1
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
2
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
3
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
4
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
5
|
You H, Jones MK, Whitworth DJ, McManus DP. Innovations and Advances in Schistosome Stem Cell Research. Front Immunol 2021; 12:599014. [PMID: 33746946 PMCID: PMC7973109 DOI: 10.3389/fimmu.2021.599014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomes infect about 250 million people globally causing the devastating and persistent disease of schistosomiasis. These blood flukes have a complicated life cycle involving alternating infection of freshwater snail intermediate and definitive mammalian hosts. To survive and flourish in these diverse environments, schistosomes transition through a number of distinct life-cycle stages as a result of which they change their body plan in order to quickly adapt to each new environment. Current research suggests that stem cells, present in adults and larvae, are key in aiding schistosomes to facilitate these changes. Given the recent advances in our understanding of schistosome stem cell biology, we review the key roles that two major classes of cells play in the different life cycle stages during intramolluscan and intramammalian development; these include the germinal cells of sporocysts involved in asexual reproduction in molluscan hosts and the neoblasts of adult worms involved in sexual reproduction in human and other mammalian hosts. These studies shed considerable new light in revealing the stem cell heterogeneity driving the propagation of the schistosome life cycle. We also consider the possibility and value of establishing stem cell lines in schistosomes to advance schistosomiasis research. The availability of such self-renewable resources will provide new platforms to study stem cell behavior and regulation, and to address fundamental aspects of schistosome biology, reproductive development and survival. In turn, such studies will create new avenues to unravel individual gene function and to optimize genome-editing processes in blood flukes, which may lead to the design of novel intervention strategies for schistosomiasis.
Collapse
Affiliation(s)
- Hong You
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Malcolm K Jones
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Deanne J Whitworth
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Donald P McManus
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Bertevello CR, Russo BRA, Tahira AC, Lopes-Junior EH, DeMarco R, Oliveira KC. The evolution of TNF signaling in platyhelminths suggests the cooptation of TNF receptor in the host-parasite interplay. Parasit Vectors 2020; 13:491. [PMID: 32977830 PMCID: PMC7519573 DOI: 10.1186/s13071-020-04370-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The TNF signaling pathway is involved in the regulation of many cellular processes (such as apoptosis and cell proliferation). Previous reports indicated the effect of human TNF-α on metabolism, physiology, gene expression and protein phosphorylation of the human parasite Schistosoma mansoni and suggested that its TNF receptor was responsible for this response. The lack of an endogenous TNF ligand reinforced the idea of the use of an exogenous ligand, but also opens the possibility that the receptor actually binds a non-canonical ligand, as observed for NGFRs. METHODS To obtain a more comprehensive view, we analyzed platyhelminth genomes deposited in the Wormbase ParaSite database to investigate the presence of TNF receptors and their respective ligands. Using different bioinformatics approaches, such as HMMer and BLAST search tools we identified and characterized the sequence of TNF receptors and ligand homologs. We also used bioinformatics resources for the identification of conserved protein domains and Bayesian inference for phylogenetic analysis. RESULTS Our analyses indicate the presence of 31 TNF receptors in 30 platyhelminth species. All platyhelminths display a single TNF receptor, and all are structurally remarkably similar to NGFR. It suggests no events of duplication and diversification occurred in this phylum, with the exception of a single species-specific duplication. Interestingly, we also identified TNF ligand homologs in five species of free-living platyhelminths. CONCLUSIONS These results suggest that the TNF receptor from platyhelminths may be able to bind canonical TNF ligands, thus strengthening the idea that these receptors are able to bind human TNF-α. This also raises the hypothesis that an endogenous ligand was substituted by the host ligand in parasitic platyhelminths. Moreover, our analysis indicates that death domains (DD) may be present in the intracellular region of most platyhelminth TNF receptors, thus pointing to a previously unreported apoptotic action of such receptors in platyhelminths. Our data highlight the idea that host-parasite crosstalk using the TNF pathway may be widespread in parasitic platyhelminths to mediate apoptotic responses. This opens up a new hypothesis to uncover what might be an important component to understand platyhelminth infections.
