1
|
Lejeune S, Kaushik A, Parsons ES, Chinthrajah S, Snyder M, Desai M, Manohar M, Prunicki M, Contrepois K, Gosset P, Deschildre A, Nadeau K. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy. J Allergy Clin Immunol 2024; 153:418-434. [PMID: 38344970 DOI: 10.1016/j.jaci.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Asthma and other atopic disorders can present with varying clinical phenotypes marked by differential metabolomic manifestations and enriched biological pathways. OBJECTIVE We sought to identify these unique metabolomic profiles in atopy and asthma. METHODS We analyzed baseline nonfasted plasma samples from a large multisite pediatric population of 470 children aged <13 years from 3 different sites in the United States and France. Atopy positivity (At+) was defined as skin prick test result of ≥3 mm and/or specific IgE ≥ 0.35 IU/mL and/or total IgE ≥ 173 IU/mL. Asthma positivity (As+) was based on physician diagnosis. The cohort was divided into 4 groups of varying combinations of asthma and atopy, and 6 pairwise analyses were conducted to best assess the differential metabolomic profiles between groups. RESULTS Two hundred ten children were classified as At-As-, 42 as At+As-, 74 as At-As+, and 144 as At+As+. Untargeted global metabolomic profiles were generated through ultra-high-performance liquid chromatography-tandem mass spectroscopy. We applied 2 independent machine learning classifiers and short-listed 362 metabolites as discriminant features. Our analysis showed the most diverse metabolomic profile in the At+As+/At-As- comparison, followed by the At-As+/At-As- comparison, indicating that asthma is the most discriminant condition associated with metabolomic changes. At+As+ metabolomic profiles were characterized by higher levels of bile acids, sphingolipids, and phospholipids, and lower levels of polyamine, tryptophan, and gamma-glutamyl amino acids. CONCLUSION The At+As+ phenotype displays a distinct metabolomic profile suggesting underlying mechanisms such as modulation of host-pathogen and gut microbiota interactions, epigenetic changes in T-cell differentiation, and lower antioxidant properties of the airway epithelium.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France.
| | - Abhinav Kaushik
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Ella S Parsons
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Manisha Desai
- Quantitative Science Unit, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Monali Manohar
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mary Prunicki
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Philippe Gosset
- University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Antoine Deschildre
- University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Kari Nadeau
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| |
Collapse
|
2
|
He XN, Wu P, Jiang WD, Liu Y, Kuang SY, Tang L, Ren HM, Li H, Feng L, Zhou XQ. Aflatoxin B1 exposure induced developmental toxicity and inhibited muscle development in zebrafish embryos and larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163170. [PMID: 37003331 DOI: 10.1016/j.scitotenv.2023.163170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
The prevalence of aflatoxin B1 (AFB1), one of the most toxic mycotoxins that contaminates feedstock and food is increasing worldwide. AFB1 can cause various health problems in humans and animals, as well as direct embryotoxicity. However, the direct toxicity of AFB1 on embryonic development, especially foetal foetus muscle development, has not been studied in depth. In the present study, we used zebrafish embryos as a model to study the mechanism of the direct toxicity of AFB1 to the foetus, including muscle development and developmental toxicity. Our results showed that AFB1 caused motor dysfunction in zebrafish embryos. In addition, AFB1 induces abnormalities in muscle tissue architecture, which in turn causes abnormal muscle development in larvae. Further studies found that AFB1 destroyed the antioxidant capacity and tight junction complexes (TJs), causing apoptosis in zebrafish larvae. In summary, AFB1 may induce developmental toxicity and inhibit muscle development through oxidative damage, apoptosis and disruption of TJs in zebrafish larvae. Our results revealed the direct toxicity effects of AFB1 on the development of embryos and larvae, including inhibition of muscle development and triggering neurotoxicity, induction of oxidative damage, apoptosis and disruption of TJs, and fills the gap in the toxicity mechanism of AFB1 on foetal development.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| |
Collapse
|
3
|
Al-Griw MA, Balog HN, Shaibi T, Elmoaket MF, AbuGamja ISA, AlBadawi AB, Shamlan G, Alfarga A, Eskandrani AA, Alnajeebi AM, Babteen NA, Alansari WS, Alghazeer R. Therapeutic potential of vitamin D against bisphenol A-induced spleen injury in Swiss albino mice. PLoS One 2023; 18:e0280719. [PMID: 36893148 PMCID: PMC9997876 DOI: 10.1371/journal.pone.0280719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/07/2023] [Indexed: 03/10/2023] Open
Abstract
