1
|
Zhu Q, Du J, Li Y, Qin X, He R, Ma H, Liang X. Downregulation of glucose-energy metabolism via AMPK signaling pathway in granulosa cells of diminished ovarian reserve patients. Gene 2025; 933:148979. [PMID: 39366473 DOI: 10.1016/j.gene.2024.148979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/15/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Glucose metabolism plays a crucial role in the function of granulosa cells (GCs) and the development of follicles. In cases of diminished ovarian reserve (DOR), alterations in these processes can impact female fertility. This study aims to investigate changes in glucose-energy metabolism in GCs of young DOR patients aged 20 to 35 years and their correlation with the onset and progression of DOR. 72 DOR cases and 75 women with normal ovarian reserve (NOR) as controls were included based on the POSEIDON and Bologna criteria. Samples of GCs and follicular fluid (FF) were collected for a comprehensive analysis involving transcriptomics, metabolomics, RT-qPCR, JC-1 staining, and flow cytometry. The study identified differentially expressed genes and metabolites in GCs of DOR and NOR groups, revealing 7 common pathways related to glucose-energy metabolism, along with 11 downregulated genes and 14 metabolites. Key substances in the glucose-energy metabolism pathway, such as succinate, lactate, NADP, ATP, and ADP, showed decreased levels, with the DOR group exhibiting a reduced ADP/ATP ratio. Downregulation of genes involved in glycolysis (HK, PGK, LDH1), the TCA cycle (CS), and gluconeogenesis (PCK) was observed, along with reduced glucose content and expression of glucose transporter genes (GLUT1 and GLUT3) in DOR GCs. Additionally, decreased AMPK pathway activity and impaired mitochondrial function in DOR suggest a connection between mitochondrial dysfunction and disrupted energy metabolism. Above all, the decline in glucose-energy metabolism in DOR is closely associated with its onset and progression. Reduced glucose uptake and impaired mitochondrial function in DOR GCs lead to internal energy imbalances, hindering the AMPK signaling pathway, limiting energy production and supply, and ultimately impacting follicle development and maturation.
Collapse
Affiliation(s)
- Qinying Zhu
- Department of Obstetrics and Gynecology, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Beijing, China; The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, China.
| |
Collapse
|
2
|
Lara J, Mastela C, Abd M, Pitstick L, Ventrella R. Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles. Int J Mol Sci 2024; 25:11597. [PMID: 39519148 PMCID: PMC11547152 DOI: 10.3390/ijms252111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the regenerative capacity of Xenopus laevis, focusing on tail regeneration, as a model to uncover cellular, molecular, and developmental mechanisms underlying tissue repair. X. laevis tadpoles provide unique insights into regenerative biology due to their regeneration-competent and -incompetent stages and ability to regrow complex structures in the tail, including the spinal cord, muscle, and skin, after amputation. The review delves into the roles of key signaling pathways, such as those involving reactive oxygen species (ROS) and signaling molecules like BMPs and FGFs, in orchestrating cellular responses during regeneration. It also examines how mechanotransduction, epigenetic regulation, and metabolic shifts influence tissue restoration. Comparisons of regenerative capacity with other species shed light on the evolutionary loss of regenerative abilities and underscore X. laevis as an invaluable model for understanding the constraints of tissue repair in higher organisms. This comprehensive review synthesizes recent findings, suggesting future directions for exploring regeneration mechanisms, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Camilla Mastela
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Magda Abd
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
3
|
McCartney ME, Wheeler GM, O’Neill AG, Patel JH, Litt ZR, Calise SJ, Kollman JM, Wills AE. Appendage regeneration requires IMPDH2 and creates a sensitized environment for enzyme filament formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605679. [PMID: 39131357 PMCID: PMC11312571 DOI: 10.1101/2024.07.29.605679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Regeneration of lost tissue requires biosynthesis of metabolites needed for cell proliferation and growth. Among these are the critical purine nucleotides ATP and GTP. The abundance and balance of these purines is regulated by inosine monophosphate dehydrogenase 2 (IMPDH2), which catalyzes the committing step of GTP synthesis. IMPDH2 assembles into filaments that resist allosteric inhibition under conditions of high GTP demand. Here we asked whether IMPDH2 is required in the highly proliferative context of regeneration, and whether its assembly into filaments takes place in regenerating tissue. We find that inhibition of IMPDH2 leads to impaired tail regeneration and reduced cell proliferation in the tadpole Xenopus tropicalis. We find that both endogenous and fluorescent fusions of IMPDH2 robustly assemble into filaments throughout the tadpole tail, and that the regenerating tail creates a sensitized condition for filament formation. These findings clarify the role of purine biosynthesis in regeneration and reveal that IMPDH2 enzyme filament formation is a biologically relevant mechanism of regulation in vertebrate regeneration.
Collapse
Affiliation(s)
| | - Gavin M. Wheeler
- Department of Biochemistry. University of Washington, Seattle WA
| | - Audrey G. O’Neill
- Department of Biochemistry. University of Washington, Seattle WA
- Program in Biological Physics, Structure, and Design. University of Washington, Seattle WA
| | - Jeet H. Patel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia PA
| | - Zoey R. Litt
- Department of Biochemistry. University of Washington, Seattle WA
| | - S. John Calise
- Department of Biochemistry. University of Washington, Seattle WA
| | | | - Andrea E. Wills
- Department of Biochemistry. University of Washington, Seattle WA
| |
Collapse
|
4
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Molloy JW, Barry D. The interplay between glucose and ketone bodies in neural stem cell metabolism. J Neurosci Res 2024; 102:e25342. [PMID: 38773878 DOI: 10.1002/jnr.25342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Glucose is the primary energy source for neural stem cells (NSCs), supporting their proliferation, differentiation, and quiescence. However, the high demand for glucose during brain development often exceeds its supply, leading to the utilization of alternative energy sources including ketone bodies. Ketone bodies, including β-hydroxybutyrate, are short-chain fatty acids produced through hepatic ketogenesis and play a crucial role in providing energy and the biosynthetic components for NSCs when required. The interplay between glucose and ketone metabolism influences NSC behavior and fate decisions, and disruptions in these metabolic pathways have been linked to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Additionally, ketone bodies exert neuroprotective effects on NSCs and modulate cellular responses to oxidative stress, energy maintenance, deacetylation, and inflammation. As such, understanding the interdependence of glucose and ketone metabolism in NSCs is crucial to understanding their roles in NSC function and their implications for neurological conditions. This article reviews the mechanisms of glucose and ketone utilization in NSCs, their impact on NSC function, and the therapeutic potential of targeting these metabolic pathways in neurological disorders.
