1
|
Ren J, Xiang B, Xueling L, Han X, Yang Z, Zhang M, Zhang Y. Molecular mechanisms of mitochondrial homeostasis regulation in neurons and possible therapeutic approaches for Alzheimer's disease. Heliyon 2024; 10:e36470. [PMID: 39281517 PMCID: PMC11401100 DOI: 10.1016/j.heliyon.2024.e36470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disease with memory loss and cognitive decline, which affects a large proportion of the aging population. Regrettably, there are no drug to reverse or cure AD and drug development for the primary theory of amyloid beta deposition has mostly failed. Therefore, there is an urgent need to investigate novel strategies for preventing AD. Recent studies demonstrate that imbalance of mitochondrial homeostasis is a driver in Aβ accumulation, which can lead to the occurrence and deterioration of cognitive impairment in AD patients. This suggests that regulating neuronal mitochondrial homeostasis may be a new strategy for AD. We summarize the importance of mitochondrial homeostasis in AD neuron and its regulatory mechanisms in this review. In addition, we summarize the results of studies indicating mitochondrial dysfunction in AD subjects, including impaired mitochondrial energy production, oxidative stress, imbalance of mitochondrial protein homeostasis, imbalance of fusion and fission, imbalance of neuronal mitochondrial biogenesis and autophagy, and altered mitochondrial motility, in hope of providing possible therapeutic approaches for AD.
Collapse
Affiliation(s)
- Jiale Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Xueling
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Han
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mixia Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Kikuchi M, Viet J, Nagata K, Sato M, David G, Audic Y, Silverman MA, Yamamoto M, Akatsu H, Hashizume Y, Takeda S, Akamine S, Miyamoto T, Uozumi R, Gotoh S, Mori K, Ikeda M, Paillard L, Morihara T. Gene-gene functional relationships in Alzheimer's disease: CELF1 regulates KLC1 alternative splicing. Biochem Biophys Res Commun 2024; 721:150025. [PMID: 38768546 DOI: 10.1016/j.bbrc.2024.150025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
The causes of Alzheimer's disease (AD) are poorly understood, although many genes are known to be involved in this pathology. To gain insights into the underlying molecular mechanisms, it is essential to identify the relationships between individual AD genes. Previous work has shown that the splice variant E of KLC1 (KLC1_vE) promotes AD, and that the CELF1 gene, which encodes an RNA-binding protein involved in splicing regulation, is at a risk locus for AD. Here, we identified a functional link between CELF1 and KLC1 in AD pathogenesis. Transcriptomic data from human samples from different ethnic groups revealed that CELF1 mRNA levels are low in AD brains, and the splicing pattern of KLC1 is strongly correlated with CELF1 expression levels. Specifically, KLC1_vE is negatively correlated with CELF1. Depletion and overexpression experiments in cultured cells demonstrated that the CELF1 protein down-regulates KLC1_vE. In a cross-linking and immunoprecipitation sequencing (CLIP-seq) database, CELF1 directly binds to KLC1 RNA, following which it likely modulates terminal exon usage, hence KLC1_vE formation. These findings reveal a new pathogenic pathway where a risk allele of CELF1 is associated with reduced CELF1 expression, which up-regulates KLC1_vE to promote AD.
Collapse
Affiliation(s)
- Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Justine Viet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Masahiro Sato
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Geraldine David
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France
| | - Yann Audic
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France
| | - Michael A Silverman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada
| | - Mitsuko Yamamoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyasu Akatsu
- Department of Community-based Medical Education, Graduate School of Medicine, Nagoya City University, Nagoya, Japan; Choju Medical/Neuropathological Institute, Fukushimura Hospital, Toyohashi, Japan
| | | | - Shuko Takeda
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan; Osaka Psychiatric Medical Center, Osaka Psychiatric Research Center, Hirakata, Japan
| | - Shoshin Akamine
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tesshin Miyamoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryota Uozumi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shiho Gotoh
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kohji Mori
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Luc Paillard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000, Rennes, France.
| | - Takashi Morihara
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan; Toyonaka Municipal Hospital, Toyonaka, Japan.
