1
|
Weng S, Devitt CC, Nyaoga BM, Havnen AE, Alvarado J, Wallingford JB. New tools reveal PCP-dependent polarized mechanics in the cortex and cytoplasm of single cells during convergent extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566066. [PMID: 37986924 PMCID: PMC10659385 DOI: 10.1101/2023.11.07.566066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Understanding biomechanics of biological systems is crucial for unraveling complex processes like tissue morphogenesis. However, current methods for studying cellular mechanics in vivo are limited by the need for specialized equipment and often provide limited spatiotemporal resolution. Here we introduce two new techniques, Tension by Transverse Fluctuation (TFlux) and in vivo microrheology, that overcome these limitations. They both offer time-resolved, subcellular biomechanical analysis using only fluorescent reporters and widely available microscopes. Employing these two techniques, we have revealed a planar cell polarity (PCP)-dependent mechanical gradient both in the cell cortex and the cytoplasm of individual cells engaged in convergent extension. Importantly, the non-invasive nature of these methods holds great promise for its application for uncovering subcellular mechanical variations across a wide array of biological contexts. Summary Non-invasive imaging-based techniques providing time-resolved biomechanical analysis at subcellular scales in developing vertebrate embryos.
Collapse
|
2
|
Zhang EY, Bartman CM, Prakash YS, Pabelick CM, Vogel ER. Oxygen and mechanical stretch in the developing lung: risk factors for neonatal and pediatric lung disease. Front Med (Lausanne) 2023; 10:1214108. [PMID: 37404808 PMCID: PMC10315587 DOI: 10.3389/fmed.2023.1214108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Chronic airway diseases, such as wheezing and asthma, remain significant sources of morbidity and mortality in the pediatric population. This is especially true for preterm infants who are impacted both by immature pulmonary development as well as disproportionate exposure to perinatal insults that may increase the risk of developing airway disease. Chronic pediatric airway disease is characterized by alterations in airway structure (remodeling) and function (increased airway hyperresponsiveness), similar to adult asthma. One of the most common perinatal risk factors for development of airway disease is respiratory support in the form of supplemental oxygen, mechanical ventilation, and/or CPAP. While clinical practice currently seeks to minimize oxygen exposure to decrease the risk of bronchopulmonary dysplasia (BPD), there is mounting evidence that lower levels of oxygen may carry risk for development of chronic airway, rather than alveolar disease. In addition, stretch exposure due to mechanical ventilation or CPAP may also play a role in development of chronic airway disease. Here, we summarize the current knowledge of the impact of perinatal oxygen and mechanical respiratory support on the development of chronic pediatric lung disease, with particular focus on pediatric airway disease. We further highlight mechanisms that could be explored as potential targets for novel therapies in the pediatric population.
Collapse
Affiliation(s)
- Emily Y. Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Colleen M. Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth R. Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Siddiqui HB, Dogru S, Lashkarinia SS, Pekkan K. Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development. J Cardiovasc Dev Dis 2022; 9:jcdd9020064. [PMID: 35200717 PMCID: PMC8876703 DOI: 10.3390/jcdd9020064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
During embryonic development, changes in the cardiovascular microstructure and material properties are essential for an integrated biomechanical understanding. This knowledge also enables realistic predictive computational tools, specifically targeting the formation of congenital heart defects. Material characterization of cardiovascular embryonic tissue at consequent embryonic stages is critical to understand growth, remodeling, and hemodynamic functions. Two biomechanical loading modes, which are wall shear stress and blood pressure, are associated with distinct molecular pathways and govern vascular morphology through microstructural remodeling. Dynamic embryonic tissues have complex signaling networks integrated with mechanical factors such as stress, strain, and stiffness. While the multiscale interplay between the mechanical loading modes and microstructural changes has been studied in animal models, mechanical characterization of early embryonic cardiovascular tissue is challenging due to the miniature sample sizes and active/passive vascular components. Accordingly, this comparative review focuses on the embryonic material characterization of developing cardiovascular systems and attempts to classify it for different species and embryonic timepoints. Key cardiovascular components including the great vessels, ventricles, heart valves, and the umbilical cord arteries are covered. A state-of-the-art review of experimental techniques for embryonic material characterization is provided along with the two novel methods developed to measure the residual and von Mises stress distributions in avian embryonic vessels noninvasively, for the first time in the literature. As attempted in this review, the compilation of embryonic mechanical properties will also contribute to our understanding of the mature cardiovascular system and possibly lead to new microstructural and genetic interventions to correct abnormal development.
Collapse
Affiliation(s)
- Hummaira Banu Siddiqui
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
| | - Sedat Dogru
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Seyedeh Samaneh Lashkarinia
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Bioengineering, Imperial College London, London SW7 2BX, UK
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Correspondence: ; Tel.: +90-(533)-356-3595
| |
Collapse
|
4
|
Sutlive J, Xiu H, Chen Y, Gou K, Xiong F, Guo M, Chen Z. Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103466. [PMID: 34837328 PMCID: PMC8831476 DOI: 10.1002/smll.202103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Indexed: 05/02/2023]
Abstract
Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.
Collapse
Affiliation(s)
- Joseph Sutlive
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Haning Xiu
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224
| | - Fengzhu Xiong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zi Chen
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
5
|
Sen D, Voulgaropoulos A, Keung AJ. Effects of early geometric confinement on the transcriptomic profile of human cerebral organoids. BMC Biotechnol 2021; 21:59. [PMID: 34641840 PMCID: PMC8507123 DOI: 10.1186/s12896-021-00718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background Human cerebral organoids (hCO) are attractive systems due to their ability to model important brain regions and transcriptomics of early in vivo brain development. To date, they have been used to understand the effects of genetics and soluble factors on neurodevelopment. Interestingly, one of the main advantages of hCOs are that they provide three dimensionality that better mimics the in vivo environment; yet, despite this central feature it remains unclear how spatial and mechanical properties regulate hCO and neurodevelopment. While biophysical factors such as shape and mechanical forces are known to play crucial roles in stem cell differentiation, embryogenesis and neurodevelopment, much of this work investigated two dimensional systems or relied on correlative observations of native developing tissues in three dimensions. Using hCOs to establish links between spatial factors and neurodevelopment will require the use of new approaches and could reveal fundamental principles of brain organogenesis as well as improve hCOs as an experimental model. Results Here, we investigated the effects of early geometric confinements on transcriptomic changes during hCO differentiation. Using a custom and tunable agarose microwell platform we generated embryoid bodies (EB) of diverse shapes mimicking several structures from embryogenesis and neurodevelopment and then further differentiated those EBs to whole brain hCOs. Our results showed that the microwells did not have negative gross impacts on the ability of the hCOs to differentiate towards neural fates, and there were clear shape dependent effects on neural lineage specification. In particular we observed that non-spherical shapes showed signs of altered neurodevelopmental kinetics and favored the development of medial ganglionic eminence-associated brain regions and cell types over cortical regions. Transcriptomic analysis suggests these mechanotransducive effects may be mediated by integrin and Wnt signaling. Conclusions The findings presented here suggest a role for spatial factors in brain region specification during hCO development. Understanding these spatial patterning factors will not only improve understanding of in vivo development and differentiation, but also provide important handles with which to advance and improve control over human model systems for in vitro applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00718-2.