Collapse
Affiliation(s)
- Joseph W Molloy
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - Denis Barry
- Discipline of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Li J, Li X, Fu S, Meng Y, Lv X, Zhang X, Liu G, Sun J. Adaptation of Glucose Metabolism to Limb Autotomy and Regeneration in the Chinese Mitten Crab. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:205-213. [PMID: 38227174 DOI: 10.1007/s10126-024-10290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Limb autotomy and regeneration represent distinctive responses of crustaceans to environmental stress. Glucose metabolism plays a pivotal role in energy generation for tissue development and regeneration across various species. However, the relationship between glucose metabolism and tissue regeneration in crustaceans remains elusive. Therefore, this study is aimed at analyzing the alterations of glucose metabolic profile during limb autotomy and regeneration in Eriocheir sinensis, while also evaluating the effects of carbohydrate supplementation on limb regeneration. The results demonstrated that limb autotomy triggered a metabolic profile adaption at the early stage of regeneration. Hemolymph glucose levels were elevated, and multiple glucose catabolic pathways were enhanced in the hepatopancreas. Additionally, glucose and ATP levels in the regenerative limb were upregulated, along with increased expression of glucose transporters. Furthermore, the gene expression and activity of enzymes involved in gluconeogenesis were repressed in the hepatopancreas. These findings indicate that limb regeneration triggers metabolic profile adaptations to meet the elevated energy requirements. Moreover, the study observed that supplementation with corn starch enhanced limb regeneration capacity by promoting wound healing and blastema growth. Interestingly, dietary carbohydrate addition influenced limb regeneration by stimulating gluconeogenesis rather than glycolysis in the regenerative limb. Thus, these results underscore the adaptation of glucose metabolism during limb autotomy and regeneration, highlighting its essential role in the limb regeneration process of E. sinensis.
Collapse
Affiliation(s)
- Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China.
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| | - Xiaohong Li
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Simiao Fu
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Yuxuan Meng
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoyan Lv
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Xin Zhang
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Guozheng Liu
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Jinsheng Sun
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China.
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
7
|
O'Sullivan JDB, Blacker TS, Scott C, Chang W, Ahmed M, Yianni V, Mann ZF. Gradients of glucose metabolism regulate morphogen signalling required for specifying tonotopic organisation in the chicken cochlea. eLife 2023; 12:e86233. [PMID: 37539863 PMCID: PMC10425173 DOI: 10.7554/elife.86233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
In vertebrates with elongated auditory organs, mechanosensory hair cells (HCs) are organised such that complex sounds are broken down into their component frequencies along a proximal-to-distal long (tonotopic) axis. Acquisition of unique morphologies at the appropriate position along the chick cochlea, the basilar papilla, requires that nascent HCs determine their tonotopic positions during development. The complex signalling within the auditory organ between a developing HC and its local niche along the cochlea is poorly understood. Using a combination of live imaging and NAD(P)H fluorescence lifetime imaging microscopy, we reveal that there is a gradient in the cellular balance between glycolysis and the pentose phosphate pathway in developing HCs along the tonotopic axis. Perturbing this balance by inhibiting different branches of cytosolic glucose catabolism disrupts developmental morphogen signalling and abolishes the normal tonotopic gradient in HC morphology. These findings highlight a causal link between graded morphogen signalling and metabolic reprogramming in specifying the tonotopic identity of developing HCs.
Collapse
Affiliation(s)
- James DB O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Thomas S Blacker
- Research Department of Structural and Molecular Biology, University College LondonLondonUnited Kingdom
| | - Claire Scott
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Weise Chang
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| | - Zoe F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry Oral and Craniofacial Sciences, King's College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Chopra K, Folkmanaitė M, Stockdale L, Shathish V, Ishibashi S, Bergin R, Amich J, Amaya E. Duox is the primary NADPH oxidase responsible for ROS production during adult caudal fin regeneration in zebrafish. iScience 2023; 26:106147. [PMID: 36843843 PMCID: PMC9950526 DOI: 10.1016/j.isci.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/28/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Sustained elevated levels of reactive oxygen species (ROS) have been shown to be essential for regeneration in many organisms. This has been shown primarily via the use of pharmacological inhibitors targeting the family of NADPH oxidases (NOXes). To identify the specific NOXes involved in ROS production during adult caudal fin regeneration in zebrafish, we generated nox mutants for duox, nox5 and cyba (a key subunit of NOXes 1-4) and crossed these lines with a transgenic line ubiquitously expressing HyPer, which permits the measurement of ROS levels. Homozygous duox mutants had the greatest effect on ROS levels and rate of fin regeneration among the single mutants. However, duox:cyba double mutants showed a greater effect on fin regeneration than the single duox mutants, suggesting that Nox1-4 also play a role during regeneration. This work also serendipitously found that ROS levels in amputated adult zebrafish fins oscillate with a circadian rhythm.
Collapse
Affiliation(s)
- Kunal Chopra
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Milda Folkmanaitė
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Liam Stockdale
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Vishali Shathish
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Shoko Ishibashi
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rachel Bergin
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda 28220 Madrid, Spain
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
9
|
Byatt TC, Martin P. Parallel repair mechanisms in plants and animals. Dis Model Mech 2023; 16:286774. [PMID: 36706000 PMCID: PMC9903144 DOI: 10.1242/dmm.049801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
All organisms have acquired mechanisms for repairing themselves after accidents or lucky escape from predators, but how analogous are these mechanisms across phyla? Plants and animals are distant relatives in the tree of life, but both need to be able to efficiently repair themselves, or they will perish. Both have an outer epidermal barrier layer and a circulatory system that they must protect from infection. However, plant cells are immotile with rigid cell walls, so they cannot raise an animal-like immune response or move away from the insult, as animals can. Here, we discuss the parallel strategies and signalling pathways used by plants and animals to heal their tissues, as well as key differences. A more comprehensive understanding of these parallels and differences could highlight potential avenues to enhance healing of patients' wounds in the clinic and, in a reciprocal way, for developing novel alternatives to agricultural pesticides.
Collapse
Affiliation(s)
- Timothy C. Byatt
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK,Authors for correspondence (; )
| | - Paul Martin
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK,Authors for correspondence (; )
| |
Collapse
|
10
|
Kübler IC, Kretzschmar J, Brankatschk M, Sandoval-Guzmán T. Local problems need global solutions: The metabolic needs of regenerating organisms. Wound Repair Regen 2022; 30:652-664. [PMID: 35596643 PMCID: PMC7613859 DOI: 10.1111/wrr.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
The vast majority of species that belong to the plant or animal kingdom evolved with two main strategies to counter tissue damage-scar formation and regeneration. Whereas scar formation provides a fast and cost-effective repair to exit life-threatening conditions, complete tissue regeneration is time-consuming and requires vast resources to reinstall functionality of affected organs or structures. Local environments in wound healing are widely studied and findings have provided important biomedical applications. Less well understood are organismic physiological parameters and signalling circuits essential to maintain effective tissue repair. Here, we review accumulated evidence that positions the interplay of local and systemic changes in metabolism as essential variables modulating the injury response. We particularly emphasise the role of lipids and lipid-like molecules as significant components long overlooked.
