological consequences.
Collapse
|
8
|
Mitchell LE, Finnell RH. Papers from the Eighth International Neural Tube Defects Conference. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2014; 100:561-562. [PMID: 25155952 DOI: 10.1002/bdra.23289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
|