1
|
Che LQ, Qu ZZ, Mao ZF, Qiao Q, Zhou KP, Jia LJ, Wang WP. Low-frequency rTMS Plays a Neuroprotective role in Pilocarpine-induced Status Epilepticus Rat Models Through the AMPAR GluA1-STIM-Ca 2+ Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04521-w. [PMID: 39384697 DOI: 10.1007/s12035-024-04521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
Low-frequency repetitive transcranial magnetic stimulation (rTMS) refers to the stimulation of the brain using repetitive magnetic field pulses at a low frequency (≤ 1 Hz) to reduce seizures. Currently, the mechanism is not well understood. Male Sprague-Dawley rats underwent pilocarpine-induced status epilepticus (SE) and were then stimulated with low-frequency rTMS. An epilepsy cell model was then established by incubating rat hippocampal neurons with Mg2+-free extracellular fluids. The effects of the low-frequency rTMS on epileptogenesis and hippocampal neuron injury were evaluated using a video electroencephalogram (vEEG) and Nissl staining, and the expression of AMPAR GluA1 and STIM in the hippocampus and hippocampal neurons was assessed using western blot and immunofluorescence. Additionally, the intracellular Ca2+ concentration and reactive oxygen species (ROS) were measured using flow cytometry. Low-frequency rTMS attenuated spontaneous recurrent seizures in rats with epilepsy, with the SE group exhibiting a higher incidence (100%) and frequency (3.00 ± 0.18 times/day) than the SE + 0.3 (50% incidence, 0.06 ± 0.03 times/day), SE + 0.5 (0.20 ± 0.02 times/day) and SE + 1 Hz (1.02 ± 0.05 times/day) groups. Additionally, rTMS reduced the damage and apoptosis of hippocampal pyramidal neurons, increasing their numbers in the CA1 and CA3 regions. Furthermore, AMPAR GluA1 and STIM expression were upregulated in the hippocampus when using rTMS, reversing the downregulation caused by seizures. Immunofluorescence verified the increased fluorescence intensity of AMPAR GluA1 and STIM. Moreover, rTMS inhibited Ca2+ overload and ROS in epileptic neuron models. Low-frequency rTMS may exert neuroprotective effects through the AMPAR GluA1-STIM-Ca2+ pathway.
Collapse
Affiliation(s)
- Li-Qin Che
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Zhen-Zhen Qu
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Zhuo-Feng Mao
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Qi Qiao
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Kai-Ping Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Li-Jing Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China.
| | - Wei-Ping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
2
|
Davidson B, Milosevic L, Kondrataviciute L, Kalia LV, Kalia SK. Neuroscience fundamentals relevant to neuromodulation: Neurobiology of deep brain stimulation in Parkinson's disease. Neurotherapeutics 2024; 21:e00348. [PMID: 38579455 PMCID: PMC11000190 DOI: 10.1016/j.neurot.2024.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada.
| | - Luka Milosevic
- KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Laura Kondrataviciute
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Lorraine V Kalia
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada; KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada
| |
Collapse
|
3
|
The pathogenesis of amyotrophic lateral sclerosis: Mitochondrial dysfunction, protein misfolding and epigenetics. Brain Res 2022; 1786:147904. [PMID: 35390335 DOI: 10.1016/j.brainres.2022.147904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with multiple complex mechanisms involved. Among them, mitochondrial dysfunction plays an important role in ALS. Multiple studies have shown that mitochondria are closely associated with reactive oxygen species production and oxidative stress and exhibit different functional states in different genetic backgrounds. In this review we explored the roles of Ca2+, autophagy, mitochondrial quality control in the regulation of mitochondrial homeostasis and their relationship with ALS. In addition, we also summarized and analyzed the roles of protein misfolding and abnormal aggregation in the pathogenesis of ALS. Moreover, we also discussed how epigenetic mechanisms such as DNA methylation and protein post-translational modification affect initiation and progression of ALS. Nevertheless, existing events still cannot fully explain the pathogenesis of ALS at present, more studies are required to explore pathological mechanisms of ALS.