Collapse
Affiliation(s)
- Dilara Sen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC, 27695-7905, USA
| | - Alexis Voulgaropoulos
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC, 27695-7905, USA
| | - Albert J Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
6
|
Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Sci Rep 2021; 11:16478. [PMID: 34389738 PMCID: PMC8363742 DOI: 10.1038/s41598-021-94769-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Here we present a microengineered soft-robotic in vitro platform developed by integrating a pneumatically regulated novel elastomeric actuator with primary culture of human cells. This system is capable of generating dynamic bending motion akin to the constriction of tubular organs that can exert controlled compressive forces on cultured living cells. Using this platform, we demonstrate cyclic compression of primary human endothelial cells, fibroblasts, and smooth muscle cells to show physiological changes in their morphology due to applied forces. Moreover, we present mechanically actuatable organotypic models to examine the effects of compressive forces on three-dimensional multicellular constructs designed to emulate complex tissues such as solid tumors and vascular networks. Our work provides a preliminary demonstration of how soft-robotics technology can be leveraged for in vitro modeling of complex physiological tissue microenvironment, and may enable the development of new research tools for mechanobiology and related areas.
Collapse
|
7
|
Roffay C, Chan CJ, Guirao B, Hiiragi T, Graner F. Inferring cell junction tension and pressure from cell geometry. Development 2021; 148:148/18/dev192773. [PMID: 33712442 DOI: 10.1242/dev.192773] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recognizing the crucial role of mechanical regulation and forces in tissue development and homeostasis has stirred a demand for in situ measurement of forces and stresses. Among emerging techniques, the use of cell geometry to infer cell junction tensions, cell pressures and tissue stress has gained popularity owing to the development of computational analyses. This approach is non-destructive and fast, and statistically validated based on comparisons with other techniques. However, its qualitative and quantitative limitations, in theory as well as in practice, should be examined with care. In this Primer, we summarize the underlying principles and assumptions behind stress inference, discuss its validity criteria and provide guidance to help beginners make the appropriate choice of its variants. We extend our discussion from two-dimensional stress inference to three dimensional, using the early mouse embryo as an example, and list a few possible extensions. We hope to make stress inference more accessible to the scientific community and trigger a broader interest in using this technique to study mechanics in development.
Collapse
Affiliation(s)
- Chloé Roffay
- Matière et Systèmes Complexes, Université de Paris - Diderot, CNRS UMR7057, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France.,Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit, (CNRS UMR3215/Inserm U934), Institut Curie, F-75248 Paris Cedex 05, France
| | - Chii J Chan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Boris Guirao
- Polarity, Division and Morphogenesis Team, Genetics and Developmental Biology Unit, (CNRS UMR3215/Inserm U934), Institut Curie, F-75248 Paris Cedex 05, France
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - François Graner
- Matière et Systèmes Complexes, Université de Paris - Diderot, CNRS UMR7057, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France
| |
Collapse
|
8
|
Marrese M, Antonovaité N, Nelemans BKA, Ahmadzada A, Iannuzzi D, Smit TH. In vivo characterization of chick embryo mesoderm by optical coherence tomography-assisted microindentation. FASEB J 2020; 34:12269-12277. [PMID: 33411409 PMCID: PMC7497264 DOI: 10.1096/fj.202000896r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Embryos are growing organisms with highly heterogeneous properties in space and time. Understanding the mechanical properties is a crucial prerequisite for the investigation of morphogenesis. During the last 10 years, new techniques have been developed to evaluate the mechanical properties of biological tissues in vivo. To address this need, we employed a new instrument that, via the combination of micro‐indentation with Optical Coherence Tomography (OCT), allows us to determine both, the spatial distribution of mechanical properties of chick embryos, and the structural changes in real‐time. We report here the stiffness measurements on the live chicken embryo, from the mesenchymal tailbud to the epithelialized somites. The storage modulus of the mesoderm increases from (176 ± 18) Pa in the tail to (716 ± 117) Pa in the somitic region (mean ± SEM, n = 12). The midline has a mean storage modulus of (947 ± 111) Pa in the caudal (PSM) presomitic mesoderm (mean ± SEM, n = 12), indicating a stiff rod along the body axis, which thereby mechanically supports the surrounding tissue. The difference in stiffness between midline and presomitic mesoderm decreases as the mesoderm forms somites. This study provides an efficient method for the biomechanical characterization of soft biological tissues in vivo and shows that the mechanical properties strongly relate to different morphological features of the investigated regions.