Collapse
Affiliation(s)
- Ines C. Kübler
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Marko Brankatschk
- Department of Molecular, Cell and Developmental Biology, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Patel JH, Ong DJ, Williams CR, Callies LK, Wills AE. Elevated pentose phosphate pathway flux supports appendage regeneration. Cell Rep 2022; 41:111552. [PMID: 36288713 PMCID: PMC10569227 DOI: 10.1016/j.celrep.2022.111552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in Xenopus tropicalis appendage regeneration. Regenerating tissues have increased glucose uptake; however, inhibition of glycolysis does not decrease regeneration. Instead, glucose is funneled to the pentose phosphate pathway (PPP), which is essential for full tail regeneration. Liquid chromatography-mass spectrometry (LC-MS) metabolite profiling reveals increased nucleotide and nicotinamide intermediates required for cell division. Using single-cell RNA sequencing (scRNA-seq), we find that highly proliferative cells have increased transcription of PPP enzymes and not glycolytic enzymes. Further, PPP inhibition results in decreased cell division specifically in regenerating tissue. Our results inform a model wherein regenerating tissues direct glucose toward the PPP, yielding nucleotide precursors to drive regenerative cell proliferation.
Collapse
Affiliation(s)
- Jeet H Patel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel J Ong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Claire R Williams
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - LuLu K Callies
- Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Brandão AS, Borbinha J, Pereira T, Brito PH, Lourenço R, Bensimon-Brito A, Jacinto A. A regeneration-triggered metabolic adaptation is necessary for cell identity transitions and cell cycle re-entry to support blastema formation and bone regeneration. eLife 2022; 11:e76987. [PMID: 35993337 PMCID: PMC9395193 DOI: 10.7554/elife.76987] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Regeneration depends on the ability of mature cells at the injury site to respond to injury, generating tissue-specific progenitors that incorporate the blastema and proliferate to reconstitute the original organ architecture. The metabolic microenvironment has been tightly connected to cell function and identity during development and tumorigenesis. Yet, the link between metabolism and cell identity at the mechanistic level in a regenerative context remains unclear. The adult zebrafish caudal fin, and bone cells specifically, have been crucial for the understanding of mature cell contribution to tissue regeneration. Here, we use this model to explore the relevance of glucose metabolism for the cell fate transitions preceding new osteoblast formation and blastema assembly. We show that injury triggers a modulation in the metabolic profile at early stages of regeneration to enhance glycolysis at the expense of mitochondrial oxidation. This metabolic adaptation mediates transcriptional changes that make mature osteoblast amenable to be reprogramed into pre-osteoblasts and induces cell cycle re-entry and progression. Manipulation of the metabolic profile led to severe reduction of the pre-osteoblast pool, diminishing their capacity to generate new osteoblasts, and to a complete abrogation of blastema formation. Overall, our data indicate that metabolic alterations have a powerful instructive role in regulating genetic programs that dictate fate decisions and stimulate proliferation, thereby providing a deeper understanding on the mechanisms regulating blastema formation and bone regeneration.
Collapse
Affiliation(s)
- Ana S Brandão
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Jorge Borbinha
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Telmo Pereira
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Patrícia H Brito
- UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de LisboaLisbonPortugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | | | - Antonio Jacinto
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| |
Collapse
|
13
|
Wong LL, Bruxvoort CG, Cejda NI, Delaney MR, Otero JR, Forsthoefel DJ. Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians. Nat Commun 2022; 13:3803. [PMID: 35778403 PMCID: PMC9249923 DOI: 10.1038/s41467-022-31385-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Lipid metabolism plays an instructive role in regulating stem cell state and differentiation. However, the roles of lipid mobilization and utilization in stem cell-driven regeneration are unclear. Planarian flatworms readily restore missing tissue due to injury-induced activation of pluripotent somatic stem cells called neoblasts. Here, we identify two intestine-enriched orthologs of apolipoprotein b, apob-1 and apob-2, which mediate transport of neutral lipid stores from the intestine to target tissues including neoblasts, and are required for tissue homeostasis and regeneration. Inhibition of apob function by RNAi causes head regression and lysis in uninjured animals, and delays body axis re-establishment and regeneration of multiple organs in amputated fragments. Furthermore, apob RNAi causes expansion of the population of differentiating neoblast progeny and dysregulates expression of genes enriched in differentiating and mature cells in eight major cell type lineages. We conclude that intestine-derived lipids serve as a source of metabolites required for neoblast progeny differentiation.
Collapse
Affiliation(s)
- Lily L Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christina G Bruxvoort
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veteran Affairs Medical Center - Research Services, Oklahoma City, OK, USA
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Center for Biomedical Data Science, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Matthew R Delaney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jannette Rodriguez Otero
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Education, Universidad Interamericana de Puerto Rico, San Juan, Puerto Rico, USA
| | - David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Scott CA, Carney TJ, Amaya E. Aerobic glycolysis is important for zebrafish larval wound closure and tail regeneration. Wound Repair Regen 2022; 30:665-680. [PMID: 36148505 PMCID: PMC9828577 DOI: 10.1111/wrr.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 01/12/2023]
Abstract
The underlying mechanisms of appendage regeneration remain largely unknown and uncovering these mechanisms in capable organisms has far-reaching implications for potential treatments in humans. Recent studies implicate a requirement for metabolic reprogramming reminiscent of the Warburg effect during successful appendage and organ regeneration. As changes are thus predicted to be highly dynamic, methods permitting direct, real-time visualisation of metabolites at the tissue and organismal level would offer a significant advance in defining the influence of metabolism on regeneration and healing. We sought to examine whether glycolytic activity was altered during larval fin regeneration, utilising the genetically encoded biosensor, Laconic, enabling the spatiotemporal assessment of lactate levels in living zebrafish. We present evidence for a rapid increase in lactate levels within min following injury, with a role of aerobic glycolysis in actomyosin contraction and wound closure. We also find a second wave of lactate production, associated with overall larval tail regeneration. Chemical inhibition of glycolysis attenuates both the contraction of the wound and regrowth of tissue following tail amputation, suggesting aerobic glycolysis is necessary at two distinct stages of regeneration.
Collapse
Affiliation(s)
- Claire A. Scott
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK,Institute of Molecular and Cell Biology (IMCB)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore
| | - Tom J. Carney
- Institute of Molecular and Cell Biology (IMCB)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore,Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden CampusNanyang Technological UniversitySingaporeSingapore
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
15
|
Bishop TF, Beck CW. Bacterial lipopolysaccharides can initiate regeneration of the Xenopus tadpole tail. iScience 2021; 24:103281. [PMID: 34765912 PMCID: PMC8571501 DOI: 10.1016/j.isci.2021.103281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/12/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Tadpoles of the frog Xenopus laevis can regenerate tails except for a short "refractory" period in which they heal rather than regenerate. Rapid and sustained production of ROS by NADPH oxidase (Nox) is critical for regeneration. Here, we show that tail amputation results in rapid, transient activation of the ROS-activated transcription factor NF-κB and expression of its direct target cox2 in the wound epithelium. Activation of NF-κB is also sufficient to rescue refractory tail regeneration. We propose that bacteria on the tadpole's skin could influence tail regenerative outcomes, possibly via LPS-TLR4-NF-κB signaling. When raised in antibiotics, fewer tadpoles in the refractory stage attempted regeneration, whereas addition of LPS rescued regeneration. Short-term activation of NF-κB using small molecules enhanced regeneration of tadpole hindlimbs, but not froglet forelimbs. We propose a model in which host microbiome contributes to creating optimal conditions for regeneration, via regulation of NF-κB by the innate immune system.