| |
Collapse
|
3
|
Mechanisms of Mitochondrial Malfunction in Alzheimer’s Disease: New Therapeutic Hope. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4759963. [PMID: 35607703 PMCID: PMC9124149 DOI: 10.1155/2022/4759963] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria play a critical role in neuron viability or death as it regulates energy metabolism and cell death pathways. They are essential for cellular energy metabolism, reactive oxygen species production, apoptosis, Ca++ homeostasis, aging, and regeneration. Mitophagy and mitochondrial dynamics are thus essential processes in the quality control of mitochondria. Improvements in several fundamental features of mitochondrial biology in susceptible neurons of AD brains and the putative underlying mechanisms of such changes have made significant progress. AD's etiology has been reported by mitochondrial malfunction and oxidative damage. According to several recent articles, a continual fusion and fission balance of mitochondria is vital in their normal function maintenance. As a result, the shape and function of mitochondria are inextricably linked. This study examines evidence suggesting that mitochondrial dysfunction plays a significant early impact on AD pathology. Furthermore, the dynamics and roles of mitochondria are discussed with the link between mitochondrial malfunction and autophagy in AD has also been explored. In addition, recent research on mitochondrial dynamics and mitophagy in AD is also discussed in this review. It also goes into how these flaws affect mitochondrial quality control. Furthermore, advanced therapy techniques and lifestyle adjustments that lead to improved management of the dynamics have been demonstrated, hence improving the conditions that contribute to mitochondrial dysfunction in AD.
Collapse
|
4
|
Paul D, Chipurupalli S, Justin A, Raja K, Mohankumar SK. Caenorhabditis elegans as a possible model to screen anti-Alzheimer's therapeutics. J Pharmacol Toxicol Methods 2020; 106:106932. [PMID: 33091537 DOI: 10.1016/j.vascn.2020.106932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is regarded as one of the significant health burdens, as the prevalence is raising worldwide and gradually reaching to epidemic proportions. Consequently, a number of scientific investigations have been initiated to derive therapeutics to combat AD with a concurrent advancement in pharmacological methods and experimental models. Whilst, the available experimental pharmacological approaches both in vivo and in vitro led to the development of AD therapeutics, the precise manner by which experimental models mimic either one or more biomarkers of human pathology of AD is gaining scientific attentions. Caenorhabditis elegans (C. elegans) has been regarded as an emerging model for various reasons, including its high similarities with the biomarkers of human AD. Our review supports the versatile nature of C. elegans and collates that it is a well-suited model to elucidate various molecular mechanisms by which AD therapeutics elicit their pharmacological effects. It is apparent that C. elegans is capable of establishing the pathological processes that links the endoplasmic reticulum and mitochondria dysfunctions in AD, exploring novel molecular cascades of AD pathogenesis and underpinning causal and consequential changes in the associated proteins and genes. In summary, C. elegans is a unique and feasible model for the screening of anti-Alzheimer's therapeutics and has the potential for further scientific exploration.
Collapse
Affiliation(s)
- Deepraj Paul
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute of Research, Madison, WI, USA
| | - Suresh K Mohankumar
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India.
| |
Collapse
|
5
|
Yamaguchi-Kabata Y, Morihara T, Ohara T, Ninomiya T, Takahashi A, Akatsu H, Hashizume Y, Hayashi N, Shigemizu D, Boroevich KA, Ikeda M, Kubo M, Takeda M, Tsunoda T. Integrated analysis of human genetic association study and mouse transcriptome suggests LBH and SHF genes as novel susceptible genes for amyloid-β accumulation in Alzheimer's disease. Hum Genet 2018; 137:521-533. [PMID: 30006735 PMCID: PMC6061045 DOI: 10.1007/s00439-018-1906-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/06/2018] [Indexed: 12/04/2022]
Abstract
Alzheimer's disease (AD) is a common neurological disease that causes dementia in humans. Although the reports of associated pathological genes have been increasing, the molecular mechanism leading to the accumulation of amyloid-β (Aβ) in human brain is still not well understood. To identify novel genes that cause accumulation of Aβ in AD patients, we conducted an integrative analysis by combining a human genetic association study and transcriptome analysis in mouse brain. First, we examined genome-wide gene expression levels in the hippocampus, comparing them to amyloid Aβ level in mice with mixed genetic backgrounds. Next, based on a GWAS statistics obtained by a previous study with human AD subjects, we obtained gene-based statistics from the SNP-based statistics. We combined p values from the two types of analysis across orthologous gene pairs in human and mouse into one p value for each gene to evaluate AD susceptibility. As a result, we found five genes with significant p values in this integrated analysis among the 373 genes analyzed. We also examined the gene expression level of these five genes in the hippocampus of independent human AD cases and control subjects. Two genes, LBH and SHF, showed lower expression levels in AD cases than control subjects. This is consistent with the gene expression levels of both the genes in mouse which were negatively correlated with Aβ accumulation. These results, obtained from the integrative approach, suggest that LBH and SHF are associated with the AD pathogenesis.