Collapse
Affiliation(s)
- Marica Marrese
- Department of Physics and Astronomy, Laser LaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nelda Antonovaité
- Department of Physics and Astronomy, Laser LaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ben K A Nelemans
- Department of Orthopaedic Surgery, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Developmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ariana Ahmadzada
- Department of Physics and Astronomy, Laser LaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Davide Iannuzzi
- Department of Physics and Astronomy, Laser LaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theodoor H Smit
- Department of Orthopaedic Surgery, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Sun S, Shi H, Moore S, Wang C, Ash-Shakoor A, Mather PT, Henderson JH, Ma Z. Progressive Myofibril Reorganization of Human Cardiomyocytes on a Dynamic Nanotopographic Substrate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21450-21462. [PMID: 32326701 DOI: 10.1021/acsami.0c03464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cardiomyocyte (CM) alignment with striated myofibril organization is developed during early cardiac organogenesis. Previous work has successfully achieved in vitro CM alignment using a variety of biomaterial scaffolds and substrates with static topographic features. However, the cellular processes that occur during the response of CMs to dynamic surface topographic changes, which may provide a model of in vivo developmental progress of CM alignment within embryonic myocardium, remains poorly understood. To gain insights into these cellular processes involved in the response of CMs to dynamic topographic changes, we developed a dynamic topographic substrate that employs a shape memory polymer coated with polyelectrolyte multilayers to produce a flat-to-wrinkle surface transition when triggered by a change in incubation temperature. Using this system, we investigated cellular morphological alignment and intracellular myofibril reorganization in response to the dynamic wrinkle formation. Hence, we identified the progressive cellular processes of human-induced pluripotent stem cell-CMs in a time-dependent manner, which could provide a foundation for a mechanistic model of cardiac myofibril reorganization in response to extracellular microenvironment changes.
Collapse
Affiliation(s)
- Shiyang Sun
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Huaiyu Shi
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Sarah Moore
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Ariel Ash-Shakoor
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Patrick T Mather
- Department of Chemical Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - James H Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Rathbun LI, Colicino EG, Manikas J, O'Connell J, Krishnan N, Reilly NS, Coyne S, Erdemci-Tandogan G, Garrastegui A, Freshour J, Santra P, Manning ML, Amack JD, Hehnly H. Cytokinetic bridge triggers de novo lumen formation in vivo. Nat Commun 2020; 11:1269. [PMID: 32152267 PMCID: PMC7062744 DOI: 10.1038/s41467-020-15002-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2020] [Indexed: 02/03/2023] Open
Abstract
Multicellular rosettes are transient epithelial structures that serve as intermediates during diverse organ formation. We have identified a unique contributor to rosette formation in zebrafish Kupffer's vesicle (KV) that requires cell division, specifically the final stage of mitosis termed abscission. KV utilizes a rosette as a prerequisite before forming a lumen surrounded by ciliated epithelial cells. Our studies identify that KV-destined cells remain interconnected by cytokinetic bridges that position at the rosette's center. These bridges act as a landmark for directed Rab11 vesicle motility to deliver an essential cargo for lumen formation, CFTR (cystic fibrosis transmembrane conductance regulator). Here we report that premature bridge cleavage through laser ablation or inhibiting abscission using optogenetic clustering of Rab11 result in disrupted lumen formation. We present a model in which KV mitotic cells strategically place their cytokinetic bridges at the rosette center, where Rab11-associated vesicles transport CFTR to aid in lumen establishment.
Collapse
Affiliation(s)
- L I Rathbun
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - E G Colicino
- Biology Department, Syracuse University, Syracuse, New York, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - J Manikas
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - J O'Connell
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - N Krishnan
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - N S Reilly
- Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
| | - S Coyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
- Department of Biology, SUNY Geneseo, Geneseo, New York, USA
| | | | - A Garrastegui
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - J Freshour
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - P Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
| | - M L Manning
- Department of Physics, Syracuse University, Syracuse, New York, USA
| | - J D Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
| | - H Hehnly
- Biology Department, Syracuse University, Syracuse, New York, USA.
| |
Collapse
|
11
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Vianello S, Lutolf MP. Understanding the Mechanobiology of Early Mammalian Development through Bioengineered Models. Dev Cell 2019; 48:751-763. [PMID: 30913407 DOI: 10.1016/j.devcel.2019.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/13/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Research in developmental biology has been recently enriched by a multitude of in vitro models recapitulating key milestones of mammalian embryogenesis. These models obviate the challenge posed by the inaccessibility of implanted embryos, multiply experimental opportunities, and favor approaches traditionally associated with organoids and tissue engineering. Here, we provide a perspective on how these models can be applied to study the mechano-geometrical contributions to early mammalian development, which still escape direct verification in species that develop in utero. We thus outline new avenues for robust and scalable perturbation of geometry and mechanics in ways traditionally limited to non-implanting developmental models.
Collapse
Affiliation(s)
- Stefano Vianello
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland.
| |
Collapse
|
13
|
Benslimane FM, Alser M, Zakaria ZZ, Sharma A, Abdelrahman HA, Yalcin HC. Adaptation of a Mice Doppler Echocardiography Platform to Measure Cardiac Flow Velocities for Embryonic Chicken and Adult Zebrafish. Front Bioeng Biotechnol 2019; 7:96. [PMID: 31139625 PMCID: PMC6527763 DOI: 10.3389/fbioe.2019.00096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Ultrasonography is the most widely used imaging technique in cardiovascular medicine. In this technique, a piezoelectric crystal produces, sends, and receives high frequency ultrasound waves to the body to create an image of internal organs. It enables practical real time visualization in a non-invasive manner, making the modality especially useful to image dynamic cardiac structures. In the last few decades, echocardiography has been applied to in vivo cardiac disease models, mainly to rodents. While clinical echocardiography platforms can be used for relatively large animals such as pigs and rats, specialized systems are needed for smaller species. Theoretically, as the size of the imaged sample decreases, the frequency of the ultrasound transducer needed to image the sample increases. There are multiple modes of echocardiography imaging. In Doppler mode, erythrocytes blood flow velocities are measured from the frequency shift of the sent ultrasound waves compared to received echoes. Recorded data are then used to calculate cardiac function parameters such as cardiac output, as well as the hemodynamic shear stress levels in the heart and blood vessels. The multi-mode (i.e., b-mode, m-mode, Pulsed Doppler, Tissue Doppler, etc.) small animal ultrasound systems in the market can be used for most in vivo cardiac disease models including mice, embryonic chick and zebrafish. These systems are also associated with significant costs. Alternatively, there are more economical single-mode echocardiography platforms. However, these are originally built for mice studies and they need to be tested and evaluated for smaller experimental models. We recently adapted a mice Doppler echocardiography system to measure cardiac flow velocities for adult zebrafish and embryonic chicken. We successfully assessed cardiac function and hemodynamic shear stress for normal as well as for diseased embryonic chicken and zebrafish. In this paper, we will present our detailed protocols for Doppler flow measurements and further cardiac function analysis on these models using the setup. The protocols will involve detailed steps for animal stabilization, probe orientation for specific measurements, data acquisition, and data analysis. We believe this information will help cardiac researchers to establish similar echocardiography platforms in their labs in a practical and economical manner.