Collapse
Affiliation(s)
- Claudio R Bertevello
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruno R A Russo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana C Tahira
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ednilson Hilário Lopes-Junior
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Katia C Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
In Vitro and In Vivo Efficacies of the EGFR/MEK/ERK Signaling Inhibitors in the Treatment of Alveolar Echinococcosis. Antimicrob Agents Chemother 2020; 64:AAC.00341-20. [PMID: 32482675 PMCID: PMC7526812 DOI: 10.1128/aac.00341-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/25/2020] [Indexed: 01/21/2023] Open
Abstract
Alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is a lethal disease in humans. Novel therapeutic options are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. In this study, we assessed the in vitro and in vivo effects of the epidermal growth factor receptor (EGFR)/MEK/extracellular signal-regulated kinase (ERK) signaling inhibitors, including BIBW2992, CI-1033, and U0126, on E. multilocularis. Alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is a lethal disease in humans. Novel therapeutic options are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. In this study, we assessed the in vitro and in vivo effects of the epidermal growth factor receptor (EGFR)/MEK/extracellular signal-regulated kinase (ERK) signaling inhibitors, including BIBW2992, CI-1033, and U0126, on E. multilocularis. Our data showed that BIBW2992, CI-1033, and U0126 all displayed in vitro effects on the viability of the E. multilocularis metacestode. These inhibitors also showed protoscolicidal activities and caused severe ultrastructural alterations in the parasite. Moreover, BIBW2992 and CI-1033 exhibited potent proapoptotic effects on E. multilocularis metacestodes. Strikingly, a large portion of the apoptotic cells were found to be the germinative cells. In vivo studies showed that BIBW2992 and U0126 significantly reduced parasite burden, and the parasite obtained from BIBW2992-treated mice displayed impaired structural integrity of the germinal layer. In conclusion, these findings demonstrate the potential of EGFR-mediated signaling as a target for the development of novel anti-AE agents. The EGFR inhibitor BIBW2992 represents a promising drug candidate and/or a lead compound for anti-AE chemotherapy.
Collapse
|
8
|
Tang CL, Zhang RH, Liu ZM, Jin H, He L. Effect of regulatory T cells on the efficacy of the fatty acid-binding protein vaccine against Schistosoma japonicum. Parasitol Res 2019; 118:559-566. [PMID: 30607606 DOI: 10.1007/s00436-018-6186-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023]
Abstract
Schistosomiasis is one of the most devastating parasitic diseases, making it imperative to develop efficient vaccines to control the causative flatworms called schistosomes. Regulatory T cells (Tregs) and the Th1 immune response have been implicated in the effectiveness of vaccines to control schistosomiasis, but the mechanisms underlying their effects are unclear. In this study, we evaluated the role of Tregs on the efficacy of the 14 kDa FABP (fatty acid-binding protein) vaccine against Schistosoma japonicum. BALB/c female mice were randomly divided into five groups: an uninfected group, infected control group, anti-CD25 monoclonal antibody (anti-CD25 mAb) group, FABP group, and combined anti-CD25 mAb and FABP group. Compared with FABP alone, a combined treatment with FABP and anti-CD25 mAb increased the rate of S. japonicum inhibition in mice from 30.3 to 56.08% and decreased the number of eggs per gram of liver. Compared with that of the infected control group, the percentage of Tregs in the spleen decreased significantly after single or combined treatment with FABP and anti-CD25 mAb, while it increased gradually in the anti-CD25 mAb group. Further, the secretion of Th1 cytokines, IFN-γ, and IL-2 increased in splenocytes in the anti-CD25 mAb group. Our results indicate that anti-CD25 mAb partially blocks Tregs and concomitantly enhances the Th1 type immune response, thereby enhancing the protective effect of the FABP vaccine.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Zhi-Ming Liu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Huang Jin
- Department of Clinical Laboratory, Wuhan Fourth Hospital; Pu'ai hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital; School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
9
|
Signalling pathways in schistosomes: novel targets for control interventions against schistosomiasis. Emerg Top Life Sci 2017; 1:633-639. [PMID: 33525854 DOI: 10.1042/etls20170093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022]
Abstract
Over the last decade, there has been accumulating evidence showing that signalling pathways are involved in extensive biological and physiological processes in the human blood fluke schistosomes, playing essential roles in environmental sensing, host penetration, growth, development, maturation, embryogenesis, tissue self-renewal and survival. Owing to the likelihood of resistance developing against praziquantel, the only drug currently available that is effective against all the human schistosome species, there is an urgent requirement for an alternative treatment, arguing for continuing research into novel or repurposed anti-schistosomal drugs. An increasing number of anticancer drugs are being developed which block abnormal signalling pathways, a feature that has stimulated interest in developing novel interventions against human schistosomiasis by targeting key cell signalling components. In this review, we discuss the functional characterization of signal transduction pathways in schistosomes and consider current challenges and future perspectives in this important area of research.
