1
|
Cytokine secretion responsiveness of lymphomonocytes following cortisol cell exposure: Sex differences. PLoS One 2018; 13:e0200924. [PMID: 30048487 PMCID: PMC6062061 DOI: 10.1371/journal.pone.0200924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023] Open
Abstract
The stress hormone cortisol has been recognized as a coordinator of immune response. However, its different ability to modulate the release of inflammatory mediators in males and females has not been clarified yet. Indeed, the dissection of cortisol specific actions may be difficult due to the complex hormonal and physio-pathological individual status. Herein, the release of inflammatory mediators following increasing cortisol concentrations was investigated in an in vitro model of primary human male and female lymphomonocytes. The use of a defined cellular model to assess sex differences in inflammatory cytokine secretion could be useful to exclude the effects of divergent and fluctuating sex hormone levels occurring in vivo. Herein, the cells were challenged with cortisol concentrations resembling the plasma levels achieving in physiological and stressful conditions. The production of cytokines and other molecules involved in inflammatory process was determined. In basal conditions, male cells presented higher levels of some pro-inflammatory molecules (NF-kB and IDO-1 mRNAs, IL-6 and kynurenine) than female cells. Following cortisol exposure, the levels of the pro-inflammatory cytokines, IL-6 and IL-8, were increased in male cells. Conversely, in female cells IL-6 release was unchanged and IL-8 levels were decreased. Anti-inflammatory cytokines, IL-4 and IL-10, did not change in male cells and increased in female cells. Interestingly, kynurenine levels were higher in female cells than in male cells following cortisol stimulus. These results highlighted that cortisol differently affects male and female lymphomonocytes, shifting the cytokine release in favour of a pro-inflammatory pattern in male cells and an anti-inflammatory secretion profile in female cells, opening the way to study the influences of other stressful factors involved in the neurohumoral changes occurring in the response to stress conditions.
Collapse
|
2
|
Juengel JL. How the quest to improve sheep reproduction provided insight into oocyte control of follicular development. J R Soc N Z 2018. [DOI: 10.1080/03036758.2017.1421238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jennifer L. Juengel
- Reproduction, Animal Science, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
3
|
Impact of Xist RNA on chromatin modifications and transcriptional silencing maintenance at different stages of imprinted X chromosome inactivation in vole Microtus levis. Chromosoma 2017; 127:129-139. [PMID: 29151149 DOI: 10.1007/s00412-017-0650-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
In vole Microtus levis, cells of preimplantation embryo and extraembryonic tissues undergo imprinted X chromosome inactivation (iXCI) which is triggered by a long non-coding nuclear RNA, Xist. At early stages of iXCI, chromatin of vole inactive X chromosome is enriched with the HP1 heterochromatin-specific protein, trimethylated H3K9 and H4K20 attributable to constitutive heterochromatin. In the study, using vole trophoblast stem (TS) cells as a model of iXCI, we further investigated chromatin of the inactive X chromosome of M. levis and tried to find out the role of Xist RNA. We demonstrated that chromatin of the inactive X chromosome in vole TS cells also contained the SETDB1 histone methyltransferase and KAP1 protein. In addition, we observed that Xist RNA did not contribute significantly to maintenance of X chromosome inactive state during iXCI in vole TS cells. Xist repression affected neither transcriptional silencing caused by iXCI nor maintenance of trimethylated H3K9 and H4K20 as well as HP1, KAP1, and SETDB1 on the inactive X chromosome. Moreover, the unique repertoire of chromatin modifications on the inactive X chromosome in vole TS cells could be disrupted by a chemical compound, DZNep, and then restored even in the absence of Xist RNA. However, Xist transcript was necessary for recruitment of an additional repressive histone modification, trimethylated H3K27, to the inactive X chromosome during vole TS cell differentiation.