Collapse
Affiliation(s)
- Yumi Yamaguchi-Kabata
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takashi Morihara
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan
| | - Hiroyasu Akatsu
- Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, 467-8601, Japan
- Institute of Neuropathology, Fukushimura Hospital, Toyohashi-shi, Aichi, 441-8124, Japan
| | - Yoshio Hashizume
- Institute of Neuropathology, Fukushimura Hospital, Toyohashi-shi, Aichi, 441-8124, Japan
| | - Noriyuki Hayashi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Daichi Shigemizu
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Division of Genomic Medicine, Medical Genome Center, National Center for Geriastrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
6
|
Xu AH, Yang Y, Sun YX, Zhang CD. Exogenous brain-derived neurotrophic factor attenuates cognitive impairment induced by okadaic acid in a rat model of Alzheimer's disease. Neural Regen Res 2018; 13:2173-2181. [PMID: 30323150 PMCID: PMC6199930 DOI: 10.4103/1673-5374.241471] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Decreased expression of brain-derived neurotrophic factor (BDNF) plays an important role in the pathogenesis of Alzheimer's disease, and a typical pathological change in Alzheimer's disease is neurofibrillary tangles caused by hyperphosphorylation of tau. An in vivo model of Alzheimer's disease was developed by injecting okadaic acid (2 μL) and exogenous BDNF (2 μL) into the hippocampi of adult male Wister rats. Spatial learning and memory abilities were assessed using the Morris water maze. The expression levels of protein phosphatase 2A (PP2A), PP2Ac-Yp307, p-tau (Thr231), and p-tau (Ser396/404) were detected by western blot assay. The expression levels of BDNF, TrkB, and synaptophysin mRNA were measured by quantitative real-time polymerase chain reaction. Our results indicated that BDNF expression was suppressed in the hippocampus of OA-treated rats, which resulted in learning and memory deficits. Intra-hippocampal injection of BDNF attenuated this OA-induced cognitive impairment. Finally, our findings indicated an involvement of the PI3K/GSK-3β/AKT pathway in the mechanism of BDNF in regulating cognitive function. These results indicate that BDNF has beneficial effect on Alzheimer's disease, and highlight the potential of BDNF as a drug target for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ai-Hua Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong-Xin Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chao-Dong Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
7
|
Mitochondrial traffic jams in Alzheimer's disease - pinpointing the roadblocks. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1909-17. [PMID: 27460705 DOI: 10.1016/j.bbadis.2016.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 12/24/2022]
Abstract
The vigorous axonal transport of mitochondria, which serves to distribute these organelles in a dynamic and non-uniform fashion, is crucial to fulfill neuronal energetic requirements allowing the maintenance of neurons structure and function. Particularly, axonal transport of mitochondria and their spatial distribution among the synapses are directly correlated with synaptic activity and integrity. Despite the basis of Alzheimer's disease (AD) remains enigmatic, axonal pathology and synaptic dysfunction occur prior the occurrence of amyloid-β (Aβ) deposition and tau aggregation, the two classical hallmarks of this devastating neurodegenerative disease. Importantly, the early stages of AD are marked by defects on axonal transport of mitochondria as denoted by the abnormal accumulation of mitochondria within large swellings along dystrophic and degenerating neuritis. Within this scenario, this review is devoted to identify the molecular "roadblocks" underlying the abnormal axonal transport of mitochondria and consequent synaptic "starvation" and neuronal degeneration in AD. Understanding the molecular nature of defective mitochondrial transport may provide a new avenue to counteract AD pathology.