Collapse
|
10
|
Kinases: Molecular Stage Directors for Schistosome Development and Differentiation. Trends Parasitol 2017; 34:246-260. [PMID: 29276074 DOI: 10.1016/j.pt.2017.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/03/2023]
Abstract
Understanding schistosome biology is still a challenging mission. The reproductive biology of this parasitic trematode is closely associated with the pathologic consequences of schistosomiasis, the devastating infectious disease caused by members of the family Schistosomatidae worldwide. Recent studies of signaling mechanisms confirmed the prominent roles of protein kinases (PKs) in directing schistosome biology, and first evidence was obtained for an additional contribution of kinases with substrates different from proteins (non-PKs). This review provides an overview of the Schistosoma mansoni kinome in the context of male-female interaction and summarizes recent studies of kinases controlling development and differentiation. Due to their importance for schistosome biology, kinases represent Achilles' heels and are therefore of high value also for translational research.
Collapse
|
11
|
Han Q, Jia B, Hong Y, Cao X, Zhai Q, Lu K, Li H, Zhu C, Fu Z, Shi Y, Lin J. Suppression of VAMP2 Alters Morphology of the Tegument and Affects Glucose uptake, Development and Reproduction of Schistosoma japonicum. Sci Rep 2017; 7:5212. [PMID: 28701752 PMCID: PMC5507895 DOI: 10.1038/s41598-017-05602-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis caused by schsitosomes is a serious global public health concern. The tegument that surrounds the worm is critical to the schistosomes survival. The tegument apical membrane undergoes a continuous process of rupture and repair owing to membranous vacuoles fusing with the plasma membrane. Vesicle-associated membrane protein 2 (VAMP2), a member of soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNAREs) is required for membrane fusion. Here, we used RNA interference (RNAi) to knock down the expression of VAMP2 of Schistosoma japonicum (SjVAMP2), and both real-time PCR and western blot analysis confirmed the suppression of this molecule, as well as the suppression of the transcript levels of schistosome glucose transporters (SGTP1 and SGTP4), and insulin receptors (SjIR1 and SjIR2). SjVAMP2-suppressed worms exhibited a lower viability, and phenotypic alterations were also observed in the tegument. Moreover, the glucose consumption of SjVAMP2-suppressed worms decreased significantly in 4 and 6 days, respectively, as well as a significant reduction in egg production. We also observed a significant reduction in worm burden and hepatic eggs burden in two independent RNAi experiment in vivo, and minor pathological changes in mice treated with SjVAMP2 specific small interfering (si)RNA. These findings reveal that SjVAMP2 may play important roles in the maintenance of tegument, glucose uptake, worm development and egg production in schistosomes.
Collapse
Affiliation(s)
- Qian Han
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Bingguang Jia
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yang Hong
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xiaodan Cao
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qi Zhai
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ke Lu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Hao Li
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Chuangang Zhu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Zhiqiang Fu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yonghong Shi
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Jiaojiao Lin
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
12
|
Picard MAL, Boissier J, Roquis D, Grunau C, Allienne JF, Duval D, Toulza E, Arancibia N, Caffrey CR, Long T, Nidelet S, Rohmer M, Cosseau C. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation. PLoS Negl Trop Dis 2016; 10:e0004930. [PMID: 27677173 PMCID: PMC5038963 DOI: 10.1371/journal.pntd.0004930] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner. Methodology/ Principal Findings We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Conclusions/ Significance Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on the parasite development in interaction with its vertebrate host, but also new insights on its reproductive function. Parasitic flatworms include more than 20,000 species that are classically hermaphrodites. Among them, the roughly hundred species of Schistosomatidae are intriguing because they are gonochoric. Schistosomes are responsible of the second most important parasitic disease worldwide, and eggs are the main cause of the inflammatory symptoms. Thus, studying the sexual reproduction mechanisms of schistosomes is of particular interest for drug development. Schistosome’s sex is genetically determined by the presence of sex chromosomes: ZZ in males or ZW in females. There is, however, no phenotypic dimorphism in the larval stages: sexual dimorphism appears only in the vertebrate host. In order to understand the molecular mechanisms underlying phenotypic sexual dimorphism, we performed a transcriptome analysis (RNA-Seq) in five different stages of the parasite lifecycle as well as a chromatin status analysis (ChIP-Seq) in the non-differentiated stage cercariae and in the adult differentiated stage, for males and females separately. Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, developmental pathways and epigenetic regulators. Our sex-comparative approach provides therefore new potential therapeutic targets to affect development and sexual reproduction of parasite.