Collapse
Affiliation(s)
| | - Maha Alser
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Zain Z Zakaria
- Biomedical Research Center, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Anju Sharma
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | |
Collapse
|
14
|
Ryvlin J, Lindsey SE, Butcher JT. Systematic Analysis of the Smooth Muscle Wall Phenotype of the Pharyngeal Arch Arteries During Their Reorganization into the Great Vessels and Its Association with Hemodynamics. Anat Rec (Hoboken) 2019; 302:153-162. [PMID: 30312026 PMCID: PMC6312499 DOI: 10.1002/ar.23942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/08/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
Early outflow morphogenesis is a critical event in cardiac development. Understanding mechanical and molecular based morphogenetic relationships at early stages of cardiogenesis is essential for the advancement of cardiovascular technology related to congenital heart defects. In this study, we pair molecular changes in pharyngeal arch artery (PAA) vascular smooth muscle cells (VSMCs) with hemodynamic changes over the course of the same period. We focus on Hamburger Hamilton stage 24-36 chick embryos, using both Doppler ultrasound and histological sections to phenotype PAA VSMCs, and establish a relationship between hemodynamics and PAA composition. Our findings show that PAA VSMCs transition through a synthetic, intermediate, and contractile phenotype over time. Wall shear stress magnitude per arch varies throughout development. Despite distinct hemodynamic and fractional expression trends, no strong correlation was found between the two, indicating that WSS magnitude is not the main driver of PAA wall remodeling and maturation. While WSS magnitude was not found to be a major driver, this work provides a basic framework for investigating relationships between hemodynamic forces and tunica media during a critical period of development. Anat Rec, 302:153-162, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Ryvlin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering
| | | | | |
Collapse
|
15
|
Xavier da Silveira Dos Santos A, Liberali P. From single cells to tissue self-organization. FEBS J 2018; 286:1495-1513. [PMID: 30390414 PMCID: PMC6519261 DOI: 10.1111/febs.14694] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Self-organization is a process by which interacting cells organize and arrange themselves in higher order structures and patterns. To achieve this, cells must have molecular mechanisms to sense their complex local environment and interpret it to respond accordingly. A combination of cell-intrinsic and cell-extrinsic cues are decoded by the single cells dictating their behaviour, their differentiation and symmetry-breaking potential driving development, tissue remodeling and regenerative processes. A unifying property of these self-organized pattern-forming systems is the importance of fluctuations, cell-to-cell variability, or noise. Cell-to-cell variability is an inherent and emergent property of populations of cells that maximize the population performance instead of the individual cell, providing tissues the flexibility to develop and maintain homeostasis in diverse environments. In this review, we will explore the role of self-organization and cell-to-cell variability as fundamental properties of multicellularity-and the requisite of single-cell resolution for its understanding. Moreover, we will analyze how single cells generate emergent multicellular dynamics observed at the tissue level 'travelling' across different scales: spatial, temporal and functional.
Collapse
Affiliation(s)
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
16
|
Li Y, Grover H, Dai E, Yang K, Chen Z. Probing the Roles of Physical Forces in Early Chick Embryonic Morphogenesis. J Vis Exp 2018. [PMID: 29939170 DOI: 10.3791/57150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Embryonic development is traditionally studied from the perspective of biomolecular genetics, but the fundamental importance of mechanics in morphogenesis is becoming increasingly recognized. In particular, the embryonic chick heart and brain tube, which undergo drastic morphological changes as they develop, are among the prime candidates to study the role of physical forces in morphogenesis. Progressive ventral bending and rightward torsion of the tubular embryonic chick brain happen at the earliest stage of organ-level left-right asymmetry in chick embryonic development. The vitelline membrane (VM) constrains the dorsal side of the embryo and has been implicated in providing the force necessary to induce torsion of the developing brain. Here we present a combination of new ex-ovo experiments and physical modeling to identify the mechanics of brain torsion. At Hamburger-Hamilton stage 11, embryos are harvested and cultured ex ovo (in media). The VM is subsequently removed using a pulled capillary tube. By controlling the level of the fluid and subjecting the embryo to a fluid-air interface, the fluid surface tension of the media can be used to replace the mechanical role of the VM. Microsurgery experiments were also performed to alter the position of the heart to find the resultant change in the chirality of brain torsion. Results from this protocol illustrate the fundamental roles of mechanics in driving morphogenesis.
Collapse
Affiliation(s)
- Yan Li
- Thayer School of Engineering, Dartmouth College
| | | | - Eric Dai
- Department of Bioengineering, University of Pennsylvania
| | - Kevin Yang
- Thayer School of Engineering, Dartmouth College
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College;
| |
Collapse
|
17
|
Sato K. Direction‐dependent contraction forces on cell boundaries induce collective migration of epithelial cells within their sheet. Dev Growth Differ 2017. [DOI: 10.1111/dgd.12361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Katsuhiko Sato
- Research Institute for Electronic Science Hokkaido University Sapporo 001‐0020 Japan
| |
Collapse
|
18
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Discrete Mesh Approach in Morphogenesis Modelling: the Example of Gastrulation. Acta Biotheor 2016; 64:427-446. [PMID: 27853896 DOI: 10.1007/s10441-016-9301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Morphogenesis is a general concept in biology including all the processes which generate tissue shapes and cellular organizations in a living organism. Many hybrid formalizations (i.e., with both discrete and continuous parts) have been proposed for modelling morphogenesis in embryonic or adult animals, like gastrulation. We propose first to study the ventral furrow invagination as the initial step of gastrulation, early stage of embryogenesis. We focus on the study of the connection between the apical constriction of the ventral cells and the initiation of the invagination. For that, we have created a 3D biomechanical model of the embryo of the Drosophila melanogaster based on the finite element method. Each cell is modelled by an elastic hexahedron contour and is firmly attached to its neighbouring cells. A uniform initial distribution of elastic and contractile forces is applied to cells along the model. Numerical simulations show that invagination starts at ventral curved extremities of the embryo and then propagates to the ventral medial layer. Then, this observation already made in some experiments can be attributed uniquely to the specific shape of the embryo and we provide mechanical evidence to support it. Results of the simulations of the "pill-shaped" geometry of the Drosophila melanogaster embryo are compared with those of a spherical geometry corresponding to the Xenopus lævis embryo. Eventually, we propose to study the influence of cell proliferation on the end of the process of invagination represented by the closure of the ventral furrow.