Collapse
Affiliation(s)
- Thomas F. Bishop
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, Otago 9016, New Zealand
| | - Caroline W. Beck
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, Otago 9016, New Zealand
| |
Collapse
|
16
|
Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Berger A, Wu W, Bishop K, Elkahloun AG, Chitnis A, Liu P, Burgess SM. The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. NPJ Regen Med 2021; 6:55. [PMID: 34518542 PMCID: PMC8437957 DOI: 10.1038/s41536-021-00163-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration. Using this model, we show that tail amputation triggers an obligate metabolic shift to promote glucose metabolism during early regeneration similar to the Warburg effect observed in tumor forming cells. Inhibition of glucose metabolism did not affect the overall health of the embryo but completely blocked the tail from regenerating after amputation due to the failure to form a functional blastema. We performed a time series of single-cell RNA sequencing on regenerating tails with and without inhibition of glucose metabolism. We demonstrated that metabolic reprogramming is required for sustained TGF-β signaling and blocking glucose metabolism largely mimicked inhibition of TGF-β receptors, both resulting in an aberrant blastema. Finally, we showed using genetic ablation of three possible metabolic pathways for glucose, that metabolic reprogramming is required to provide glucose specifically to the hexosamine biosynthetic pathway while neither glycolysis nor the pentose phosphate pathway were necessary for regeneration.
Collapse
Affiliation(s)
- Jason W Sinclair
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Hoying
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Erica Bresciani
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Damian Dalle Nogare
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Carli D Needle
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Alexandra Berger
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ajay Chitnis
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Liu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
17
|
A cross-species analysis of systemic mediators of repair and complex tissue regeneration. NPJ Regen Med 2021; 6:21. [PMID: 33795702 PMCID: PMC8016993 DOI: 10.1038/s41536-021-00130-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Regeneration is an elegant and complex process informed by both local and long-range signals. Many current studies on regeneration are largely limited to investigations of local modulators within a canonical cohort of model organisms. Enhanced genetic tools increasingly enable precise temporal and spatial perturbations within these model regenerators, and these have primarily been applied to cells within the local injury site. Meanwhile, many aspects of broader spatial regulators of regeneration have not yet been examined with the same level of scrutiny. Recent studies have shed important insight into the significant effects of environmental cues and circulating factors on the regenerative process. These observations highlight that consideration of more systemic and possibly more broadly acting cues will also be critical to fully understand complex tissue regeneration. In this review, we explore the ways in which systemic cues and circulating factors affect the initiation of regeneration, the regenerative process, and its outcome. As this is a broad topic, we conceptually divide the factors based on their initial input as either external cues (for example, starvation and light/dark cycle) or internal cues (for example, hormones); however, all of these inputs ultimately lead to internal responses. We consider studies performed in a diverse set of organisms, including vertebrates and invertebrates. Through analysis of systemic mediators of regeneration, we argue that increased investigation of these "systemic factors" could reveal novel insights that may pave the way for a diverse set of therapeutic avenues.
Collapse
|
18
|
Helston O, Amaya E. Reactive oxygen species during heart regeneration in zebrafish: Lessons for future clinical therapies. Wound Repair Regen 2021; 29:211-224. [PMID: 33471940 PMCID: PMC8611801 DOI: 10.1111/wrr.12892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
In humans, myocardial infarction (MI) is associated with irreversible damage to heart tissue, resulting in increased morbidity and mortality in patients. By comparison, the zebrafish (Danio rerio) is capable of repairing damaged and injured hearts by activating a full regenerative response. By studying model organisms that can regenerate loss heart tissue following injury, such as the zebrafish, a greater insight will be gained into the molecular pathways that can induce and sustain a regenerative response following injury. There is hope that such information may lead to new treatments or therapies aimed at stimulating a better regenerative response in humans that have suffered heart attacks. Recent findings in zebrafish have highlighted an important role for sustained elevated levels of Reactive Oxygen Species (ROS), including hydrogen peroxide (H2O2) in the promotion of a regenerative response. Given that elevated levels of H2O2 can be harmful, simply elevating ROS levels directly may not be easy or practical to translate clinically. An alternative approach would be to identify the critical downstream targets of ROS in the promotion of heart regeneration, and then target these clinically using drugs. One such family of potential downstream targets of ROS during heart regeneration are the family of protein tyrosine phosphatases (PTPs), which are known to be exquisitely sensitive to redox regulation and whose inhibition have been linked to the promotion of heart regeneration in zebrafish. In this review, we present an overview of the zebrafish as a model organism for studying cardiac regeneration, including the molecular mechanisms by which cardiac regeneration occurs in response to injury. We then present recent findings linking elevated ROS levels to heart regeneration and their potential downstream targets, the PTPs, including protein tyrosine phosphatase 1B (PTP1B) and the dual specificity phosphatase 6 (DUSP6) in the promotion of heart regeneration.
Collapse
Affiliation(s)
- Olivia Helston
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Williams MC, Patel JH, Kakebeen AD, Wills AE. Nutrient availability contributes to a graded refractory period for regeneration in Xenopus tropicalis. Dev Biol 2021; 473:59-70. [PMID: 33484704 DOI: 10.1016/j.ydbio.2021.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/17/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Xenopus tadpoles are a unique model for regeneration in that they exhibit two distinct phases of age-specific regenerative competence. In Xenopus laevis, young tadpoles fully regenerate following major injuries such as tail transection, then transiently lose regenerative competence during the "refractory period" from stages 45-47. Regenerative competence is then regained in older tadpoles before being permanently lost during metamorphosis. Here we show that a similar refractory period exists in X. tropicalis. Notably, tadpoles lose regenerative competence gradually in X. tropicalis, with full regenerative competence lost at stage 47. We find that the refractory period coincides closely with depletion of maternal yolk stores and the onset of independent feeding, and so we hypothesized that it might be caused in part by nutrient stress. In support of this hypothesis, we find that cell proliferation declines throughout the tail as the refractory period approaches. When we block nutrient mobilization by inhibiting mTOR signaling, we find that tadpole growth and regeneration are reduced, while yolk stores persist. Finally, we are able to restore regenerative competence and cell proliferation during the refractory period by abundantly feeding tadpoles. Our study argues that nutrient stress contributes to lack of regenerative competence and introduces the X. tropicalis refractory period as a valuable new model for interrogating how metabolic constraints inform regeneration.