Collapse
|
4
|
Consales C, Merla C, Benassi B, Garcia-Sanchez T, Muscat A, André FM, Marino C, Mir LM. Biological effects of ultrashort electric pulses in a neuroblastoma cell line: the energy density role. Int J Radiat Biol 2021; 98:109-121. [PMID: 34714724 DOI: 10.1080/09553002.2022.1998704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Despite the numerous literature results about biological effects of electromagnetic field (EMF) exposure, the interaction mechanisms of these fields with organisms are still a matter of debate. Extremely low frequency (ELF) MFs can modulate redox homeostasis and we showed that 24 h exposure to 50 Hz-1 mT has a pro-oxidant effect and effects on the epigenome of SH-SY5Y cells, decreasing miR-34b/c expression through the hypermethylation of their promoter. METHODS Here, we investigated the role of the electromagnetic deposited energy density (ED) during exposures lasting 24 h to 1 mT amplitude MFs at a frequency of 50 Hz in inducing the above mentioned effects. To this end, we delivered ultrashort electric pulses, in the range of microsecond and nanosecond duration, with the same ED of the previously performed magnetic exposure to SH-SY5Y cells. Furthermore, we explored the effect of higher deposited energy densities. Analysis of i) gene and microRNA expression, ii) cell morphology, iii) reactive oxygen species (ROS) generation, and iv) apoptosis were carried out. RESULTS We observed significant changes in egr-1 and c-fos expression at very low deposited ED levels, but no change of the ROS production, miR-34b/c expression, nor the appearance of indicators of apoptosis. We thus sought investigating changes in egr-1 and c-fos expression caused by ultrashort electric pulses at increasing deposited ED levels. The pulses with the higher deposited ED caused cell electroporation and even other morphological changes such as cell fusion. The changes in egr-1 and c-fos expression were more intense, but, again, no change of the ROS production, miR-34b/c expression, nor apoptosis induction was observed. CONCLUSIONS These results, showing that extremely low levels of electric stimulation (never investigated until now) can cause transcriptional changes, also reveal the safety of the electroporating pulses used in biomedical applications and open up the possibility to further therapeutic applications of this technology.
Collapse
Affiliation(s)
- Claudia Consales
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Tomás Garcia-Sanchez
- Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, Villejuif, France.,Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adeline Muscat
- Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, Villejuif, France
| | - Franck M André
- Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Lluis M Mir
- Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, Villejuif, France
| |
Collapse
|
5
|
Bennett JP, Onyango IG. Energy, Entropy and Quantum Tunneling of Protons and Electrons in Brain Mitochondria: Relation to Mitochondrial Impairment in Aging-Related Human Brain Diseases and Therapeutic Measures. Biomedicines 2021; 9:225. [PMID: 33671585 PMCID: PMC7927033 DOI: 10.3390/biomedicines9020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Adult human brains consume a disproportionate amount of energy substrates (2-3% of body weight; 20-25% of total glucose and oxygen). Adenosine triphosphate (ATP) is a universal energy currency in brains and is produced by oxidative phosphorylation (OXPHOS) using ATP synthase, a nano-rotor powered by the proton gradient generated from proton-coupled electron transfer (PCET) in the multi-complex electron transport chain (ETC). ETC catalysis rates are reduced in brains from humans with neurodegenerative diseases (NDDs). Declines of ETC function in NDDs may result from combinations of nitrative stress (NS)-oxidative stress (OS) damage; mitochondrial and/or nuclear genomic mutations of ETC/OXPHOS genes; epigenetic modifications of ETC/OXPHOS genes; or defects in importation or assembly of ETC/OXPHOS proteins or complexes, respectively; or alterations in mitochondrial dynamics (fusion, fission, mitophagy). Substantial free energy is gained by direct O2-mediated oxidation of NADH. Traditional ETC mechanisms require separation between O2 and electrons flowing from NADH/FADH2 through the ETC. Quantum tunneling of electrons and much larger protons may facilitate this separation. Neuronal death may be viewed as a local increase in entropy requiring constant energy input to avoid. The ATP requirement of the brain may partially be used for avoidance of local entropy increase. Mitochondrial therapeutics seeks to correct deficiencies in ETC and OXPHOS.