Bisphenol A (BPA), a ubiquitous plasticizer, is capable of producing oxidative splenic injury, and ultimately led to spleen pathology. Further, a link between VitD levels and oxidative stress was reported. Hence the role of VitD in BPA-induced oxidative splenic injury was investigated in this study. Sixty male and female Swiss albino mice (3.5 weeks old) were randomly divided into control and treated groups 12 mice in each (six males and six females). The control groups were further divided into sham (no treatment) and vehicle (sterile corn oil), whereas the treatment group was divided into VitD (2,195 IU/kg), BPA (50 μg/kg), and BPA+VitD (50 μg/kg + 2,195 IU/kg) groups. For six weeks, the animals were dosed intraperitoneally (i.p). One week later, at 10.5 weeks old, mice were sacrificed for biochemical and histological analyses. Findings showed BPA triggered neurobehavioral abnormalities and spleen injury with increased apoptotic indices (e.g. DNA fragmentation) in both sexes. A significant increase was found in lipid peroxidation marker, MDA in splenic tissue, and leukocytosis. Conversely, VitD treatment altered this scenario into motor performance preservation, reducing oxidative splenic injury with a decrease in the percent apoptotic index. This protection was significantly correlated with preserving leukocyte counts and reduced MDA levels in both genders. It can be concluded from the above findings that VitD treatment has an ameliorative effect on oxidative splenic injury induced by BPA, highlighting the continuous crosstalk between oxidative stress and the VitD signaling pathway.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Hanan N. Balog
- Department of Zoology, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Taher Shaibi
- Department of Zoology, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | | | | | - Ahlam Bashir AlBadawi
- Tripoli Medical Center, Hematology Department, University of Tripoli, Tripoli, Libya
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ammar Alfarga
- Chemistry Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Afnan M. Alnajeebi
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf A. Babteen
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rabia Alghazeer
- Department of Chemistry, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
4
|
Ivanovics B, Gazsi G, Reining M, Berta I, Poliska S, Toth M, Domokos A, Nagy B, Staszny A, Cserhati M, Csosz E, Bacsi A, Csenki-Bakos Z, Acs A, Urbanyi B, Czimmerer Z. Embryonic exposure to low concentrations of aflatoxin B1 triggers global transcriptomic changes, defective yolk lipid mobilization, abnormal gastrointestinal tract development and inflammation in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125788. [PMID: 33838512 DOI: 10.1016/j.jhazmat.2021.125788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxin B1-contaminated feeds and foods induce various health problems in domesticated animals and humans, including tumor development and hepatotoxicity. Aflatoxin B1 also has embryotoxic effects in different livestock species and humans. However, it is difficult to distinguish between the indirect, maternally-mediated toxic effects and the direct embryotoxicity of aflatoxin B1 in mammals. In the present study, we investigated the aflatoxin B1-induced direct embryotoxic effects in a zebrafish embryo model system combining toxicological, transcriptomic, immunological, and biochemical approaches. Embryonic exposure to aflatoxin B1 induced significant changes at the transcriptome level resulting in elevated expression of inflammatory gene network and repression of lipid metabolism and gastrointestinal tract development-related gene sets. According to the gene expression changes, massive neutrophil granulocyte influx, elevated nitric oxide production, and yolk lipid accumulation were observed in the abdominal region of aflatoxin B1-exposed larvae. In parallel, aflatoxin B1-induced defective gastrointestinal tract development and reduced L-arginine level were found in our model system. Our results revealed the complex direct embryotoxic effects of aflatoxin B1, including inhibited lipid utilization, defective intestinal development, and inflammation.
Collapse
Affiliation(s)
- Bence Ivanovics
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Gyongyi Gazsi
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Marta Reining
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Izabella Berta
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marta Toth
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Apolka Domokos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; Molecular Cell and Immunobiology Doctoral School, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Bela Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Adam Staszny
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Matyas Cserhati
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Eva Csosz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsolt Csenki-Bakos
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Andras Acs
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Bela Urbanyi
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary.
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
5
|
Children's Environmental Health: A Systems Approach for Anticipating Impacts from Chemicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228337. [PMID: 33187264 PMCID: PMC7696947 DOI: 10.3390/ijerph17228337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Increasing numbers of chemicals are on the market and present in consumer products. Emerging evidence on the relationship between environmental contributions and prevalent diseases suggests associations between early-life exposure to manufactured chemicals and a wide range of children’s health outcomes. Using current assessment methodologies, public health and chemical management decisionmakers face challenges in evaluating and anticipating the potential impacts of exposure to chemicals on children’s health in the broader context of their physical (built and natural) and social environments. Here, we consider a systems approach to address the complexity of children’s environmental health and the role of exposure to chemicals during early life, in the context of nonchemical stressors, on health outcomes. By advancing the tools for integrating this more complex information, the scope of considerations that support chemical management decisions can be extended to include holistic impacts on children’s health.