Collapse
Affiliation(s)
- Marion A. L. Picard
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jérôme Boissier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Roquis
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Eve Toulza
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | | | | | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
13
|
Magalhães LG, Morais ER, Machado CB, Gomes MS, Cabral FJ, Souza JM, Soares CS, Sá RG, Castro-Borges W, Rodrigues V. Uncovering Notch pathway in the parasitic flatworm Schistosoma mansoni. Parasitol Res 2016; 115:3951-61. [PMID: 27344453 DOI: 10.1007/s00436-016-5161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023]
Abstract
Several signaling molecules that govern development in higher animals have been identified in the parasite Schistosoma mansoni, including the transforming growth factor β, protein tyrosine kinases, nuclear hormone receptors, among others. The Notch pathway is a highly conserved signaling mechanism which is involved in a wide variety of developmental processes including embryogenesis and oogenesis in worms and flies. Here we aimed to provide the molecular reconstitution of the Notch pathway in S. mansoni using the available transcriptome and genome databases. Our results also revealed the presence of the transcripts coded for SmNotch, SmSu(H), SmHes, and the gamma-secretase complex (SmNicastrin, SmAph-1, and SmPen-2), throughout all the life stages analyzed. Besides, it was observed that the viability and separation of adult worm pairs were not affected by treatment with N-[N(3,5)-difluorophenacetyl)-L-Alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch pathway inhibitor. Moreover, DAPT treatment decreased the production of phenotypically normal eggs and arrested their development in culture. Our results also showed a significant decrease in SmHes transcript levels in both adult worms and eggs treated with DAPT. These results provide, for the first time, functional validation of the Notch pathway in S. mansoni and suggest its involvement in parasite oogenesis and embryogenesis. Given the complexity of the Notch pathway, further experiments shall highlight the full repertoire of Notch-mediated cellular processes throughout the S. mansoni life cycle.
Collapse
Affiliation(s)
- Lizandra G Magalhães
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Avenida, Dr Armando Salles de Oliveira, 201 Franca, SP, Brazil.
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Enyara R Morais
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Carla B Machado
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Matheus S Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Fernanda J Cabral
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Julia M Souza
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Avenida, Dr Armando Salles de Oliveira, 201 Franca, SP, Brazil
| | - Cláudia S Soares
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata G Sá
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Vinaud MC, de Andrade LCM, Alves PFM, Fraga CM, Bezerra JCB, de Souza Lino Junior R. In vitro stressing factors altering the TCA cycle and morphology of Taenia crassiceps cysticerci. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60984-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Graham BB, Kumar R. Schistosomiasis and the pulmonary vasculature (2013 Grover Conference series). Pulm Circ 2015; 4:353-62. [PMID: 25621148 DOI: 10.1086/675983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/17/2014] [Indexed: 12/11/2022] Open
Abstract
Inflammation is associated with multiple forms of pulmonary arterial hypertension (PAH), including autoimmune (scleroderma) and infectious (HIV, schistosomiasis) etiologies. More than 200 million people worldwide are infected with Schistosoma, predominantly in Brazil, Africa, the Middle East, and South Asia. Schistosomiasis causes PAH in about 6.1% of those chronically infected and is particularly associated with the species Schistosoma mansoni. Treatment for schistosomiasis-associated PAH includes antihelminthic treatment, if active infection is present (although associated with little immediate benefit to the pulmonary hypertension), and then pharmacologic treatment with targeted pulmonary vascular therapies, including phosphodiesterase type 5 inhibitors and endothelin receptor antagonists. The pathophysiological mechanism by which this parasitic infection causes pulmonary hypertension is unknown but is unlikely to be simple mechanical obstruction of the pulmonary vasculature by parasite eggs. Preexisting hepatosplenic disease due to Schistosoma infection is likely important because of portopulmonary hypertension and/or because it allows egg embolization to the lung by portocaval shunts. Potential immune signaling originating in the periegg granulomas causing the pulmonary vascular disease includes the cytokines interleukin (IL)-4, IL-6, IL-13, and transforming growth factor β. Modulating these pathways may be possible targets for future therapy of schistosomiasis-associated PAH specifically, and study of this disease may provide novel insights into other inflammatory causes of PAH.