Collapse
|
4
|
Dynamics of the two heterochromatin types during imprinted X chromosome inactivation in vole Microtus levis. PLoS One 2014; 9:e88256. [PMID: 24505450 PMCID: PMC3913780 DOI: 10.1371/journal.pone.0088256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/07/2014] [Indexed: 11/27/2022] Open
Abstract
In rodent female mammals, there are two forms of X-inactivation – imprinted and random which take place in extraembryonic and embryonic tissues, respectively. The inactive X-chromosome during random X-inactivation was shown to contain two types of facultative heterochromatin that alternate and do not overlap. However, chromatin structure of the inactive X-chromosome during imprinted X-inactivation, especially at early stages, is still not well understood. In this work, we studied chromatin modifications associated with the inactive X-chromosome at different stages of imprinted X-inactivation in a rodent, Microtus levis. It has been found that imprinted X-inactivation in vole occurs in a species-specific manner in two steps. The inactive X-chromosome at early stages of imprinted X-inactivation is characterized by accumulation of H3K9me3, HP1, H4K20me3, and uH2A, resembling to some extent the pattern of repressive chromatin modifications of meiotic sex chromatin. Later, the inactive X-chromosome recruits trimethylated H3K27 and acquires the two types of heterochromatin associated with random X-inactivation.
Collapse
|
5
|
Casimir GJ, Lefèvre N, Corazza F, Duchateau J. Sex and inflammation in respiratory diseases: a clinical viewpoint. Biol Sex Differ 2013; 4:16. [PMID: 24128344 PMCID: PMC3765878 DOI: 10.1186/2042-6410-4-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022] Open
Abstract
This review discusses sex differences in the prognosis of acute or chronic inflammatory diseases. The consequences of severe inflammation vary in relation to sex, depending on illness duration. In the majority of acute diseases, males present higher mortality rates, whereas continuous chronic inflammation associated with tissue damage is more deleterious in females. The recruitment of cells, along with its clinical expression, is more significant in females, as reflected by higher inflammatory markers. Given that estrogens or androgens are known to modulate inflammation, their different levels in males and females cannot account for the sexual dimorphism observed in humans and animals from birth to death with regard to inflammation. Numerous studies evaluated receptors, cytokine production, and clinical outcomes in both animals and humans, revealing that estrogens clearly modulate the immune response, but the results are contradictory and difficult to link to hormone concentrations. Even in prepubescent children, the presentation of acute pneumonia or chronic diseases mimics the adult pattern. Several genes located on the X chromosome have been shown to encode molecules involved in inflammation. Moreover, 10% to 15% of the genes from silenced X chromosome may escape inhibition. Females are also a mosaic of cells with genes from either paternal or maternal X chromosome. Therefore, polymorphism of X-linked genes would result in the presence of two cell populations with distinct regulatory arsenals, providing females with greater diversity to fight against infectious challenges, in comparison with the uniform cell populations in hemizygous males. The similarities observed between males and Turner syndrome patients using an endotoxin stimulation model support the difference in gene expression between monosomy and disomy for the X chromosome. Considering the enhanced inflammation in females, cytokine production may be assumed to be higher in females than males. Even if all results are not clear-cut, nonetheless, many studies have reported higher cytokine levels in both male humans and animals than in females. High IL-6 levels in males correlated with poorer prognosis and shorter longevity. A sound understanding of the basic regulatory mechanisms responsible for these gender differences may lead to new therapeutic targets.