Collapse
|
6
|
Wang S, Yang Y, Luo D, Wu D, Liu H, Li M, Sun Q, Jia L. Lung inflammation induced by exposure to Bisphenol-A is associated with mTOR-mediated autophagy in adolescent mice. CHEMOSPHERE 2020; 248:126035. [PMID: 32014637 DOI: 10.1016/j.chemosphere.2020.126035] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Epidemiologic studies show that there is a link between Bisphenol A (BPA) exposure and lung inflammation. Despite this, the molecular mechanisms are not entirely known. This study sought to determine whether exposure to BPA affected the development of ovalbumin (OVA) induced lung inflammation in adolescent female mice and whether the mechanism was related to mTOR-mediated autophagy pathway. Female 4-week-old C57BL/6 mice after one week of domestication were randomly divided into five groups (8/group): control group, OVA group, 0.1 μg mL-1 BPA + OVA group, 0.2 μg mL-1 BPA + OVA group and 0.4 μg mL-1 BPA + OVA group. BPA exacerbated airway hyperresponsiveness (AHR), induced the pathological changes in the lung, which also enhanced inflammatory cells and cytokine levels. In addition, BPA exposure affected expression of autophagy associated proteins and genes. This research results indicated that BPA aggravated OVA-induced lung inflammation and induced abnormal immune function in mice, and its mechanism was related to the activation of autophagy pathway by down-regulation expression of mTOR. These findings suggest that therapeutic strategies to target autophagy may offer a new approach for severe asthma therapy.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Yilong Yang
- Department of Social Medicine, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Dan Luo
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Hezuo Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Mengqi Li
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
7
|
Csaba G. Reprogramming of the Immune System by Stress and Faulty Hormonal Imprinting. Clin Ther 2020; 42:983-992. [PMID: 32307123 DOI: 10.1016/j.clinthera.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Hormonal imprinting is taking place perinatally at the first encounter between the developing hormone receptors and their target hormones. However, in this crucial period when the developmental window for physiological imprinting is open, other molecules, such as synthetic hormones and endocrine disruptors can bind to the receptors, leading to faulty imprinting with life-long consequences, especially to the immune system. This review presents the factors of stress and faulty hormonal imprinting that lead to reprogramming of the immune system. METHODS Relevant publications from Pubmed since 1990 were reviewed and synthesized. FINDINGS The developing immune system is rather sensitive to hormonal effects. Faulty hormonal imprinting is able to reprogram the original developmental program present in a given cell, with lifelong consequences, manifested in alteration of hormone binding by receptors, susceptibility to certain (non-infectious) diseases, and triggering of other diseases. As stress mobilizes the hypothalamic-pituitary-adrenal axis if it occurred during gestation or perinatally, it could lead to faulty hormonal imprinting in the immune system, manifested later as allergic and autoimmune diseases or weakness of normal immune defenses. Hormonal imprinting is an epigenetic process and is carried to the offspring without alteration of DNA base sequences. This means that any form of early-life stress alone or in association with hormonal imprinting could be associated with the developmental origin of health and disease (DOHaD). As puberty is also a period of reprogramming, stress or faulty imprinting can change the original (developmental) program, also with life-long consequences. IMPLICATIONS Considering the continuous differentiation of immune cells (from blast-cells) during the whole life, there is a possibility of late-imprinting or stress-activated reprogramming in the immune system at any periods of life, with later pathogenetic consequences.
Collapse
Affiliation(s)
- György Csaba
- Department of Genetics, Cell, and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Almohawes ZN, Alruhaimi HS. Effect of Lavandula dentata extract on Ovalbumin-induced Asthma in Male Guinea Pigs. BRAZ J BIOL 2020; 80:87-96. [PMID: 31017237 DOI: 10.1590/1519-6984.191485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023] Open
Abstract
Asthma is an inflammatory disease of the lungs, and it causes oxidative stress. Lavandula dentata is an aromatic herb with anti-oxidative and anti-inflammatory activities. This study examined the activity of L. dentata extract on a guinea pig model of asthma. Adult males were divided into five groups: First group was control, second was asthma model induced by OVA, third was treated with L. dentata extract orally (300 mg/kg) for 21 days; the fourth was an asthma model with L. dentata extract (300 mg/kg) and fifth was treated with Tween 80 for 21 days. OVA treatment increased IgE, triglycerides, total cholesterol, glucose levels in serum, WBC count in blood and MDA in lungs. Also, OVA reduced SOD activity, GSH content in lungs, and GGT activity in serum (p<0.05). L. dentata extract treatment in asthma model reduced elevated IgE, triglycerides, total cholesterol, glucose levels in serum, and MDA in lungs (p<0.05), while it increased GSH content in lungs (p<0.05). These results suggest the possibility that L . dentata extract can exert suppressive effects on asthma, and may provide evidence that it is a useful agent for the treatment of allergic airway disease, it also limits oxidative stress induced by OVA. L. dentata extract appears to have hypolipidemic and hypoglycemic activities.