Collapse
Affiliation(s)
- Brian B Graham
- Program in Translational Lung Research, University of Colorado Denver, Aurora, Colorado, USA; and Pulmonary Vascular Research Institute
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado Denver, Aurora, Colorado, USA; and Pulmonary Vascular Research Institute
| |
Collapse
|
16
|
Imatinib treatment causes substantial transcriptional changes in adult Schistosoma mansoni in vitro exhibiting pleiotropic effects. PLoS Negl Trop Dis 2014; 8:e2923. [PMID: 24921634 PMCID: PMC4055459 DOI: 10.1371/journal.pntd.0002923] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schistosome parasites cause schistosomiasis, one of the most important infectious diseases worldwide. For decades Praziquantel (PZQ) is the only drug widely used for controlling schistosomiasis. The absence of a vaccine and fear of PZQ resistance have motivated the search for alternatives. Studies on protein kinases (PKs) demonstrated their importance for diverse physiological processes in schistosomes. Among others two Abl tyrosine kinases, SmAbl1 and SmAbl2, were identified in Schistosoma mansoni and shown to be transcribed in the gonads and the gastrodermis. SmAbl1 activity was blocked by Imatinib, a known Abl-TK inhibitor used in human cancer therapy (Gleevec/Glivec). Imatinib exhibited dramatic effects on the morphology and physiology of adult schistosomes in vitro causing the death of the parasites. METHODOLOGY/PRINCIPAL FINDINGS Here we show modeling data supporting the targeting of SmAbl1/2 by Imatinib. A biochemical assay confirmed that SmAbl2 activity is also inhibited by Imatinib. Microarray analyses and qRT-PCR experiments were done to unravel transcriptional processes influenced by Imatinib in adult schistosomes in vitro demonstrating a wide influence on worm physiology. Surface-, muscle-, gut and gonad-associated processes were affected as evidenced by the differential transcription of e.g. the gynecophoral canal protein gene GCP, paramyosin, titin, hemoglobinase, and cathepsins. Furthermore, transcript levels of VAL-7 and egg formation-associated genes such as tyrosinase 1, p14, and fs800-like were affected as well as those of signaling genes including a ribosomal protein S6 kinase and a glutamate receptor. Finally, a comparative in silico analysis of the obtained microarray data sets and previous data analyzing the effect of a TGFβR1 inhibitor on transcription provided first evidence for an association of TGFβ and Abl kinase signaling. Among others GCP and egg formation-associated genes were identified as common targets. CONCLUSIONS/SIGNIFICANCE The data affirm broad negative effects of Imatinib on worm physiology substantiating the role of PKs as interesting targets.