Collapse
|
20
|
Chen Z, Guo Q, Dai E, Forsch N, Taber LA. How the embryonic chick brain twists. J R Soc Interface 2016; 13:20160395. [PMID: 28334695 PMCID: PMC5134006 DOI: 10.1098/rsif.2016.0395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain.
Collapse
Affiliation(s)
- Zi Chen
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350108, People's Republic of China
| | - Eric Dai
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Nickolas Forsch
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
21
|
Sahaf M, Sharon E. The rheology of a growing leaf: stress-induced changes in the mechanical properties of leaves. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5509-5515. [PMID: 27651350 PMCID: PMC5049397 DOI: 10.1093/jxb/erw316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We study in situ the mechanics and growth of a leaf. Young Nicotiana tabacum leaves respond to applied mechanical stress by altering both their mechanical properties and the characteristics of their growth. We observed two opposite behaviours, each with its own typical magnitude and timescale. On timescales of the order of minutes, the leaf deforms in response to applied tensile stress. During this phase we found a high correlation between the applied stress field and the local strain field throughout the leaf surface. For times over 12 hours the mechanical properties of the leaf become anisotropic, making it more resilient to deformation and restoring a nearly isotropic growth field despite the highly anisotropic load. These observations suggest that remodelling of the tissue allows the leaf to respond to mechanical perturbations by changing its properties. We discuss the relevance of the observed behaviour to the growth regulation that leads to proper leaf shape during growth.
Collapse
Affiliation(s)
- Michal Sahaf
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Sharon
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Campàs O. A toolbox to explore the mechanics of living embryonic tissues. Semin Cell Dev Biol 2016; 55:119-30. [PMID: 27061360 PMCID: PMC4903887 DOI: 10.1016/j.semcdb.2016.03.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable.
Collapse
Affiliation(s)
- Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; California Nanosystems Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
23
|
Mercker M, Köthe A, Marciniak-Czochra A. Mechanochemical symmetry breaking in Hydra aggregates. Biophys J 2016; 108:2396-407. [PMID: 25954896 PMCID: PMC4423050 DOI: 10.1016/j.bpj.2015.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/01/2015] [Accepted: 03/20/2015] [Indexed: 11/25/2022] Open
Abstract
Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra.
Collapse
Affiliation(s)
- Moritz Mercker
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany.
| | - Alexandra Köthe
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
25
|
Iber D, Karimaddini Z, Ünal E. Image-based modelling of organogenesis. Brief Bioinform 2015; 17:616-27. [DOI: 10.1093/bib/bbv093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 01/05/2023] Open
|
26
|
Klumpers DD, Mooney DJ, Smit TH. From Skeletal Development to Tissue Engineering: Lessons from the Micromass Assay. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:427-37. [PMID: 25946390 DOI: 10.1089/ten.teb.2014.0704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Damage and degeneration of the skeletal elements due to disease, trauma, and aging lead to a significant health and economical burden. To reduce this burden, skeletal tissue engineering strategies aim to regenerate functional bone and cartilage in the adult body. However, challenges still exist. Such challenges involve the identification of the external cues that determine differentiation, how to control chondrocyte hypertrophy, and how to achieve specific tissue patterns and boundaries. To address these issues, it could be insightful to look at skeletal development, a robust morphogenetic process that takes place during embryonic development and is commonly modeled in vitro by the micromass assay. In this review, we investigate what the tissue engineering field can learn from this assay. By comparing embryonic skeletal precursor cells from different anatomic locations and developmental stages in micromass, the external cues that guide lineage commitment can be identified. The signaling pathways regulating chondrocyte hypertrophy, and the cues required for tissue patterning, can be elucidated by combining the micromass assay with genetic, molecular, and engineering tools. The lessons from the micromass assay are limited by two major differences between developmental and regenerative skeletogenesis: cell type and scale. We highlight an important difference between embryonic and adult skeletal progenitor cells, in that adult progenitors are not able to form mesenchymal condensations spontaneously. Also, the mechanisms of tissue patterning need to be adjusted to the larger tissue engineering constructs. In conclusion, mechanistic insights of skeletal tissue generation gained from the micromass model could lead to improved tissue engineering strategies and constructs.
Collapse
Affiliation(s)
- Darinka D Klumpers
- 1 School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts.,2 Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts.,3 Department of Orthopedic Surgery, VU University Medical Centre MOVE Research Institute , Amsterdam, The Netherlands
| | - David J Mooney
- 1 School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts.,2 Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts
| | - Theo H Smit
- 3 Department of Orthopedic Surgery, VU University Medical Centre MOVE Research Institute , Amsterdam, The Netherlands
| |
Collapse
|
27
|
Abstract
Biological mechano-transduction and force-dependent changes scale from protein conformation (â„« to nm) to cell organization and multi-cell function (mm to cm) to affect cell organization, fate, and homeostasis. External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function.