Collapse
Affiliation(s)
- Z N Almohawes
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - H S Alruhaimi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Hallit S, Raherison C, Malaeb D, Hallit R, Waked M, Kheir N, Salameh P. Development of an asthma risk factors scale (ARFS) for risk assessment asthma screening in children. Pediatr Neonatol 2019; 60:156-165. [PMID: 29983338 DOI: 10.1016/j.pedneo.2018.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/16/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The study objective was to create asthma risk factors scale (ARFS) score that would be correlated with the increased risk of asthma in Lebanese children. This scale would eventually be used both to identify children at risk and assess early diagnosis of asthma. METHODS A case-control study (study 1) of 1276 children (976 controls and 300 cases) and a cross-sectional study (study 2) of 1000 children were conducted using a parental questionnaire. Children aged between 3 and 16 years were screened for possible enrollment. The ARFS was created by combining the following risk factors: child's exposure to pesticides, detergent mixing, alcohol, smoking and drug intake during pregnancy and breastfeeding, the actual paternal and maternal smoking status and history of asthma, and the types of food the child consumes. RESULTS There was a significant increase in the risk assessment screening for asthma per 15 points increments of ARFS (p < 0.001 for trend). The score category 0-14.99 best-represented control individuals (88.8% controls), while a score higher than 45 represented asthmatic children best (98.4% asthmatics). The positive predictive value (disease positive/all positive by scale) came out as 94.02%, whereas the negative predictive value (disease negative/all negative by scale) was found to be 90.47%. These results were confirmed in the second study sample. CONCLUSION The ARFS is a simple and easy-to-use tool, composed of 15 questions, for the clinician risk assessment of asthma in children, taking into account the environmental exposure, parental history of asthma and dietary habits of the child. Its value for asthma diagnosis remains to be confirmed in future prospective studies, especially in children with chronic respiratory symptoms.
Collapse
Affiliation(s)
- Souheil Hallit
- Faculty of Pharmacy, Lebanese University, Beirut, Lebanon; Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon; Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon; Research Department, Psychiatric Hospital of the Cross, P.O. Box 60096, Jal Eddib, Lebanon; Occupational Health Environment Research Team, U1219 BPH Bordeaux Population Health Research Center, Inserm - Université de Bordeaux, Bordeaux, France; INSPECT-LB: Institut National de Sante Publique, Epidemiologie Clinique et Toxicologie, Faculty of Public Health, Lebanese University, Beirut, Lebanon.
| | - Chantal Raherison
- Occupational Health Environment Research Team, U1219 BPH Bordeaux Population Health Research Center, Inserm - Université de Bordeaux, Bordeaux, France; Department of Pneumology, University Hospital, Bordeaux, France
| | - Diana Malaeb
- School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Rabih Hallit
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
| | - Mirna Waked
- Faculty of Medicine, Balamand University, Koura, Lebanon
| | - Nelly Kheir
- Faculty of Science II, Lebanese University, Fanar, Lebanon
| | - Pascale Salameh
- Faculty of Pharmacy, Lebanese University, Beirut, Lebanon; INSPECT-LB: Institut National de Sante Publique, Epidemiologie Clinique et Toxicologie, Faculty of Public Health, Lebanese University, Beirut, Lebanon; Faculty of Medicine, Lebanese University, Beirut, Lebanon
| |
Collapse
|
10
|
Lin TJ, Karmaus WJJ, Chen ML, Hsu JC, Wang IJ. Interactions Between Bisphenol A Exposure and GSTP1 Polymorphisms in Childhood Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:172-179. [PMID: 29411558 PMCID: PMC5809766 DOI: 10.4168/aair.2018.10.2.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 12/25/2022]
Abstract
Purpose Bisphenol A (BPA) exposure may increase the risk of asthma. Genetic polymorphisms of oxidative stress-related genes, glutathione S-transferases (GSTM1, GSTP1), manganese superoxide dismutase, catalase, myeloperoxidase, and microsomal epoxide hydrolase may be related to BPA exposure. The aim is to evaluate whether oxidative stress genes modulates associations of BPA exposure with asthma. Methods We conducted a case-control study comprised of 126 asthmatic children and 327 controls. Urine Bisphenol A glucuronide (BPAG) levels were measured by ultra-performance liquid chromatography/tandem mass spectrometry, and genetic variants were analyzed by a TaqMan assay. Information on asthma and environmental exposure was collected. Analyses of variance and logistic regressions were performed to determine the association of genotypes and urine BPAG levels with asthma. Results BPAG levels were significantly associated with asthma (adjusted odds ratio [aOR], 1.29 per log unit increase in concentration; 95% confidence interval [CI], 1.081.55). Compared to the GG genotype, children with a GSTP1 AA genotype had higher urine BPAG concentrations (geometric mean [standard error], 12.72 [4.16] vs 11.42 [2.82]; P=0.036). In children with high BPAG, the GSTP1 AA genotype was related to a higher odds of asthma than the GG genotype (aOR, 4.84; 95% CI, 1.0223.06). Conclusions GSTP1 variants are associated with urine BPA metabolite levels. Oxidative stress genes may modulate the effect of BPA exposure on asthma.