Collapse
Affiliation(s)
| | - Jeet H Patel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Anneke D Kakebeen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
The transcriptome of anterior regeneration in earthworm Eudrilus eugeniae. Mol Biol Rep 2020; 48:259-283. [PMID: 33306150 DOI: 10.1007/s11033-020-06044-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
The oligochaete earthworm, Eudrilus eugeniae is capable of regenerating both anterior and posterior segments. The present study focuses on the transcriptome analysis of earthworm E. eugeniae to identify and functionally annotate the key genes supporting the anterior blastema formation and regulating the anterior regeneration of the worm. The Illumina sequencing generated a total of 91,593,182 raw reads which were assembled into 105,193 contigs using CLC genomics workbench. In total, 40,946 contigs were annotated against the NCBI nr and SwissProt database and among them, 15,702 contigs were assigned to 14,575 GO terms. Besides a total of 9389 contigs were mapped to 416 KEGG biological pathways. The RNA-Seq comparison study identified 10,868 differentially expressed genes (DEGs) and of them, 3986 genes were significantly upregulated in the anterior regenerated blastema tissue samples of the worm. The GO enrichment analysis showed angiogenesis and unfolded protein binding as the top enriched functions and the pathway enrichment analysis denoted TCA cycle as the most significantly enriched pathway associated with the upregulated gene dataset of the worm. The identified DEGs and their function and pathway information can be effectively utilized further to interpret the key cellular, genetic and molecular events associated with the regeneration of the worm.
Collapse
|
21
|
Abstract
The Hanahan and Weinberg "hallmarks of cancer" papers provide a useful structure for considering the various mechanisms driving cancer progression, and the same might be useful for wound healing. In this Review, we highlight how tissue repair and cancer share cellular and molecular processes that are regulated in a wound but misregulated in cancer. From sustained proliferative signaling and the activation of invasion and angiogenesis to the promoting role of inflammation, there are many obvious parallels through which one process can inform the other. For some hallmarks, the parallels are more obscure. We propose some new prospective hallmarks that might apply to both cancer and wound healing and discuss how wounding, as in biopsy and surgery, might positively or negatively influence cancer in the clinic.
Collapse
Affiliation(s)
- Lucy MacCarthy-Morrogh
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
22
|
Abstract
Understanding how to promote organ and appendage regeneration is a key goal of regenerative medicine. The frog, Xenopus, can achieve both scar-free healing and tissue regeneration during its larval stages, although it predominantly loses these abilities during metamorphosis and adulthood. This transient regenerative capacity, alongside their close evolutionary relationship with humans, makes Xenopus an attractive model to uncover the mechanisms underlying functional regeneration. Here, we present an overview of Xenopus as a key model organism for regeneration research and highlight how studies of Xenopus have led to new insights into the mechanisms governing regeneration.
Collapse
Affiliation(s)
- Lauren S Phipps
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lindsey Marshall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
23
|
Aztekin C, Hiscock TW, Butler R, De Jesús Andino F, Robert J, Gurdon JB, Jullien J. The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation. Development 2020; 147:dev.185496. [PMID: 31988186 PMCID: PMC7033733 DOI: 10.1242/dev.185496] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023]
Abstract
Regeneration-competent vertebrates are considered to suppress inflammation faster than non-regenerating ones. Hence, understanding the cellular mechanisms affected by immune cells and inflammation can help develop strategies to promote tissue repair and regeneration. Here, we took advantage of naturally occurring tail regeneration-competent and -incompetent developmental stages of Xenopus tadpoles. We first establish the essential role of the myeloid lineage for tail regeneration in the regeneration-competent tadpoles. We then reveal that upon tail amputation there is a myeloid lineage-dependent change in amputation-induced apoptosis levels, which in turn promotes tissue remodelling, and ultimately leads to the relocalization of the regeneration-organizing cells responsible for progenitor proliferation. These cellular mechanisms failed to be executed in regeneration-incompetent tadpoles. We demonstrate that regeneration incompetency is characterized by inflammatory myeloid cells whereas regeneration competency is associated with reparative myeloid cells. Moreover, treatment of regeneration-incompetent tadpoles with immune-suppressing drugs restores myeloid lineage-controlled cellular mechanisms. Collectively, our work reveals the effects of differential activation of the myeloid lineage on the creation of a regeneration-permissive environment and could be further exploited to devise strategies for regenerative medicine purposes. Summary:Xenopus tail regeneration requires a hierarchy of cellular events initiated by the myeloid lineage and culminating in the mobilization of regeneration-organizing cells.
Collapse
Affiliation(s)
- Can Aztekin
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB1 2QN, UK .,Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Tom W Hiscock
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB1 2QN, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB1 2QN, UK
| | - Francisco De Jesús Andino
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB1 2QN, UK.,Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB1 2QN, UK .,Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| |
Collapse
|
24
|
Similä ME, Auranen M, Piirilä PL. Beneficial Effects of Ketogenic Diet on Phosphofructokinase Deficiency (Glycogen Storage Disease Type VII). Front Neurol 2020; 11:57. [PMID: 32117019 PMCID: PMC7010930 DOI: 10.3389/fneur.2020.00057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background: A deficiency of muscle phosphofructokinase (PFKM) causes a rare metabolic muscle disease, the Tarui disease (Glycogen storage disease type VII, GSD VII) characterized by exercise intolerance with myalgia due to an inability to use glucose as an energy resource. No medical treatment for GSD VII currently exists. The aim of this study was to determine whether a dietary intervention with excessive fat intake would benefit GSD VII. Patient and Methods: A ketogenic diet (KD) intervention implemented as a modified Atkins diet was established for one patient with PFKM deficiency, with a low late lactate response and very high ammonia levels associated with exercise. We recorded the KD intervention for a total of 5 years with clinical and physiotherapeutic evaluations and regular laboratory parameters. Cardiopulmonary exercise testing, including breath gas analysis and venous lactate and ammonia measurements, was performed before KD and at 3, 8 months and 5 years after initiation of KD. Results: During the 5 years on KD, the patient's muscle symptoms had alleviated and exercise tolerance had improved. In exercise testing, venous ammonia had normalized, the lactate profile remained similar, but oxygen uptake and mechanical efficiency had increased and parameters showing ventilation had improved. Conclusions: This study is the first to show a long-term effect of KD in GSD VII with an alleviation of muscle symptoms, beneficial effects on breathing, and improvement in exercise performance and oxygen uptake. Based on these findings, KD can be recommended under medical and nutritional supervision for selected patients with GSD VII, although further research of this rare disease is warranted.