Collapse
|
17
|
You H, Stephenson RJ, Gobert GN, McManus DP. Revisiting glucose uptake and metabolism in schistosomes: new molecular insights for improved schistosomiasis therapies. Front Genet 2014; 5:176. [PMID: 24966871 PMCID: PMC4052099 DOI: 10.3389/fgene.2014.00176] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022] Open
Abstract
A better understanding of the molecular mechanisms required for schistosomes to take up glucose, the major nutritional source exploited by these blood flukes from their mammalian hosts and the subsequent metabolism required to fuel growth and fecundity, can provide new avenues for developing novel interventions for the control of schistosomiasis. This aspect of parasitism is particularly important to paired adult schistosomes, due to their considerable requirements for the energy needed to produce the extensive numbers of eggs laid daily by the female worm. This review describes recent advances in characterizing glucose metabolism in adult schistosomes. Potential intervention targets are discussed within the insulin signaling and glycolysis pathways, both of which play critical roles in the carbohydrate and energy requirements of schistosomes.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research InstituteBrisbane, QLD, Australia
| | - Rachel J. Stephenson
- Faculty of Science, School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research InstituteBrisbane, QLD, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research InstituteBrisbane, QLD, Australia
| |
Collapse
|
18
|
Wang S, Luo X, Zhang S, Yin C, Dou Y, Cai X. Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening. FEBS J 2013; 281:877-93. [PMID: 24286276 DOI: 10.1111/febs.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
No endogenous insulin-like peptides in parasitic flatworms have been reported. Insulin receptors from flukes and tapeworms have been shown to interact directly with the host-derived insulin molecule, which suggests the exploitation of host-derived insulin. In this study, a strategy of genome-wide searches followed by comprehensive analyses of strictly conserved features of the insulin family was used to demonstrate the presence of putative insulin-like peptides in the genomes of six tapeworms and two flukes. In addition, whole insulin signaling pathways were annotated on a genome-wide scale. Two putative insulin-like peptide genes in each genome of tapeworms and one insulin-like peptide gene in each genome of flukes were identified. The comprehensive analyses revealed that all of these peptides showed the common features shared by other members of the insulin family, and the phylogenetic analysis implied a putative gene duplication event in the Cestoda during the evolution of insulin-like peptide genes. The quantitative expression analysis and immunolocalization results suggested a putative role of these peptides in reproduction. Entire sets of major components of the classic insulin signaling pathway were successfully identified, suggesting that this pathway in parasitic flatworms might also regulate many other important biological activities. We believe that the identification of the insulin-like peptides gives us a better understanding of the insulin signaling pathway in these parasites, as well as host-parasite interactions.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
19
|
de Abreu LA, Calixto C, Waltero CF, Della Noce BP, Githaka NW, Seixas A, Parizi LF, Konnai S, Vaz IDSJ, Ohashi K, Logullo C. The conserved role of the AKT/GSK3 axis in cell survival and glycogen metabolism in Rhipicephalus (Boophilus) microplus embryo tick cell line BME26. Biochim Biophys Acta Gen Subj 2013; 1830:2574-82. [PMID: 23274741 DOI: 10.1016/j.bbagen.2012.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/23/2012] [Accepted: 12/15/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tick embryogenesis is a metabolically intensive process developed under tightly controlled conditions and whose components are poorly understood. METHODS In order to characterize the role of AKT (protein kinase B) in glycogen metabolism and cell viability, glycogen determination, identification and cloning of an AKT from Rhipicephalus microplus were carried out, in parallel with experiments using RNA interference (RNAi) and chemical inhibition. RESULTS A decrease in glycogen content was observed when AKT was chemically inhibited by 10-DEBC treatment, while GSK3 inhibition by alsterpaullone had an opposing effect. RmAKT ORF is 1584-bp long and encodes a polypeptide chain of 60.1 kDa. Phylogenetic and sequence analyses showed significant differences between vertebrate and tick AKTs. Either AKT or GSK3 knocked down cells showed a 70% reduction in target transcript levels, but decrease in AKT also reduced glycogen content, cell viability and altered cell membrane permeability. However, the GSK3 reduction promoted an increase in glycogen content. Additionally, either GSK3 inhibition or gene silencing had a protective effect on BME26 viability after exposure to ultraviolet radiation. R. microplus AKT and GSK3 were widely expressed during embryo development. Taken together, our data support an antagonistic role for AKT and GSK3, and strongly suggest that such a signaling axis is conserved in tick embryos, with AKT located upstream of GSK3. GENERAL SIGNIFICANCE The AKT/GSK3 axis is conserved in tick in a way that integrates glycogen metabolism and cell survival, and exhibits phylogenic differences that could be important for the development of novel control methods.