Collapse
Affiliation(s)
- Tien Jen Lin
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Sports Science, College of Exercise and Health Sciences, National Taiwan Sport University, Taoyuan City, Taiwan.,Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Wilfried J J Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Mei Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Jiin Chyr Hsu
- Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan
| | - I Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan.,College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Christensen S, Jaffar Z, Cole E, Porter V, Ferrini M, Postma B, Pinkerton KE, Yang M, Kim YJ, Montrose L, Roberts K, Holian A, Cho YH. Prenatal environmental tobacco smoke exposure increases allergic asthma risk with methylation changes in mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:423-433. [PMID: 28543436 PMCID: PMC5513771 DOI: 10.1002/em.22097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/01/2017] [Accepted: 04/22/2017] [Indexed: 05/28/2023]
Abstract
Allergic asthma remains an inadequately understood disease. In utero exposure to environmental tobacco smoke (ETS) has been identified as an environmental exposure that can increase an individual's asthma risk. To improve our understanding of asthma onset and development, we examined the effect of in utero ETS exposure on allergic disease susceptibility in an asthmatic phenotype using a house dust mite (HDM) allergen-induced murine model. Pregnant C57BL/6 mice were exposed to either filtered air or ETS during gestation, and their offspring were further exposed to HDM at 6-7 weeks old to induce allergic inflammation. Methylation in the promoter regions of allergic inflammation-related genes and genomic DNA was quantified. Exposure to HDM resulted in the onset of allergic lung inflammation, with an increased presence of inflammatory cells, Th2 cytokines (IL-4, IL-5, and IL-13), and airway remodeling. These asthmatic phenotypes were significantly enhanced when the mice had been exposed to in utero ETS. Furthermore, prenatal ETS exposure and subsequent HDM (ETS/HDM)-induced asthmatic phenotypes agree with methylation changes in the selected asthma-related genes, including IL-4, IL-5, IL-13, INF-γ, and FOXP3. Global DNA methylation was significantly lower in ETS/HDM-exposed mice than that of controls, which coincides with the results observed in lung, spleen, and blood DNAs. Prenatal ETS exposure resulted in a severe increase in allergic inflammatory responses after an HDM challenge, with corresponding methylation changes. Prenatal ETS exposure may influence developmental plasticity and result in altered epigenetic programming, leading to an increased susceptibility to asthma. Environ. Mol. Mutagen. 58:423-433, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sonja Christensen
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Zeina Jaffar
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Elizabeth Cole
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Virginia Porter
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Maria Ferrini
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Britten Postma
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA, USA
| | - Mihi Yang
- Research Center for Cell Fate Control, Department of Toxicology, Sookmyung Women's University, Seoul, Korea
| | - Yang Jee Kim
- Da Vinci College of General Education, Chung-Ang University, Seoul, Korea
| | - Luke Montrose
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Kevan Roberts
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| | - Yoon Hee Cho
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana , Missoula, MT USA
| |
Collapse
|
12
|
Hallit S, Salameh P. Exposure to toxics during pregnancy and childhood and asthma in children: A pilot study. J Epidemiol Glob Health 2017; 7:147-154. [PMID: 28756822 PMCID: PMC7320455 DOI: 10.1016/j.jegh.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/21/2017] [Indexed: 11/24/2022] Open
Abstract
Environmental factors, pesticides, alcohol and smoking are linked to asthma in children. The association of toxic substances exposure with asthma has not been evaluated. Our objective is to assess such associations among children aged less than 16 years old. This is a cross-sectional study, conducted between January and May 2015, using a sample of Lebanese students from private schools in Beirut and Mount Lebanon. Out of 700 distributed questionnaires, 527 (75.2%) were returned to us. Verbal informed consent was also obtained from all parents prior to participating in the study. A significant association was found between waterpipe smoking and diagnosed asthma (p = 0.003; ORa = 13.25; 95% CI 2.472–71.026). Alcohol during pregnancy, waterpipe smoking during pregnancy and parents respiratory problems significantly increased the risk of respiratory problems by approximately 5 times, 6 times and 2 times respectively (p = 0.016; ORa = 4.889; 95% CI 1.339–17.844, p = 0.021; ORa = 6.083; 95% CI 1.314–28.172, p = 0.004; ORa = 1.748; 95% CI 1.197–2.554 respectively). Waterpipe smoking, alcohol during pregnancy, recurrent otitis and humidity at home seem to be significantly correlated with asthma in children. Spreading awareness by health care professionals is needed to permit a reduction of the prevalence of these allergic diseases, especially asthma, in children.