Collapse
Affiliation(s)
- Minna E Similä
- Clinical Nutrition Unit, Internal Medicine and Rehabilitation, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Päivi Liisa Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Easterling MR, Engbrecht KM, Crespi EJ. Endocrine Regulation of Epimorphic Regeneration. Endocrinology 2019; 160:2969-2980. [PMID: 31593236 DOI: 10.1210/en.2019-00321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Studies aiming to uncover primary mechanisms of regeneration have predominantly focused on genetic pathways regulating specific stages in the regeneration process: wound healing, blastema formation, and pattern formation. However, studies across organisms show that environmental conditions and the physiological state of the animal can affect the rate or quality of regeneration, and endocrine signals are likely the mediators of these effects. Endocrine signals acting directly on receptors expressed in the tissue or via neuroendocrine pathways can affect regeneration by regulating the immune response to injury, allocation of energetic resources, or by enhancing or inhibiting proliferation and differentiation pathways involved in regeneration. This review discusses the cumulative knowledge in the literature about endocrine regulation of regeneration and its importance in future research to advance biomedical research.
Collapse
Affiliation(s)
- Marietta R Easterling
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Kristin M Engbrecht
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
- Pacific Northwest National Laboratory, Richland, Washington
| | - Erica J Crespi
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
26
|
Easterling MR, Engbrecht KM, Crespi EJ. Endocrine regulation of regeneration: Linking global signals to local processes. Gen Comp Endocrinol 2019; 283:113220. [PMID: 31310748 DOI: 10.1016/j.ygcen.2019.113220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
Regeneration in amphibians and reptiles has been explored since the early 18th century, giving us a working in vivo model to study epimorphic regeneration in vertebrates. Studies aiming to uncover primary mechanisms of regeneration have predominantly focused on genetic pathways regulating specific stages of the regeneration process: wound healing, blastema formation and growth, and pattern formation. However, studies across organisms show that environmental conditions and physiological state of the animal can affect the rate or quality of regeneration, and endocrine signals are likely the mediators of these effects. Endocrine signals working/acting directly on receptors expressed in the structure or via neuroendocrine pathways can affect regeneration by modulating immune response to injury, allocation of energetic resources, or by enhancing or inhibiting proliferation and differentiation pathways in regenerating tissue. This review discusses the cumulative knowledge known about endocrine regulation of regeneration and important future research directions of interest to both ecological and biomedical research.
Collapse
Affiliation(s)
- Marietta R Easterling
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States.
| | - Kristin M Engbrecht
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States; Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Erica J Crespi
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States
| |
Collapse
|
27
|
Kakebeen AD, Wills AE. More Than Just a Bandage: Closing the Gap Between Injury and Appendage Regeneration. Front Physiol 2019; 10:81. [PMID: 30800076 PMCID: PMC6376490 DOI: 10.3389/fphys.2019.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 01/19/2023] Open
Abstract
The remarkable regenerative capabilities of amphibians have captured the attention of biologists for centuries. The frogs Xenopus laevis and Xenopus tropicalis undergo temporally restricted regenerative healing of appendage amputations and spinal cord truncations, injuries that are both devastating and relatively common in human patients. Rapidly expanding technological innovations have led to a resurgence of interest in defining the factors that enable regenerative healing, and in coupling these factors to human therapeutic interventions. It is well-established that early embryonic signaling pathways are critical for growth and patterning of new tissue during regeneration. A growing body of research now indicates that early physiological injury responses are also required to initiate a regenerative program, and that these differ in regenerative and non-regenerative contexts. Here we review recent insights into the biophysical, biochemical, and epigenetic processes that underlie regenerative healing in amphibians, focusing particularly on tail and limb regeneration in Xenopus. We also discuss the more elusive potential mechanisms that link wounding to tissue growth and patterning.
Collapse
Affiliation(s)
- Anneke D Kakebeen
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, United States
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
28
|
Cao C, Fan R, Zhao J, Zhao X, Yang J, Zhang Z, Xu S. Impact of exudative diathesis induced by selenium deficiency on LncRNAs and their roles in the oxidative reduction process in broiler chick veins. Oncotarget 2017; 8:20695-20705. [PMID: 28157700 PMCID: PMC5400537 DOI: 10.18632/oncotarget.14971] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Selenium deficiency may induce exudative diathesis (ED) in broiler chick, and this damage is closely related to oxidative damage. Long noncoding RNA (LncRNA) can regulate the redox state in vivo. The aim of the present study was to clarify the LncRNA expression profile in broiler veins and filter and verify the LncRNAs related to oxidative damage of ED. This study established an ED model induced by selenium deficiency and presented the expression and characterization of LncRNAs in normal and ED samples. A total of 15412 LncRNAs (including 8052 novel LncRNAs) were generated in six cDNA libraries using the Illumina Hi-Seq 4000 platform. 635 distinct changes in LncRNAs (up-regulated fold change > 1.5, down-regulated fold change < 0.67 and differentially expressed LncRNAs) were filtered. Gene ontology enrichment on LncRNAs target genes showed that the oxidative reduction process was important. This study also defined and verified 19 target mRNAs of 23 LncRNAs related to the oxidative reduction process. The in vivo and vitro experiments also demonstrated these 23 LncRNAs can participate in the oxidative reduction process. This study presents LncRNAs expression profile in broiler chick veins for the first time and confirmed 23 LncRNAs involving in the vein oxidative damage in ED.
Collapse
Affiliation(s)
- Changyu Cao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ruifeng Fan
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jinxin Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xia Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jie Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ziwei Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
29
|
Meda F, Rampon C, Dupont E, Gauron C, Mourton A, Queguiner I, Thauvin M, Volovitch M, Joliot A, Vriz S. Nerves, H 2O 2 and Shh: Three players in the game of regeneration. Semin Cell Dev Biol 2017; 80:65-73. [PMID: 28797840 DOI: 10.1016/j.semcdb.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
The tight control of reactive oxygen species (ROS) levels is required during regeneration. H2O2 in particular assumes clear signalling functions at different steps in this process. Injured nerves induce high levels of H2O2 through the activation of the Hedgehog (Shh) pathway, providing an environment that promotes cell plasticity, progenitor recruitment and blastema formation. In turn, high H2O2 levels contribute to growing axon attraction. Once re-innervation is completed, nerves subsequently downregulate H2O2 levels to their original state. A similar regulatory loop between H2O2 levels and nerves also exists during development. This suggests that redox signalling is a major actor in cell plasticity.
Collapse
Affiliation(s)
- Francesca Meda
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France.
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; PSL Research University, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Carole Gauron
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Aurélien Mourton
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France; UPMC, Paris, France
| | - Isabelle Queguiner
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; École Normale Supérieure, Institute of Biology at the Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, Paris, France; PSL Research University, Paris, France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; PSL Research University, Paris, France.
| |
Collapse
|
30
|
Spina EJ, Guzman E, Zhou H, Kosik KS, Smith WC. A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development 2017; 144:1787-1797. [PMID: 28432214 DOI: 10.1242/dev.144097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle.