Collapse
Affiliation(s)
- Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - William I. Weis
- Department of Structural Biology, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| |
Collapse
|
28
|
Belle J, Ysasi A, Bennett RD, Filipovic N, Nejad MI, Trumper DL, Ackermann M, Wagner W, Tsuda A, Konerding MA, Mentzer SJ. Stretch-induced intussuceptive and sprouting angiogenesis in the chick chorioallantoic membrane. Microvasc Res 2014; 95:60-7. [PMID: 24984292 PMCID: PMC4188740 DOI: 10.1016/j.mvr.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/30/2014] [Accepted: 06/21/2014] [Indexed: 01/10/2023]
Abstract
Vascular systems grow and remodel in response to not only metabolic needs, but also mechanical influences as well. Here, we investigated the influence of tissue-level mechanical forces on the patterning and structure of the chick chorioallantoic membrane (CAM) microcirculation. A dipole stretch field was applied to the CAM using custom computer-controlled servomotors. The topography of the stretch field was mapped using finite element models. After 3days of stretch, Sholl analysis of the CAM demonstrated a 7-fold increase in conducting vessel intersections within the stretch field (p<0.01). The morphometric analysis of intravital microscopy and scanning electron microscopy (SEM) images demonstrated that the increase vessel density was a result of an increase in interbranch distance (p<0.01) and a decrease in bifurcation angles (p<0.01); there was no significant increase in conducting vessel number (p>0.05). In contrast, corrosion casting and SEM of the stretch field capillary meshwork demonstrated intense sprouting and intussusceptive angiogenesis. Both planar surface area (p<0.05) and pillar density (p<0.01) were significantly increased relative to control regions of the CAM. We conclude that a uniaxial stretch field stimulates the axial growth and realignment of conducting vessels as well as intussusceptive and sprouting angiogenesis within the gas exchange capillaries of the ex ovo CAM.
Collapse
Affiliation(s)
- Janeil Belle
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert D Bennett
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nenad Filipovic
- Faculty of Mechanical Engineering, University of Kragujevac, Serbia
| | - Mohammad Imani Nejad
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David L Trumper
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Willi Wagner
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| | - Moritz A Konerding
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 DOI: 10.3389/fphys.2014.00318/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 05/25/2023] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
30
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 PMCID: PMC4140306 DOI: 10.3389/fphys.2014.00318] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
31
|
Klumpers DD, Mao AS, Smit TH, Mooney DJ. Linear patterning of mesenchymal condensations is modulated by geometric constraints. J R Soc Interface 2014; 11:20140215. [PMID: 24718453 DOI: 10.1098/rsif.2014.0215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of the vertebral column starts with the formation of a linear array of mesenchymal condensations, forming the blueprint for the eventual alternating pattern of bone and cartilage. Despite growing insight into the molecular mechanisms of morphogenesis, the impact of the physical aspects of the environment is not well understood. We hypothesized that geometric boundary conditions may play a pivotal role in the linear patterning of condensations, as neighbouring tissues provide physical constraints to the cell population. To study the process of condensation and the patterning thereof under tightly controlled geometric constraints, we developed a novel in vitro model that combines micropatterning with the established micromass assay. The spacing and alignment of condensations changed with the width of the cell adhesive patterns, a phenomenon that could not be explained by cell availability alone. Moreover, the extent of chondrogenic commitment was increased on substrates with tighter geometric constraints. When the in vivo pattern of condensations was investigated in the developing vertebral column of chicken embryos, the measurements closely fit into the quantitative relation between geometric constraints and inter-condensation distance found in vitro. Together, these findings suggest a potential role of geometric constraints in skeletal patterning in a cellular process of self-organization.
Collapse
Affiliation(s)
- Darinka D Klumpers
- School of Engineering and Applied Sciences, Harvard University, , 29 Oxford St., Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
32
|
Klumpers DD, Zhao X, Mooney DJ, Smit TH. Cell mediated contraction in 3D cell-matrix constructs leads to spatially regulated osteogenic differentiation. Integr Biol (Camb) 2014; 5:1174-83. [PMID: 23925497 DOI: 10.1039/c3ib40038g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During embryonic development, morphogenetic processes give rise to a variety of shapes and patterns that lead to functional tissues and organs. While the impact of chemical signals on these processes is widely studied, the role of physical cues is less understood. The aim of this study was to test the hypothesis that the interplay of cell mediated contraction and mechanical boundary conditions alone can result in spatially regulated differentiation in simple 3D constructs. An experimental model consisting of a 3D cell-gel construct and a finite element (FE) model were used to study the effect of cellular traction exerted by mesenchymal stem cells (MSCs) on an initially homogeneous matrix under inhomogeneous boundary conditions. A robust shape change is observed due to contraction under time-varying mechanical boundary conditions, which is explained by the finite element model. Furthermore, distinct local differences in osteogenic differentiation are observed, with a spatial pattern independent of osteogenic factors in the culture medium. Regions that are predicted to have experienced relatively high shear stress at any time during contraction correlate with the regions of distinct osteogenesis. Taken together, these results support the underlying hypothesis that cellular contractility and mechanical boundary conditions alone can result in spatially regulated differentiation. These results will have important implications for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Darinka D Klumpers
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
33
|
Whittington CF, Brandner E, Teo KY, Han B, Nauman E, Voytik-Harbin SL. Oligomers modulate interfibril branching and mass transport properties of collagen matrices. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1323-33. [PMID: 23842082 PMCID: PMC3778042 DOI: 10.1017/s1431927613001931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mass transport within collagen-based matrices is critical to tissue development, repair, and pathogenesis, as well as the design of next-generation tissue engineering strategies. This work shows how collagen precursors, specified by intermolecular cross-link composition, provide independent control of collagen matrix mechanical and transport properties. Collagen matrices were prepared from tissue-extracted monomers or oligomers. Viscoelastic behavior was measured in oscillatory shear and unconfined compression. Matrix permeability and diffusivity were measured using gravity-driven permeametry and integrated optical imaging, respectively. Both collagen types showed an increase in stiffness and permeability hindrance with increasing collagen concentration (fibril density); however, different physical property–concentration relationships were noted. Diffusivity was not affected by concentration for either collagen type over the range tested. In general, oligomer matrices exhibited a substantial increase in stiffness and only a modest decrease in transport properties when compared with monomer matrices prepared at the same concentration. The observed differences in viscoelastic and transport properties were largely attributed to increased levels of interfibril branching within oligomer matrices. The ability to relate physical properties to relevant microstructure parameters, including fibril density and interfibril branching, is expected to advance the understanding of cell–matrix signaling, as well as facilitate model-based prediction and design of matrix-based therapeutic strategies.