Collapse
Affiliation(s)
- Georges J Casimir
- Department of Pulmonology, Allergology and Cystic Fibrosis, Hôpital Universitaire des Enfants Reine Fabiola, Avenue JJ. Crocq 15, B-1020, Brussels, Belgium ; Laboratory of Pediatrics, Université Libre de Bruxelles (ULB), Place Arthur Van Gehuchten 4, B-1020, Brussels, Belgium
| | - Nicolas Lefèvre
- Department of Pulmonology, Allergology and Cystic Fibrosis, Hôpital Universitaire des Enfants Reine Fabiola, Avenue JJ. Crocq 15, B-1020, Brussels, Belgium ; Laboratory of Immunology, Hôpital Universitaire Brugmann, Place Arthur Van Gehuchten, 4, B-1020, Brussels, Belgium
| | - Francis Corazza
- Laboratory of Immunology, Hôpital Universitaire Brugmann, Place Arthur Van Gehuchten, 4, B-1020, Brussels, Belgium
| | - Jean Duchateau
- Laboratory of Pediatrics, Université Libre de Bruxelles (ULB), Place Arthur Van Gehuchten 4, B-1020, Brussels, Belgium
| |
Collapse
|
6
|
Folci M, Meda F, Gershwin ME, Selmi C. Cutting-edge issues in primary biliary cirrhosis. Clin Rev Allergy Immunol 2012; 42:342-54. [PMID: 21243445 DOI: 10.1007/s12016-011-8253-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several crucial issues remain open in our understanding of primary biliary cirrhosis (PBC), an autoimmune liver disease targeting the small- and medium-sized intrahepatic bile ducts. These issues include the high tissue specificity of the autoimmune injury despite the nontraditional autoantigens found in all mitochondria recognized by PBC-associated autoantibodies, the causes of the commonly observed pruritus, and the disease etiology per se. In all these fields, there has been recent interest secondary to the use of large-scale efforts (such as genome-wide association studies) that were previously considered poorly feasible in a rare disease such as PBC as well as other intuitions. Accordingly, there are now fascinating theories to explain the onset and severity of pruritus due to elevated autotaxin levels, the peculiar apoptotic features of bile duct cells to explain the tissue specificity, and genomic and epigenetic associations contributing to disease susceptibility. We have arbitrarily chosen these four aspects as the most promising in the PBC recent literature and will provide herein a discussion of the recent data and their potential implications.
Collapse
Affiliation(s)
- Marco Folci
- Division of Internal Medicine, IRCCS Istituto Clinico Humanitas, via A. Manzoni 56, Rozzano, 20089, Milan, Italy
| | | | | | | |
Collapse
|
7
|
WHITWORTH KRISTINM, PRATHER RANDALLS. Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming? Mol Reprod Dev 2010; 77:1001-15. [PMID: 20931660 PMCID: PMC4718708 DOI: 10.1002/mrd.21242] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/23/2010] [Indexed: 01/01/2023]
Abstract
Fertile offspring from somatic cell nuclear transfer (SCNT) is the goal of most cloning laboratories. For this process to be successful, a number of events must occur correctly. First the donor nucleus must be in a state that is amenable to remodeling and subsequent genomic reprogramming. The nucleus must be introduced into an oocyte cytoplasm that is capable of facilitating the nuclear remodeling. The oocyte must then be adequately stimulated to initiate development. Finally the resulting embryo must be cultured in an environment that is compatible with the development of that particular embryo. Much has been learned about the incredible changes that occur to a nucleus after it is placed in the cytoplasm of an oocyte. While we think that we are gaining an understanding of the reorganization that occurs to proteins in the donor nucleus, the process of cloning is still very inefficient. Below we will introduce the procedures for SCNT, discuss nuclear remodeling and reprogramming, and review techniques that may improve reprogramming. Finally we will briefly touch on other aspects of SCNT that may improve the development of cloned embryos.