Collapse
Affiliation(s)
- Elijah J Spina
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Hongjun Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA .,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
31
|
Beck CW. Manipulating carbohydrate metabolism to enhance regeneration (retrospective on DOI 10.1002/bies.201300110). Bioessays 2016; 38:1192. [DOI: 10.1002/bies.201600196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Cernaj IE. Simultaneous dual targeting of Par-4 and G6PD: a promising new approach in cancer therapy? Quintessence of a literature review on survival requirements of tumor cells. Cancer Cell Int 2016; 16:87. [PMID: 27872579 PMCID: PMC5111342 DOI: 10.1186/s12935-016-0363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/07/2016] [Indexed: 11/10/2022] Open
Abstract
The aim of this hypothesis is to propose a new approach in targeted therapy of cancer: The simultaneous, dual targeting of two single molecules, Par-4 and G6PD, rather than inhibition of full-length signaling pathways. RATIONALE Targeted inhibition of especially two survival signaling pathways (PI3K/AKT/mTOR and MAPK/ERK) is frequently tried, however, a major breakthrough has not yet been reported. Inhibition of complete pathways naturally goes along with a variety of dose-limiting side effects thus contributing to poor efficacy of the administered drugs. This essay offers a synopsis of relevant studies to support the above mentioned idea-targeting of two single molecules which either are crucial for tumor growth and cancer-cell-survival: on one side, Par-4-activation selectively triggers apoptosis of tumor cells thus reversing their characteristic feature-immortality. On the other side inhibition of G6PD breaks the energy supply of tumor cells, weakens their defence against oxidative stress and thereby enhances the sensitivity of tumor cells to oxidative agents (e.g. chemotherapy). Advantage of the proposed dual Par-4/G6PD-therapy is good tolerability and-especially when administered along with conventional therapy-less frequent emergence of resistance.
Collapse
|
33
|
Li J, Zhang S, Amaya E. The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus. ACTA ACUST UNITED AC 2016; 3:198-208. [PMID: 27800170 PMCID: PMC5084359 DOI: 10.1002/reg2.69] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Survival of any living organism critically depends on its ability to repair and regenerate damaged tissues and/or organs during its lifetime following injury, disease, or aging. Various animal models from invertebrates to vertebrates have been used to investigate the molecular and cellular mechanisms of wound healing and tissue regeneration. It is hoped that such studies will form the framework for identifying novel clinical treatments that will improve the healing and regenerative capacity of humans. Amongst these models, Xenopus stands out as a particularly versatile and powerful system. This review summarizes recent findings using this model, which have provided fundamental knowledge of the mechanisms responsible for efficient and perfect tissue repair and regeneration.
Collapse
Affiliation(s)
- Jingjing Li
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Siwei Zhang
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| |
Collapse
|
34
|
Piirilä P, Similä ME, Palmio J, Wuorimaa T, Ylikallio E, Sandell S, Haapalahti P, Uotila L, Tyynismaa H, Udd B, Auranen M. Unique Exercise Lactate Profile in Muscle Phosphofructokinase Deficiency (Tarui Disease); Difference Compared with McArdle Disease. Front Neurol 2016; 7:82. [PMID: 27303362 PMCID: PMC4885106 DOI: 10.3389/fneur.2016.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Glycogen storage disease V (GSDV, McArdle disease) and GSDVII (Tarui disease) are the most common of the rare disorders of glycogen metabolism. Both are associated with low lactate levels on exercise. Our aim was to find out whether lactate response associated with exercise testing could distinguish between these disorders. METHODS Two siblings with Tarui disease, two patients with McArdle disease and eight healthy controls were tested on spiroergometric exercise tests with follow-up of venous lactate and ammonia. RESULTS A late increase of lactate about three times the basal level was seen 10-30 min after exercise in patients with Tarui disease being higher than in McArdle disease and lower than in the controls. Ammonia was increased in Tarui disease. DISCUSSION Our results suggest that follow-up of lactate associated with exercise testing can be utilized in diagnostics to distinguish between different GSD diseases.
Collapse
Affiliation(s)
- Päivi Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Minna E. Similä
- Department of Clinical Nutrition Therapy, Helsinki University Central Hospital, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Tomi Wuorimaa
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Sandell
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
- Department of Neurology, Seinäjoki Central Hospital, Seinäjoki, Finland
- Department of Neurology, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Petri Haapalahti
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lasse Uotila
- Laboratory of Clinical Chemistry, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Rinkevich Y, Maan ZN, Walmsley GG, Sen SK. Injuries to appendage extremities and digit tips: A clinical and cellular update. Dev Dyn 2016; 244:641-50. [PMID: 25715837 DOI: 10.1002/dvdy.24265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/12/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The regrowth of amputated appendage extremities and the distal tips of digits represent models of tissue regeneration in multiple vertebrate taxa. In humans, digit tip injuries, including traumatic amputation and crush injuries, are among the most common type of injury to the human hand. Despite clinical reports demonstrating natural regeneration of appendages in lower vertebrates and human digits, current treatment options are suboptimal, and are complicated by the anatomical complexities and functions of the different tissues within the digits. RESULTS In light of these challenges, we focus on recent advancements in understanding appendage regeneration from model organisms. We pay special attention to the cellular programs underlying appendage regeneration, where cumulative data from salamanders, fish, frogs, and mice indicate that regeneration occurs by the actions of lineage-restricted precursors. We focus on pathologic states and the interdependency that exists, in both humans and animal models, between the nail organ and the peripheral nerves for successful regeneration. CONCLUSIONS The increased understanding of regeneration in animal models may open new opportunities for basic and translational research aimed at understanding the mechanisms that support limb regeneration, as well as amelioration of limb abnormalities and pathologies.
Collapse
Affiliation(s)
- Yuval Rinkevich
- Institute for Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California
| | | | | | | |
Collapse
|
36
|
Cai T, Kuang Y, Zhang C, Zhang Z, Chen L, Li B, Li Y, Wang Y, Yang H, Han Q, Zhu Y. Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2. Am J Cancer Res 2015; 5:1610-1620. [PMID: 26175932 PMCID: PMC4497430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) participates in glucose utilization by catalysing the first step of the pentose-phosphate pathway in mammalian cells. Previous studies have shown that changes in G6PD levels can promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in a human melanoma xenograft model. G6PD cooperates with NADPH oxidase 4 (NOX4) in the cellular metabolism of reactive oxygen species (ROS) and in maintaining the intracellular redox state. METHODS In this study, the effect of G6PD or NOX4 silencing in the melanoma line A375 was examined in terms of redox state, proto-oncogene tyrosine-protein kinase Src (c-Src) and the tyrosine-specific protein phosphatase SHP2 expression as well as cell cycle progression. RESULTS The results demonstrate that: (1) Downregulation of cyclin D1 and CDK4 and up-regulation of p53 and p21 occurred in response to silencing of G6PD and NOX4 thus resulting in G1/S cell cycle arrest and inhibition of A375 cell proliferation. (2) The blockade of cell proliferation is primarily due to a reduced DNA-binding activity of STAT3. (3) The DNA-binding activity of STAT3 was regulated by the upstream factors, c-SRC and SHP2. Silencing of NOX4 in A375 cells inhibited c-SRC and SHP2 regulated STAT3 activity. CONCLUSION The data are consistent with a novel G6PD-NOX4-NADPH-ROS-c-SRC/SHP2 pathway controlling STAT3 activity in A375 melanoma cells.