Collapse
Affiliation(s)
| | - Isaac G. Onyango
- International Clinical Research Center, St. Anne’s University Hospital, CZ-65691 Brno, Czech Republic;
| |
Collapse
|
6
|
Clarke D, Beros J, Bates KA, Harvey AR, Tang AD, Rodger J. Low intensity repetitive magnetic stimulation reduces expression of genes related to inflammation and calcium signalling in cultured mouse cortical astrocytes. Brain Stimul 2020; 14:183-191. [PMID: 33359601 DOI: 10.1016/j.brs.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a form of non-invasive brain stimulation frequently used to induce neuroplasticity in the brain. Even at low intensities, rTMS has been shown to modulate aspects of neuronal plasticity such as motor learning and structural reorganisation of neural tissue. However, the impact of low intensity rTMS on glial cells such as astrocytes remains largely unknown. This study investigated changes in RNA (qPCR array: 125 selected genes) and protein levels (immunofluorescence) in cultured mouse astrocytes following a single session of low intensity repetitive magnetic stimulation (LI-rMS - 18 mT). Purified neonatal cortical astrocyte cultures were stimulated with either 1Hz (600 pulses), 10Hz (600 or 6000 pulses) or sham (0 pulses) LI-rMS, followed by RNA extraction at 5 h post-stimulation, or fixation at either 5 or 24-h post-stimulation. LI-rMS resulted in a two-to-four-fold downregulation of mRNA transcripts related to calcium signalling (Stim1 and Orai3), inflammatory molecules (Icam1) and neural plasticity (Ncam1). 10Hz reduced expression of Stim1, Orai3, Kcnmb4, and Ncam1 mRNA, whereas 1Hz reduced expression of Icam1 mRNA and signalling-related genes. Protein levels followed a similar pattern for 10Hz rMS, with a significant reduction of STIM1, ORAI3, KCNMB4, and NCAM1 protein compared to sham, but 1Hz increased STIM1 and ORAI3 protein levels relative to sham. These findings demonstrate the ability of 1Hz and 10Hz LI-rMS to modulate specific aspects of astrocytic phenotype, potentially contributing to the known effects of low intensity rTMS on excitability and neuroplasticity.
Collapse
Affiliation(s)
- Darren Clarke
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Jamie Beros
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alan R Harvey
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia; School of Human Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| |
Collapse
|
7
|
Zhao D, Feng PJ, Liu JH, Dong M, Shen XQ, Chen YX, Shen QD. Electromagnetized-Nanoparticle-Modulated Neural Plasticity and Recovery of Degenerative Dopaminergic Neurons in the Mid-Brain. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003800. [PMID: 32924217 DOI: 10.1002/adma.202003800] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Indexed: 05/06/2023]
Abstract
The degeneration of dopaminergic neurons is a major contributor to the pathogenesis of mid-brain disorders. Clinically, cell therapeutic solutions, by increasing the neurotransmitter dopamine levels in the patients, are hindered by low efficiency and/or side effects. Here, a strategy using electromagnetized nanoparticles to modulate neural plasticity and recover degenerative dopamine neurons in vivo is reported. Remarkably, electromagnetic fields generated by the nanoparticles under ultrasound stimulation modulate intracellular calcium signaling to influence synaptic plasticity and control neural behavior. Dopaminergic neuronal functions are reversed by upregulating the expression tyrosine hydroxylase, thus resulting in ameliorating the neural behavioral disorders in zebrafish. This wireless tool can serve as a viable and safe strategy for the regenerative therapy of the neurodegenerative disorders.