Collapse
Affiliation(s)
| | - RANDALL S. PRATHER
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Kravets A, Qin H, Ahmad A, Bethlendy G, Gao Q, Rustchenko E. Widespread occurrence of dosage compensation in Candida albicans. PLoS One 2010; 5:e10856. [PMID: 20552010 PMCID: PMC2883996 DOI: 10.1371/journal.pone.0010856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
The important human pathogen Candida albicans possesses an unusual form of gene regulation, in which the copy number of an entire specific chromosome or a large portion of a specific chromosome changes in response to a specific adverse environment, thus, insuring survival. In the absence of the adverse environment, the altered portion of the genome can be restored to its normal condition. One major question is how C. albicans copes with gene imbalance arising by transitory aneuploid states. Here, we compared transcriptomes from cells with either two copies or one copy of chromosome 5 (Ch5) in, respectively, a diploid strain 3153A and its representative derivative Sor55. Statistical analyses revealed that at least 40% of transcripts from the monosomic Ch5 are fully compensated to a disomic level, thus, indicating the existence of a genome-wide mechanism maintaining cellular homeostasis. Only approximately 15% of transcripts were diminished twofold in accordance with what would be expected for Ch5 monosomy. Another minor portion of approximately 6% of transcripts, unexpectedly, increased up to twofold and higher than the disomic level, demonstrating indirect control by monosomy. Array comparative genome hybridization revealed that only few out of approximately 500 genes on the monosomic Ch5b were duplicated, thus, not causing a global up regulation. Dosage compensation was confirmed with several representative genes from another monosomic Ch5a in the mutant Sor60. We suggest that C. albicans's unusual regulation of gene expression by the loss and gain of entire chromosomes is coupled with widespread compensation of gene dosage at the transcriptional level.
Collapse
Affiliation(s)
- Anatoliy Kravets
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hong Qin
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Ausaf Ahmad
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Gabor Bethlendy
- Roche Diagnostics Corporation, Indianapolis, Indiana, United States of America
| | - Qinshan Gao
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Casimir GJ, Heldenbergh F, Hanssens L, Mulier S, Heinrichs C, Lefevre N, Désir J, Corazza F, Duchateau J. Gender differences and inflammation: an in vitro model of blood cells stimulation in prepubescent children. JOURNAL OF INFLAMMATION-LONDON 2010; 7:28. [PMID: 20525175 PMCID: PMC2890631 DOI: 10.1186/1476-9255-7-28] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/02/2010] [Indexed: 11/21/2022]
Abstract
Background Gender influences clinical presentations and markers in inflammatory diseases. In many chronic conditions, frequency of complications is greater in females, suggesting that continuous inflammatory reaction may induce greater damage in targeted organs and functions. Methods To investigate gender dimorphism at a cellular level, we evaluated the production of cytokines implicated in inflammatory processes (IL -1, IL- 6, PGE-2 and TNF alpha), in healthy prepubescent children of both sex and Turner's syndrome (TS) patients (genotype XO). We used stimulation by LPS (0.2 and 1 ng/ml) and Pokeweed Mitogen (PWM) on overnight cultures from whole blood samples, collected in 57 subjects: 22 girls/26 boys (5-96 months), and 9 TS patients (6-15 years). The primary outcome was to evaluate if gender influences the production of cytokines, with potential relation to X chromosome monosomy. Secondary endpoints were to relate different cytokines level productions and conditions. Results We confirm the male over female increased cytokine productions already observed in adults. This is contrasting with numerous observations obtained in vivo about increased production of inflammatory markers in females (CRP, ESR and neutrophil counts), as we recently reported in children. Relative variations of the dimorphism according to stimulus, its concentration and cytokine type are discussed, presenting IL6 with a modulating function that could be more potent in males. TS subjects follow mostly the male pattern of reactivity, sustaining the role of some gene expression differing with X chromosome monosomy and disomy. Conclusions Persistence of the latter dimorphism throughout life casts doubts on its direct relationship with individual hormonal status, as already documented by others in vitro, and supports the need for alternative hypothesis, such as the influence of X chromosome gene products escaping X inactivation in females and absent in subjects with X monosomy (males, TS).