Collapse
Affiliation(s)
- Catherine F. Whittington
- Weldon School of Biomedical Engineering, Collage of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Eric Brandner
- Weldon School of Biomedical Engineering, Collage of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ka Yaw Teo
- School of Mechanical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Bumsoo Han
- Weldon School of Biomedical Engineering, Collage of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- School of Mechanical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Eric Nauman
- Weldon School of Biomedical Engineering, Collage of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- School of Mechanical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Sherry L. Voytik-Harbin
- Weldon School of Biomedical Engineering, Collage of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
34
|
Abstract
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Denis Menshykau
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| |
Collapse
|
35
|
Guo CL. Mechanical models for the self-organization of tubular patterns. BIOMATTER 2013; 3:e24926. [PMID: 23719257 PMCID: PMC3749282 DOI: 10.4161/biom.24926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 01/11/2023]
Abstract
Organogenesis, such as long tubule self-organization, requires long-range coordination of cell mechanics to arrange cell positions and to remodel the extracellular matrix. While the current mainstream in the field of tissue morphogenesis focuses primarily on genetics and chemical signaling, the influence of cell mechanics on the programming of patterning cues in tissue morphogenesis has not been adequately addressed. Here, we review experimental evidence and propose quantitative mechanical models by which cells can create tubular patterns.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Department of Bioengineering; California Institute of Technology; Pasadena, CA USA
| |
Collapse
|
36
|
Daley WP, Yamada KM. Cell–ECM Interactions and the Regulation of Epithelial Branching Morphogenesis. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Kloxin AM, Lewis KJR, DeForest CA, Seedorf G, Tibbitt MW, Balasubramaniam V, Anseth KS. Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol (Camb) 2012; 4:1540-9. [PMID: 23138879 PMCID: PMC3928973 DOI: 10.1039/c2ib20212c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe the development of a well-based cell culture platform that enables experimenters to control the geometry and connectivity of cellular microenvironments spatiotemporally. The base material is a hydrogel comprised of photolabile and enzyme-labile crosslinks and pendant cell adhesion sequences, enabling spatially-specific, in situ patterning with light and cell-dictated microenvironment remodeling through enzyme secretion. Arrays of culture wells of varying shape and size were patterned into the hydrogel surface using photolithography, where well depth was correlated with irradiation dose. The geometry of these devices can be subsequently modified through sequential patterning, while simultaneously monitoring changes in cell geometry and connectivity. Towards establishing the utility of these devices for dynamic evaluation of the influence of physical cues on tissue morphogenesis, the effect of well shape on lung epithelial cell differentiation (i.e., primary mouse alveolar type II cells, ATII cells) was assessed. Shapes inspired by alveoli were degraded into hydrogel surfaces. ATII cells were seeded within the well-based arrays and encapsulated by the addition of a top hydrogel layer. Cell differentiation in response to these geometries was characterized over 7 days of culture with immunocytochemistry (surfactant protein C, ATII; T1α protein, alveolar type I (ATI) differentiated epithelial cells) and confocal image analysis. Individual cell clusters were further connected by eroding channels between wells during culture via controlled two-photon irradiation. Collectively, these studies demonstrate the development and utility of responsive hydrogel culture devices to study how a range of microenvironment geometries of evolving shape and connectivity might influence or direct cell function.
Collapse
Affiliation(s)
- April M. Kloxin
- Chemical and Biological Engineering, University of Colorado, Boulder, CO. Tel: (303)-735–5336
| | - Katherine J. R. Lewis
- Chemical and Biological Engineering, University of Colorado, Boulder, CO. Tel: (303)-735–5336
| | - Cole A. DeForest
- Chemical and Biological Engineering, University of Colorado, Boulder, CO. Tel: (303)-735–5336
| | - Gregory Seedorf
- Pediatric Heart Lung Center Laboratory, University of Colorado, Denver, CO
| | - Mark W. Tibbitt
- Chemical and Biological Engineering, University of Colorado, Boulder, CO. Tel: (303)-735–5336
| | | | - Kristi S. Anseth
- Chemical and Biological Engineering, University of Colorado, Boulder, CO. Tel: (303)-735–5336
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO
- BioFrontiers Institute, University of Colorado, Boulder, CO
| |
Collapse
|
38
|
Varner VD, Taber LA. Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Development 2012; 139:1680-90. [PMID: 22492358 DOI: 10.1242/dev.073486] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The heart is the first functioning organ to form during development. During gastrulation, the cardiac progenitors reside in the lateral plate mesoderm but maintain close contact with the underlying endoderm. In amniotes, these bilateral heart fields are initially organized as a pair of flat epithelia that move towards the embryonic midline and fuse above the anterior intestinal portal (AIP) to form the heart tube. This medial motion is typically attributed to active mesodermal migration over the underlying endoderm. In this model, the role of the endoderm is twofold: to serve as a mechanically passive substrate for the crawling mesoderm and to secrete various growth factors necessary for cardiac specification and differentiation. Here, using computational modeling and experiments on chick embryos, we present evidence supporting an active mechanical role for the endoderm during heart tube assembly. Label-tracking experiments suggest that active endodermal shortening around the AIP accounts for most of the heart field motion towards the midline. Results indicate that this shortening is driven by cytoskeletal contraction, as exposure to the myosin-II inhibitor blebbistatin arrested any shortening and also decreased both tissue stiffness (measured by microindentation) and mechanical tension (measured by cutting experiments). In addition, blebbistatin treatment often resulted in cardia bifida and abnormal foregut morphogenesis. Moreover, finite element simulations of our cutting experiments suggest that the endoderm (not the mesoderm) is the primary contractile tissue layer during this process. Taken together, these results indicate that contraction of the endoderm actively pulls the heart fields towards the embryonic midline, where they fuse to form the heart tube.