Collapse
Affiliation(s)
- Di Zhao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Nanjing University, Nanjing, 210023, China
| | - Pei-Jian Feng
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Nanjing University, Nanjing, 210023, China
| | - Jia-Hao Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Nanjing University, Nanjing, 210023, China
| | - Mei Dong
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Nanjing University, Nanjing, 210023, China
| | - Xiao-Quan Shen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Nanjing University, Nanjing, 210023, China
| | - Ying-Xin Chen
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Mattsson MO, Simkó M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:347-368. [PMID: 31565000 PMCID: PMC6746309 DOI: 10.2147/mder.s214152] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
The potential for using non-ionizing electromagnetic fields (EMF; at frequencies from 0 Hz up to the THz range) for medical purposes has been of interest since many decades. A number of established and familiar methods are in use all over the world. This review, however, provides an overview of applications that already play some clinical role or are in earlier stages of development. The covered methods include modalities used for bone healing, cancer treatment, neurological conditions, and diathermy. In addition, certain other potential clinical areas are touched upon. Most of the reviewed technologies deal with therapy, whereas just a few diagnostic approaches are mentioned. None of the discussed methods are having such a strong impact in their field of use that they would be expected to replace conventional methods. Partly this is due to a knowledge base that lacks mechanistic explanations for EMF effects at low-intensity levels, which often are used in the applications. Thus, the possible optimal use of EMF approaches is restricted. Other reasons for the limited impact include a scarcity of well-performed randomized clinical trials that convincingly show the efficacy of the methods and that standardized user protocols are mostly lacking. Presently, it seems that some EMF-based methods can have a niche role in treatment and diagnostics of certain conditions, mostly as a complement to or in combination with other, more established, methods. Further development and a stronger impact of these technologies need a better understanding of the interaction mechanisms between EMF and biological systems at lower intensity levels. The importance of the different physical parameters of the EMF exposure needs also further investigations.
Collapse
Affiliation(s)
- Mats-Olof Mattsson
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| | - Myrtill Simkó
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| |
Collapse
|
9
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Merla C, Liberti M, Marracino P, Muscat A, Azan A, Apollonio F, Mir LM. A wide-band bio-chip for real-time optical detection of bioelectromagnetic interactions with cells. Sci Rep 2018; 8:5044. [PMID: 29568067 PMCID: PMC5864909 DOI: 10.1038/s41598-018-23301-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
The analytical and numerical design, implementation, and experimental validation of a new grounded closed coplanar waveguide for wide-band electromagnetic exposures of cells and their optical detection in real-time is reported. The realized device fulfills high-quality requirements for novel bioelectromagnetic experiments, involving elevated temporal and spatial resolutions. Excellent performances in terms of matching bandwidth (less than -10 dB up to at least 3 GHz), emission (below 1 × 10-6 W/m2) and efficiency (around 1) have been obtained as revealed by both numerical simulations and experimental measurements. A low spatial electric field inhomogeneity (coefficient of variation of around 10 %) has been achieved within the cell solutions filling the polydimethylsiloxane reservoir of the conceived device. This original bio-chip based on the grounded closed coplanar waveguide concept opens new possibilities for the development of controlled experiments combining electromagnetic exposures and sophisticated imaging using optical spectroscopic techniques.
Collapse
Affiliation(s)
- Caterina Merla
- Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 114 rue E. Vaillant, 94805, Villejuif, France. .,National Italian Agency for New Technology Energy and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, via Anguillarese 301, 00123, Rome, Italy.
| | - Micaela Liberti
- "Sapienza" University of Rome, Department of Information Engineering Electronics and Telecommunications, via Eudossiana 18, 00184, Rome, Italy
| | - Paolo Marracino
- "Sapienza" University of Rome, Department of Information Engineering Electronics and Telecommunications, via Eudossiana 18, 00184, Rome, Italy
| | - Adeline Muscat
- Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 114 rue E. Vaillant, 94805, Villejuif, France
| | - Antoine Azan
- Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 114 rue E. Vaillant, 94805, Villejuif, France
| | - Francesca Apollonio
- "Sapienza" University of Rome, Department of Information Engineering Electronics and Telecommunications, via Eudossiana 18, 00184, Rome, Italy
| | - Lluis M Mir
- Laboratory of Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 114 rue E. Vaillant, 94805, Villejuif, France
| |
Collapse
|