Collapse
Affiliation(s)
- Georges Ja Casimir
- Department of Pulmonology and Allergology, Université Libre de Bruxelles (ULB), University Children's Hospital Queen Fabiola, Avenue J,J, Crocq 15, Brussels, 1020, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dementyeva EV, Shevchenko AI, Anopriyenko OV, Mazurok NA, Elisaphenko EA, Nesterova TB, Brockdorff N, Zakian SM. Difference between random and imprinted X inactivation in common voles. Chromosoma 2010; 119:541-52. [PMID: 20473512 DOI: 10.1007/s00412-010-0277-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/15/2010] [Accepted: 04/26/2010] [Indexed: 11/24/2022]
Abstract
During early development in female mammals, most genes on one of the two X-chromosomes undergo transcriptional silencing. In the extraembryonic lineages of some eutherian species, imprinted X-inactivation of the paternal X-chromosome occurs. In the cells of the embryo proper, the choice of the future inactive X-chromosome is random. We mapped several genes on the X-chromosomes of five common vole species and compared their expression and methylation patterns in somatic and extraembryonic tissues, where random and imprinted X-inactivation occurs, respectively. In extraembryonic tissues, more genes were expressed on the inactive X-chromosome than in somatic tissues. We also found that the methylation status of the X-linked genes was always in accordance with their expression pattern in somatic, but not in extraembryonic tissues. The data provide new evidence that imprinted X-inactivation is less complete and/or stable than the random form and DNA methylation contributes less to its maintenance.
Collapse
Affiliation(s)
- Elena V Dementyeva
- Russian Academy of Sciences, Siberian Department, Institute of Cytology and Genetics, ac. Lavrentyev Avenue 10, Novosibirsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Piro M, Della Bona R, Abbate A, Biasucci LM, Crea F. Sex-Related Differences in Myocardial Remodeling. J Am Coll Cardiol 2010; 55:1057-65. [DOI: 10.1016/j.jacc.2009.09.065] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/27/2009] [Accepted: 09/01/2009] [Indexed: 11/28/2022]
|
12
|
Abstract
PURPOSE OF REVIEW To determine the advances made in the genetics of systemic lupus erythematosus (SLE) or Sjögren's syndrome as the era of genome-wide association and high-throughput single nucleotide typing begins. RECENT FINDINGS Several genome-wide association studies have been performed in SLE but there are no such studies published or in progress for Sjögren's syndrome. Genetics and the functional significance of risk alleles in the interferon pathway are being worked out in detail. This is especially true for STAT4 and IRF5. Gene copy number variation, a major source of genetic variability, is important for several genes that impart risk for SLE. An X chromosome copy number dose effect has recently been identified. Genetic evaluation of Sjögren's syndrome is limited to small studies that have concentrated on genes already shown to be risk factors in SLE. SUMMARY Knowledge of the genetics of SLE is advancing rapidly, whereas that of Sjögren's syndrome lags behind considerably.
Collapse
|
13
|
Abstract
Sex chromosome behaviour fundamentally differs between male and female meiosis. In oocyte, X chromosomes synapse giving a XX bivalent which is not recognizable in their morphology and behaviour from autosomal bivalents. In human male, X and Y chromosomes differ from one another in their morphology and their genetic content, leading to a limited pairing and preventing genetic recombination, excepted in homologous region PAR1. During pachytene stage of the first meiotic prophase, X and Y chromosomes undergo a progressive condensation and form a transcriptionally silenced peripheral XY body. The condensation of the XY bivalent during pachytene stage led us to describe four pachytene substages and to localize the pachytene checkpoint between substages 2 and 3. We also defined the pachytene index (PI=P1+P2/P1+P2+P3+P4) which is always less than 0.50 in normal meiosis. XY body undergoes decondensation at diplotene stage, but transcriptional inactivation of the two sex chromosomes or Meiotic Sex Chromosome Inactivation (MSCI) persists through to the end of spermatogenesis. Sex chromosome inactivation involves several proteins, some of them were now identified. Two isoforms of the HP1 protein, HP1beta and HP1gamma, are involved in the facultative heterochromatinization of the XY body, but the initiation of this process involves the phosphorylation of the protein H2AX by the kinase ATR whose recruitment depends on BRCA1. Extensive researches on the inactivation of the sex chromosomes during male meiosis will allow to a better understanding of some male infertilities.
Collapse
|