Collapse
Affiliation(s)
- Souheil Hallit
- Lebanese University, School of Pharmacy, Hadath, Lebanon; Universite Saint Joseph, Faculty of Pharmacy, Beirut, Lebanon; Universite Saint-Esprit Kaslik, Faculty of Medicine, Kaslik, Lebanon; Psychiatric Hospital of the Cross, P.O. Box 60096, Jal Eddib, Lebanon; Occupational Health Environment Research Team, U1219 BPH Bordeaux Population Health Research Center Inserm - Université de Bordeaux, France.
| | - Pascale Salameh
- Lebanese University, School of Pharmacy, Hadath, Lebanon; Lebanese University, Faculty of Medicine, Hadath, Lebanon
| |
Collapse
|
13
|
Abstract
Allergic reactions to pets have been recognized for at least a hundred years. Yet our understanding of the effects of all of the interactions between pet exposures and human immune responses continues to grow. Allergists, epidemiologists, and immunologists have spent years trying to better understand how exposures to pet allergens lead to allergic sensitization (the production of allergen-specific immunoglobulin class E [IgE] antibodies) and subsequent allergic disease. A major new development in this understanding is the recognition that pet exposures consist of not only allergen exposures but also changes in microbial exposures. Exposures to certain pet-associated microbes, especially in the neonatal period, appear to be able to dramatically alter how a child’s immune system develops and this in turn reduces the risk of allergic sensitization and disease. An exciting challenge in the next few years will be to see whether these changes can be developed into a realistic preventative strategy with the expectation of significantly reducing allergic disease, especially asthma.
Collapse
|
14
|
Yitshak-Sade M, Gorodischer R, Aviram M, Novack L. Prenatal exposure to H2 blockers and to proton pump inhibitors and asthma development in offspring. J Clin Pharmacol 2015; 56:116-23. [PMID: 26096778 DOI: 10.1002/jcph.574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/12/2015] [Indexed: 01/08/2023]
Abstract
Fetal exposure to H2 blockers (H2 Bs) or proton pump inhibitors (PPIs) has been reported to be associated with asthma in children. We evaluated the risk of asthma in offspring following prenatal H2 Bs. We enrolled 91 428 children and their mothers who resided in southern Israel during 1998-2011. The computerized medications database was linked with records from the district hospital. Of the eligible children, 11 227 developed asthma, and overall 5.5% had been exposed to H2 Bs or PPIs prenatally. The risk of developing asthma was slightly higher in the group exposed to H2 Bs or PPIs (RR, 1.09; P = .023). At greater risk were children whose mothers purchased these medications more than 3 times (RR, 1.22; P = .038) or exposed to >20 defined daily doses or prenatally exposed to lansoprazole. The statistical association was significant and depended on magnitude of exposure and specific medication, but the absolute risk was low. The association between maternal consumption of H2 Bs or PPIs and asthma and childhood remained statistically significant 2 years after delivery, raising the possibility of confounding by the indication phenomenon. In view of the findings, a causal relationship could not be ascertained, and an unidentified etiological factor could be operative.
Collapse
Affiliation(s)
- Maayan Yitshak-Sade
- Clinical Research Center, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Soroka Medical Center, Beer-Sheva, Israel
| | - Rafael Gorodischer
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Soroka Medical Center, Beer-Sheva, Israel.,Department of Pediatrics, Ben Gurion University of the Negev, Beer-Sheva, Israel.,"Clalit" Health Services (Southern District), Beer-Sheva, Israel
| | - Micha Aviram
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Soroka Medical Center, Beer-Sheva, Israel.,Department of Pediatrics, Ben Gurion University of the Negev, Beer-Sheva, Israel.,"Clalit" Health Services (Southern District), Beer-Sheva, Israel
| | - Lena Novack
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Department of Public Health, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Vieira SE. The health burden of pollution: the impact of prenatal exposure to air pollutants. Int J Chron Obstruct Pulmon Dis 2015; 10:1111-21. [PMID: 26089661 PMCID: PMC4468952 DOI: 10.2147/copd.s40214] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children’s progress during the first years of life.