Collapse
Affiliation(s)
- Victor D Varner
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
39
|
Urdy S. On the evolution of morphogenetic models: mechano-chemical interactions and an integrated view of cell differentiation, growth, pattern formation and morphogenesis. Biol Rev Camb Philos Soc 2012; 87:786-803. [PMID: 22429266 DOI: 10.1111/j.1469-185x.2012.00221.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the 1950s, embryology was conceptualized as four relatively independent problems: cell differentiation, growth, pattern formation and morphogenesis. The mechanisms underlying the first three traditionally have been viewed as being chemical in nature, whereas those underlying morphogenesis have usually been discussed in terms of mechanics. Often, morphogenesis and its mechanical processes have been regarded as subordinate to chemical ones. However, a growing body of evidence indicates that the biomechanics of cells and tissues affect in striking ways those phenomena often thought of as mainly under the control of cell-cell signalling. This accumulation of data has led to a revival of the mechano-transduction concept in particular, and of complexity in general, causing us now to consider whether we should retain the traditional conceptualization of development. The researchers' semantic preferences for the terms 'patterning', 'pattern formation' or 'morphogenesis' can be used to describe three main 'schools of thought' which emerged in the late 1970s. In the 'molecular school', the term patterning is deeply tied to the positional information concept. In the 'chemical school', the term 'pattern formation' regularly implies reaction-diffusion models. In the 'mechanical school', the term 'morphogenesis' is more frequently used in relation to mechanical instabilities. Major differences among these three schools pertain to the concept of self-organization, and models can be classified as morphostatic or morphodynamic. Various examples illustrate the distorted picture that arises from the distinction among differentiation, growth, pattern formation and morphogenesis, based on the idea that the underlying mechanisms are respectively chemical or mechanical. Emerging quantitative approaches integrate the concepts and methods of complex sciences and emphasize the interplay between hierarchical levels of organization via mechano-chemical interactions. They draw upon recent improvements in mathematical and numerical morphogenetic models and upon considerable progress in collecting new quantitative data. This review highlights a variety of such models, which exhibit important advances, such as hybrid, stochastic and multiscale simulations.
Collapse
Affiliation(s)
- Séverine Urdy
- Paläontologisches Institut und Museum der Universität Zürich, Switzerland.
| |
Collapse
|
40
|
Zhang J, Jeradi S, Strähle U, Akimenko MA. Laser ablation of the sonic hedgehog-a-expressing cells during fin regeneration affects ray branching morphogenesis. Dev Biol 2012; 365:424-33. [PMID: 22445510 DOI: 10.1016/j.ydbio.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 02/21/2012] [Accepted: 03/08/2012] [Indexed: 01/16/2023]
Abstract
The zebrafish fin is an excellent system to study the mechanisms of dermal bone patterning. Fin rays are segmented structures that form successive bifurcations both during ontogenesis and regeneration. Previous studies showed that sonic hedgehog (shha) may regulate regenerative bone patterning based on its expression pattern and functional analysis. The present study investigates the role of the shha-expressing cells in the patterning of fin ray branches. The shha expression domain in the basal epidermis of each fin ray splits into two prior to ray bifurcation. In addition, the osteoblast proliferation profile follows the dynamic expression pattern of shha. A zebrafish transgenic line, 2.4shh:gfpABC#15, in which GFP expression recapitulates the endogenous expression of shha, was used to specifically ablate shha-expressing cells with a laser beam. Such ablations lead to a delay in the sequence of events leading to ray bifurcation without affecting the overall growth of the fin ray. These results suggest that shha-expressing cells direct localized osteoblast proliferation and thus regulate branching morphogenesis. This study reveals the fin ray as a new accessible system to investigate epithelial-mesenchymal interactions leading to organ branching.
Collapse
Affiliation(s)
- Jing Zhang
- CAREG, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
41
|
Branch mode selection during early lung development. PLoS Comput Biol 2012; 8:e1002377. [PMID: 22359491 PMCID: PMC3280966 DOI: 10.1371/journal.pcbi.1002377] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022] Open
Abstract
Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modes. Most organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching. While the branching sequence is identical in mice of identical genetic background it differs between mouse strains. This suggests that the positioning of branch points and the type of branching sensitively depends on information encoded in the genome. Encoding every branching point independently in the genome would require a large number of genes, and it is more likely that a recursive, self-organized process exists that determines the patterning. While many regulatory molecules have been identified an integrated understanding of the regulatory network (program) is missing. Based on available experimental data we have developed a model for lung branching. The model correctly predicts branching phenotypes in mutants and suggests that also the growth speed of the lung tip can affect the positioning and type of the next branching event.
Collapse
|
42
|
Moraes C, Sun Y, Simmons CA. (Micro)managing the mechanical microenvironment. Integr Biol (Camb) 2011; 3:959-71. [PMID: 21931883 DOI: 10.1039/c1ib00056j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical forces are critical components of the cellular microenvironment and play a pivotal role in driving cellular processes in vivo. Dissecting cellular responses to mechanical forces is challenging, as even "simple" mechanical stimulation in vitro can cause multiple interdependent changes in the cellular microenvironment. These stimuli include solid deformation, fluid flows, altered physical and chemical surface features, and a complex transfer of loads between the various interacting components of a biological culture system. The active mechanical and biochemical responses of cells to these stimuli in generating internal forces, reorganizing cellular structures, and initiating intracellular signals that specify cell fate and remodel the surrounding environment further complicates cellular response to mechanical forces. Moreover, cells present a non-linear response to combinations of mechanical forces, materials, chemicals, surface features, matrix properties and other effectors. Microtechnology-based approaches to these challenges can yield key insights into the mechanical nature of cellular behaviour, by decoupling stimulation parameters; enabling multimodal control over combinations of stimuli; and increasing experimental throughput to systematically probe cellular response. In this critical review, we briefly discuss the complexities inherent in the mechanical stimulation of cells; survey and critically assess the applications of present microtechnologies in the field of experimental mechanobiology; and explore opportunities and possibilities to use these tools to obtain a deeper understanding of mechanical interactions between cells and their environment.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | |
Collapse
|
43
|
Abstract
During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.
Collapse
|
44
|
Abstract
The bronchial, arterial, and venous trees of the lung are complex interwoven structures. Their geometries are created during fetal development through common processes of branching morphogenesis. Insights from fractal geometry suggest that these extensively arborizing trees may be created through simple recursive rules. Mathematical models of Turing have demonstrated how only a few proteins could interact to direct this branching morphogenesis. Development of the airway and vascular trees could, therefore, be considered an example of emergent behavior as complex structures are created from the interaction of only a few processes. However, unlike inanimate emergent structures, the geometries of the airway and vascular trees are highly stereotyped. This review will integrate the concepts of emergence, fractals, and evolution to demonstrate how the complex branching geometries of the airway and vascular trees are ideally suited for gas exchange in the lung. The review will also speculate on how the heterogeneity of blood flow and ventilation created by the vascular and airway trees is overcome through their coordinated construction during fetal development.
Collapse
Affiliation(s)
- Robb W Glenny
- Departments of Medicine and of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|