Collapse
Affiliation(s)
- Tianchi Cai
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| | - Yingmin Kuang
- The First Hospital affiliated to Kunming Medical UniversityKunming 650032, China
| | - Chunhua Zhang
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
- The Maternal and Child Health Hospital of Yunnan ProvinceKunming 650051, China
| | - Zheng Zhang
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| | - Long Chen
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| | - Yuqian Li
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| | - Yanling Wang
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| | - Huixin Yang
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| | - Qiaoqiao Han
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, Kunming Medical UniversityKunming 650500, China
| |
Collapse
|
37
|
Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis. PLoS One 2015; 10:e0111655. [PMID: 25775398 PMCID: PMC4361676 DOI: 10.1371/journal.pone.0111655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 10/05/2014] [Indexed: 12/19/2022] Open
Abstract
Organ regenerative ability depends on the animal species and the developmental stage. The molecular bases for variable organ regenerative ability, however, remain unknown. Previous studies have identified genes preferentially expressed in the blastema tissues in various animals, but transcriptome analysis of the isolated proliferating blastema cells has not yet been reported. In the present study, we used RNA-sequencing analysis to analyze the gene expression profile of isolated proliferating blastema cells of regenerating Xenopus laevis tadpole tails. We used flow cytometry to isolate proliferating cells, and non-proliferating blastema cells, from regenerating tadpole tails as well as proliferating tail bud cells from tail bud embryos, the latter two of which were used as control cells, based on their DNA content. Among the 28 candidate genes identified by RNA-sequencing analysis, quantitative reverse transcription-polymerase chain reaction identified 10 genes whose expression was enriched in regenerating tadpole tails compared with non-regenerating tadpole tails or tails from the tail bud embryos. Among them, whole mount in situ hybridization revealed that chromosome segregation 1-like and interleukin 11 were expressed in the broad area of the tail blastema, while brevican, lysyl oxidase, and keratin 18 were mainly expressed in the notochord bud in regenerating tails. We further combined whole mount in situ hybridization with immunohistochemistry for the incorporated 5-bromo-2-deoxyuridine to confirm that keratin 18 and interleukin 11 were expressed in the proliferating tail blastema cells. Based on the proposed functions of their homologs in other animal species, these genes might have roles in the extracellular matrix formation in the notochord bud (brevican and lysyl oxidase), cell proliferation (chromosome segregation 1-like and keratin 18), and in the maintenance of the differentiation ability of proliferating blastema cells (interleukin 11) in regenerating tadpole tails.
Collapse
|
38
|
Hayashi S, Ochi H, Ogino H, Kawasumi A, Kamei Y, Tamura K, Yokoyama H. Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. Dev Biol 2014; 396:31-41. [DOI: 10.1016/j.ydbio.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/06/2014] [Accepted: 09/17/2014] [Indexed: 11/28/2022]
|
39
|
The link between injury-induced stress and regenerative phenomena: A cellular and genetic synopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:454-61. [PMID: 25088176 DOI: 10.1016/j.bbagrm.2014.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
Injury is an inescapable phenomenon of life that affects animals at every physiological level. Yet, some animals respond to injury by rebuilding the damaged tissues whereas others are limited to scarring. Elucidating how a tissue insult from wounding leads to a regenerative response at the genetic level is essential to make regenerative advantages translational. It has become clear that animals with regenerative abilities recycle developmental programs after injury, reactivating genes that have lied dormant throughout adulthood. The question that is critical to our understanding of regeneration is how a specific set of developmentally important genes can be reactivated only after an acute tissue insult. Here, we review how injury-induced cellular stresses such as hypoxic, oxidative, and mechanical stress may contribute to the genomic and epigenetic changes that promote regeneration in animals. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|
40
|
Kuravsky M, Barinova K, Marakhovskaya A, Eldarov M, Semenyuk P, Muronetz V, Schmalhausen E. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is stabilized by additional proline residues and an interdomain salt bridge. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1820-6. [PMID: 25091199 DOI: 10.1016/j.bbapap.2014.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 11/25/2022]
Abstract
Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) exhibits enhanced stability compared to the somatic isoenzyme (GAPD). A comparative analysis of the structures of these isoenzymes revealed characteristic features, which could be important for the stability of GAPDS: six specific proline residues and three buried salt bridges. To evaluate the impact of these structural elements into the stability of this isoenzyme, we obtained two series of mutant GAPDS: 1) six mutants each containing a substitution of one of the specific prolines by alanine, and 2) three mutants each containing a mutation breaking one of the salt bridges. Stability of the mutants was evaluated by differential scanning calorimetry and by their resistance towards guanidine hydrochloride (GdnHCl). The most effect on thermostability was observed for the mutants P326A and P164A: the Tm values of the heat-absorption curves decreased by 6.0 and 3.3°C compared to the wild type protein, respectively. The resistance towards GdnHCl was affected most by the mutation D311N breaking the salt bridge between the catalytic and NAD(+)-binding domains: the inactivation rate constant in the presence of GdnHCl increased six-fold, and the value of GdnHCl concentration corresponding to the protein half-denaturation decreased from 1.83 to 1.35M. Besides, the mutation D311N enhanced the enzymatic activity of the protein two-fold. The results suggest that the residues P164 (β-turn), P326 (first position of α-helix), and the interdomain salt bridge D311-H124 are significant for the enhanced stability of GAPDS. The salt bridge D311-H124 enhances stability of the active site of GAPDS at the expense of the catalytic activity.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Leninskie gory, Moscow 119234, Russia.
| | - Kseniya Barinova
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Leninskie gory, Moscow 119234, Russia.
| | - Aleksandra Marakhovskaya
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Leninskie gory, Moscow 119234, Russia.
| | - Mikhail Eldarov
- Bioengineering Center, Russian Academy of Science, prosp. 60-letiya Oktyabrya, 7, korp. 1, Moscow 117312, Russia.
| | - Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Leninskie gory, Moscow 119234, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Leninskie gory, Moscow 119234, Russia.
| | - Elena Schmalhausen
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Leninskie gory, Moscow 119234, Russia.
| |
Collapse
|
41
|
Abstract
Some organisms have a remarkable ability to heal wounds without scars and to regenerate complex tissues following injury. By gaining a more complete understanding of the biological mechanisms that promote scar-free healing and tissue regeneration, it is hoped that novel treatments that can enhance the healing and regenerative capacity of human patients can be found. In the present article, we briefly examine the genetic, molecular and cellular mechanisms underlying the regeneration of the Xenopus tadpole tail.
Collapse
|