Collapse
Affiliation(s)
- Sandra E Vieira
- Pediatrics Department, Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B. Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:179-85. [PMID: 25369257 PMCID: PMC4314248 DOI: 10.1289/ehp.1408235] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 11/03/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although pesticide use is widespread, the possible effect of early-life exposure to organophosphate (OP) on pediatric respiratory health is not well described. OBJECTIVES We investigated the relationship between early-life exposure to OPs and respiratory outcomes. METHODS Participants included 359 mothers and children from the CHAMACOS birth cohort. Dialkyl phosphate (DAP) metabolites of OP pesticides, specifically diethyl (DE) and dimethyl (DM) phosphate metabolites, were measured in urine from mothers twice during pregnancy (mean = 13 and 26 weeks gestation) and from children five times during childhood (0.5-5 years). Childhood DAP concentrations were estimated by the area under curve (AUC). Mothers reported their child's respiratory symptoms at 5 and 7 years of age. We used generalized estimating equations (GEE) to examine associations of prenatal and childhood DAP concentrations with repeated measures of respiratory symptoms and exercise-induced coughing at 5 and 7 years of age, adjusting for child's sex and age, maternal smoking during pregnancy, secondhand tobacco smoke, season of birth, PM2.5, breastfeeding, mold and cockroaches in home, and distance from highway. RESULTS Higher prenatal DAP concentrations, particularly DE, were nonsignificantly associated with respiratory symptoms in the previous 12 months at 5 or 7 years of age [adjusted odds ratio (aOR) per 10-fold increase = 1.44; 95% CI: 0.98, 2.12]. This association was strongest with total DAP and DE from the second half of pregnancy (aOR per 10-fold increase = 1.77; 95% CI: 1.06, 2.95; and 1.61; 95% CI: 1.08, 2.39, respectively). Childhood DAP, DE, and DM concentrations were associated with respiratory symptoms and exercise-induced coughing in the previous 12 months at 5 or 7 years of age (total DAPs: aOR per 10-fold increase = 2.53; 95% CI: 1.32, 4.86; and aOR = 5.40; 95% CI: 2.10, 13.91, respectively). CONCLUSIONS Early-life exposure to OP pesticides was associated with respiratory symptoms consistent with possible asthma in childhood.
Collapse
Affiliation(s)
- Rachel Raanan
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Bisphenol A (BPA), synthesized in 1891, is produced in quantities of >2 million metric tons annually for polycarbonate plastics, epoxy resins and food contact applications. BPA can be a weak estrogen mimic, and is ubiquitous in humans (in 93% US population; in 96% US pregnant women). European/US food/drug agencies conclude that current BPA levels present no risk to the general population (some include infants/children); basic endocrine disruption (ED) researchers state that entire populations are at risk from these levels. The US Food and Drug Administration banned BPA in baby bottles in 2012 'not based on safety concerns'; the US Environmental Protection Agency and its UK counterpart concurred. Basic ED researchers report reproductive/developmental effects from perinatal BPA exposure in mice at very low doses, e.g. 2 ng/g body weight (0.002 mg/kg body weight), with non-monotonic dose-response (NMDR) curves, using few animals per group and few groups; contract research organizations, in good laboratory practice- and guideline-compliant large studies in rats and mice, report no low-dose effects or NMDR curves. The argument rages!
Collapse
|
18
|
Abstract
Hormonal imprinting is an epigenetic process which is taking place perinatally at the first encounter between the developing hormone receptors and their target hormones. The hormonal imprinting influences the binding capacity of receptors, the hormone synthesis of the cells, and other hormonally regulated functions, as sexual behavior, aggressivity, empathy, etc. However, during the critical period, when the window for imprinting is open, molecules similar to the physiological imprinters as synthetic hormone analogs, other members of the hormone families, environmental pollutants, etc. can cause faulty imprinting with life-long consequences. The developing immune system, the cells of which also have receptors for hormones, is very sensitive to faulty imprinting, which causes alterations in the antibody and cytokine production, in the ratio of immune cells, in the defense against bacterial and viral infections as well as against malignant tumors. Immune cells (lymphocytes, monocytes, granulocytes and mast cells) are also producing hormones which are secreted into the blood circulation as well as are transported locally (packed transport). This process is also disturbed by faulty imprinting. As immune cells are differentiating during the whole life, faulty imprinting could develop any time, however, the most decisive is the perinatal imprinting. The faulty imprinting is inherited to the progenies in general and especially in the case of immune system. In our modern world the number and amount of artificial imprinters (e.g. endocrine disruptors and drugs) are enormously increasing. The effects of the faulty imprinters most dangerous to the immune system are shown in the paper. The present and future consequences of the flood of faulty imprintings are unpredictable however, it is discussed.