Collapse
Affiliation(s)
- Leonardo Araujo de Abreu
- LQFPP, CBB and Unidade de Experimentação Animal, RJ, UENF, Avenida Alberto Lamego, 2000, Horto, CEP 28013-602, Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Morais ER, Oliveira KC, Magalhães LG, Moreira EBC, Verjovski-Almeida S, Rodrigues V. Effects of curcumin on the parasite Schistosoma mansoni: a transcriptomic approach. Mol Biochem Parasitol 2012; 187:91-7. [PMID: 23276630 DOI: 10.1016/j.molbiopara.2012.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Schistosomiasis remains a severe problem of public health in developing countries. Several reports show that praziquantel, the drug of choice for treating schistosomiasis, can select Schistosoma mansoni strains resistant to the drug. Thus, developing new drugs against this parasitosis is a highly desirable goal. Curcumin, a phenolic compound deriving from the plant Curcuma longa, has been shown to have anticancer, anti-inflammatory and antiparasitic effects. Recently, our group has demonstrated that curcumin causes the separation of S. mansoni adult worm pairs, eggs infertility, decreased oviposition and parasite viability, leading to death. In the present work, we have investigated the effects of curcumin on S. mansoni gene expression in adult worms through microarray analyses. Our results showed 2374 genes that were significantly and differentially expressed, of which 981 were up-regulated and 1393 were down-regulated. Among the differentially expressed genes there were components of important signaling pathways involved in embryogenesis and oogenesis such as Notch and TGF-β. Gene networks most significantly enriched with altered genes were identified, including a network related to Cellular Function and Maintenance, Molecular Transport, Organ Development, which is connected to the TGF-β signaling pathway and might be related to the effect of curcumin on pairing of adult worm pairs, egg production and viability of worms. qPCR validation experiments with 7 genes have confirmed the expression changes detected with arrays. Here we suggest that transcriptional repression observed in Notch and TGF-β pathways could explain the effects on oviposition and egg development described in the literature.
Collapse
Affiliation(s)
- Enyara R Morais
- Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, 14040-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
21
|
McVeigh P, Atkinson L, Marks NJ, Mousley A, Dalzell JJ, Sluder A, Hammerland L, Maule AG. Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol Drugs Drug Resist 2012; 2:76-91. [PMID: 24533265 PMCID: PMC3862435 DOI: 10.1016/j.ijpddr.2011.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023]
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Louise Atkinson
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Nikki J. Marks
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Angela Mousley
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Johnathan J. Dalzell
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Ann Sluder
- Scynexis Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA
| | | | - Aaron G. Maule
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
22
|
Wilson RA. The cell biology of schistosomes: a window on the evolution of the early metazoa. PROTOPLASMA 2012; 249:503-518. [PMID: 21976269 DOI: 10.1007/s00709-011-0326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
This review of schistosome cell biology has a dual purpose; its intent is to alert two separate research communities to the activities of the other. Schistosomes are by far and away the best-characterised platyhelminths, due to their medical and economic importance, but seem to be almost totally ignored by researchers on the free-living lower metazoans. Equally, in their enthusiasm for the parasitic way of life, schistosome researchers seldom pay attention to the work on free-living animals that could inform their molecular investigations. The publication of transcriptomes and/or genomes for Schistosoma mansoni and Schistosoma japonicum, the sponge Archimedon, the cnidarians Nematostella and Hydra and the planarian Schmidtea provide the raw material for comparisons. Apart from interrogation of the databases for molecular similarities, there have been differences in technical approach to these lower metazoans; widespread application of whole mount in situ hybridisation to Schmidtea contrasts with the application of targeted proteomics to schistosomes. Using schistosome cell biology as the template, the key topics of cell adhesion, development, signalling pathways, nerve and muscle, and epithelia, are reviewed, where possible interspersing comparisons with the sponge, cnidarian and planarian data. The biggest jump in the evolution of cellular capabilities appears to be in the transition from a diploblast to triploblast level of organisation associated with development of a mobile and plastic body form.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
23
|
Oliveira KC, Carvalho MLP, Verjovski-Almeida S, LoVerde PT. Effect of human TGF-β on the gene expression profile of Schistosoma mansoni adult worms. Mol Biochem Parasitol 2012; 183:132-9. [PMID: 22387759 DOI: 10.1016/j.molbiopara.2012.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 01/09/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
Abstract
Schistosoma mansoni is responsible for schistosomiasis, a parasitic disease that affects 200 million people worldwide. Molecular mechanisms of host-parasite interaction are complex and involve a crosstalk between host signals and parasite receptors. TGF-β signaling pathway has been shown to play an important role in S. mansoni development and embryogenesis. In particular human (h) TGF-β has been shown to bind to a S. mansoni receptor, transduce a signal that regulates the expression of a schistosome target gene. Here we describe 381 parasite genes whose expression levels are affected by in vitro treatment with hTGF-β. Among these differentially expressed genes we highlight genes related to morphology, development and cell cycle that could be players of cytokine effects on the parasite. We confirm by qPCR the expression changes detected with microarrays for 5 out of 7 selected genes. We also highlight a set of non-coding RNAs transcribed from the same loci of protein-coding genes that are differentially expressed upon hTGF-β treatment. These datasets offer potential targets to be explored in order to understand the molecular mechanisms behind the possible role of hTGF-β effects on parasite biology.