Collapse
Affiliation(s)
- György Csaba
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| |
Collapse
|
19
|
Maiellaro M, Correa-Costa M, Vitoretti LB, Gimenes Júnior JA, Câmara NOS, Tavares-de-Lima W, Farsky SHP, Lino-dos-Santos-Franco A. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring. Toxicol Appl Pharmacol 2014; 278:266-74. [PMID: 24844129 DOI: 10.1016/j.taap.2014.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 01/08/2023]
Abstract
Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment.
Collapse
Affiliation(s)
- Marília Maiellaro
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus Correa-Costa
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana Beatriz Vitoretti
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Lino-dos-Santos-Franco
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Dao T, Cheng RYS, Revelo MP, Mitzner W, Tang W. Hydroxymethylation as a Novel Environmental Biosensor. Curr Environ Health Rep 2014; 1:1-10. [PMID: 24860723 PMCID: PMC4029614 DOI: 10.1007/s40572-013-0005-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Beyond the genome, epigenetics has become a promising approach in understanding the interactions between the gene and the environment. Epigenetic regulation includes DNA methylation, histone modifications, and non-coding RNAs. Among these, DNA methylation, which is the addition of a methyl group to the fifth base of cytosine to produce 5-methylcytosine (5-mC), is most commonly studied. Epigenetic regulation has changed given the discovery of 5-hydroxymethylcytosine (5-hmC), considered the "sixth base", and the nature of TET proteins to catalyze 5-mC oxidation to 5-hmC. 5-hydroxymethylation has been proposed to be a stable intermediate between methylation and demethylation and has raised questions about the functions of 5-hmC in gene regulation in cells, tissues, and organs in response to environmental exposure. Herein, we have provided an introduction to the chemistry of 5-hydroxymethylation, and the techniques for detection of 5-hydroxymethylation. In addition, we have reviewed current reports describing how 5-hmC responds to environmental factors, leading to the development of disease. And finally, we have discussed the potential use of 5-hmC in the study of disease development. All in all, it is our goal to provide innovative and convincing epigenetic studies for understanding the etiology of environmentally-related human disease, and translate these epigenetic findings into lifestyle recommendations and clinical practices to prevent and cure disease.
Collapse
Affiliation(s)
- T Dao
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - R Y S Cheng
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - M P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States
| | - W Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Wy Tang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
21
|
|
22
|
Dietert RR. Developmental Immunotoxicity, Perinatal Programming, and Noncommunicable Diseases: Focus on Human Studies. Adv Med 2014; 2014:867805. [PMID: 26556429 PMCID: PMC4590951 DOI: 10.1155/2014/867805] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/17/2013] [Accepted: 10/30/2013] [Indexed: 12/20/2022] Open
Abstract
Developmental immunotoxicity (DIT) is a term given to encompass the environmentally induced disruption of normal immune development resulting in adverse outcomes. A myriad of chemical, physical, and psychological factors can all contribute to DIT. As a core component of the developmental origins of adult disease, DIT is interlinked with three important concepts surrounding health risks across a lifetime: (1) the Barker Hypothesis, which connects prenatal development to later-life diseases, (2) the hygiene hypothesis, which connects newborns and infants to risk of later-life diseases and, (3) fetal programming and epigenetic alterations, which may exert effects both in later life and across future generations. This review of DIT considers: (1) the history and context of DIT research, (2) the fundamental features of DIT, (3) the emerging role of DIT in risk of noncommunicable diseases (NCDs) and (4) the range of risk factors that have been investigated through human research. The emphasis on the human DIT-related literature is significant since most prior reviews of DIT have largely focused on animal research and considerations of specific categories of risk factors (e.g., heavy metals). Risk factors considered in this review include air pollution, aluminum, antibiotics, arsenic, bisphenol A, ethanol, lead (Pb), maternal smoking and environmental tobacco smoke, paracetamol (acetaminophen), pesticides, polychlorinated biphenyls, and polyfluorinated compounds.
Collapse
Affiliation(s)
- Rodney R. Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, North Tower Road, Ithaca, NY 14853, USA
- *Rodney R. Dietert:
| |
Collapse
|