Collapse
Affiliation(s)
- Katia C Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
24
|
MicroRNAs: potentially important regulators for schistosome development and therapeutic targets against schistosomiasis. Parasitology 2012; 139:669-79. [PMID: 22309492 DOI: 10.1017/s0031182011001855] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules that regulate gene expression post-transcriptionally by targeting the 3' untranslated region (3' UTR) of messenger RNAs. Since the discovery of the first miRNA in Caenorhabditis elegans, important regulatory roles for miRNAs in many key biological processes including development, cell proliferation, cell differentiation and apoptosis of many organisms have been described. Hundreds of miRNAs have been identified in various multicellular organisms and many are evolutionarily conserved. Schistosomes are multi-cellular eukaryotes with a complex life-cycle that require genes to be expressed and regulated precisely. Recently, miRNAs have been identified in two major schistosome species, Schistosoma japonicum and S. mansoni. These miRNAs are likely to play critical roles in schistosome development and gene regulation. Here, we review recent studies on schistosome miRNAs and discuss the potential roles of miRNAs in schistosome development and gene regulation. We also summarize the current status for targeting miRNAs and the potential of this approach for therapy against schistosomiasis.
Collapse
|
25
|
Peng J, Han H, Gobert GN, Hong Y, Jiang W, Wang X, Fu Z, Liu J, Shi Y, Lin J. Differential gene expression in Schistosoma japonicum schistosomula from Wistar rats and BALB/c mice. Parasit Vectors 2011; 4:155. [PMID: 21819550 PMCID: PMC3162926 DOI: 10.1186/1756-3305-4-155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/05/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 46 species of mammals can be naturally infected with Schistosoma japonicum in the mainland of China. Mice are permissive and may act as the definitive host of the life cycle. In contrast, rats are less susceptible to S. japonicum infection, and are considered to provide an unsuitable micro-environment for parasite growth and development. Since little is known of what effects this micro-environment has on the parasite itself, we have in the present study utilised a S. japonicum oligonucleotide microarray to compare the gene expression differences of 10-day-old schistosomula maintained in Wistar rats with those maintained in BALB/c mice. RESULTS In total 3,468 schistosome genes were found to be differentially expressed, of which the majority (3,335) were down-regulated (≤ 2 fold) and 133 were up-regulated (≥ 2 fold) in schistosomula from Wistar rats compared with those from BALB/c mice. Gene ontology (GO) analysis revealed that of the differentially expressed genes with already established functions or close homology to well characterized genes in another organisms, many are related to important biological functions or molecular processes. Among the genes that were down-regulated in schistosomula from Wistar rats, some were associated with metabolism, signal transduction and development. Of these genes related to metabolic processes, areas including translation, protein and amino acid phosphorylation, proteolysis, oxidoreductase activities, catalytic activities and hydrolase activities, were represented. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differential expressed genes indicated that of the 328 genes that had a specific KEGG pathway annotation, 324 were down-regulated and were mainly associated with metabolism, growth, redox pathway, oxidative phosphorylation, the cell cycle, ubiquitin-mediated proteolysis, protein export and the MAPK (mitogen-activated protein kinases) signaling pathway. CONCLUSIONS This work presents the first large scale gene expression study identifying the differences between schistosomula maintained in mice and those maintained in rats, and specifically highlights differential expression that may impact on the survival and development of the parasite within the definitive host. The research presented here provides valuable information for the better understanding of schistosome development and host-parasite interactions.
Collapse
Affiliation(s)
- Jinbiao Peng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue road, Minhang, Shanghai 200241, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|