Collapse
|
8
|
Microtubules in health and degenerative disease of the nervous system. Brain Res Bull 2016; 126:217-225. [PMID: 27365230 DOI: 10.1016/j.brainresbull.2016.06.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/04/2023]
Abstract
Microtubules are essential for the development and maintenance of axons and dendrites throughout the life of the neuron, and are vulnerable to degradation and disorganization in a variety of neurodegenerative diseases. Microtubules, polymers of tubulin heterodimers, are intrinsically polar structures with a plus end favored for assembly and disassembly and a minus end less favored for these dynamics. In the axon, microtubules are nearly uniformly oriented with plus ends out, whereas in dendrites, microtubules have mixed orientations. Microtubules in developing neurons typically have a stable domain toward the minus end and a labile domain toward the plus end. This domain structure becomes more complex during neuronal maturation when especially stable patches of polyaminated tubulin become more prominent within the microtubule. Microtubules are the substrates for molecular motor proteins that transport cargoes toward the plus or minus end of the microtubule, with motor-driven forces also responsible for organizing microtubules into their distinctive polarity patterns in axons and dendrites. A vast array of microtubule-regulatory proteins impart direct and indirect changes upon the microtubule arrays of the neuron, and these include microtubule-severing proteins as well as proteins responsible for the stability properties of the microtubules. During neurodegenerative diseases, microtubule mass is commonly diminished, and the potential exists for corruption of the microtubule polarity patterns and microtubule-mediated transport. These ill effects may be a primary causative factor in the disease or may be secondary effects, but regardless, therapeutics capable of correcting these microtubule abnormalities have great potential to improve the status of the degenerating nervous system.
Collapse
|
9
|
Franklin JL, Mirzaei M, Wearne TA, Homewood J, Goodchild AK, Haynes PA, Cornish JL. Quantitative Proteomic Analysis of the Orbital Frontal Cortex in Rats Following Extended Exposure to Caffeine Reveals Extensive Changes to Protein Expression: Implications for Neurological Disease. J Proteome Res 2016; 15:1455-71. [DOI: 10.1021/acs.jproteome.5b01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jane L. Franklin
- Department of Psychology, ‡Department of Chemistry and Biomolecular Sciences, §Faculty of Human Sciences, and ⊥Department of
Biomedical Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Mehdi Mirzaei
- Department of Psychology, ‡Department of Chemistry and Biomolecular Sciences, §Faculty of Human Sciences, and ⊥Department of
Biomedical Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Travis A. Wearne
- Department of Psychology, ‡Department of Chemistry and Biomolecular Sciences, §Faculty of Human Sciences, and ⊥Department of
Biomedical Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Judi Homewood
- Department of Psychology, ‡Department of Chemistry and Biomolecular Sciences, §Faculty of Human Sciences, and ⊥Department of
Biomedical Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Ann K. Goodchild
- Department of Psychology, ‡Department of Chemistry and Biomolecular Sciences, §Faculty of Human Sciences, and ⊥Department of
Biomedical Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Paul A. Haynes
- Department of Psychology, ‡Department of Chemistry and Biomolecular Sciences, §Faculty of Human Sciences, and ⊥Department of
Biomedical Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Jennifer L. Cornish
- Department of Psychology, ‡Department of Chemistry and Biomolecular Sciences, §Faculty of Human Sciences, and ⊥Department of
Biomedical Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
10
|
Zheng Y, Tian S, Peng X, Yang J, Fu Y, Jiao Y, Zhao J, He J, Hong T. Kinesin-1 inhibits the aggregation of amyloid-β peptide as detected by fluorescence cross-correlation spectroscopy. FEBS Lett 2016; 590:1028-37. [DOI: 10.1002/1873-3468.12137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/04/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Yanpeng Zheng
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; China
| | - Shijun Tian
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; China
| | - Xianglei Peng
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; China
| | - Jingfa Yang
- Beijing National Laboratory for Molecular Science; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Yuanhui Fu
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; China
| | - Yueying Jiao
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; China
| | - Jiang Zhao
- Beijing National Laboratory for Molecular Science; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Jinsheng He
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; China
| | - Tao Hong
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; China
- Institute for Viral Disease Control and Prevention; Chinese Centre for Disease Control and Prevention; Beijing China
| |
Collapse
|
11
|
New Insights into Epigenetic and Pharmacological Regulation of Amyloid-Degrading Enzymes. Neurochem Res 2015; 41:620-30. [PMID: 26376806 DOI: 10.1007/s11064-015-1703-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Currently, deficit of amyloid β-peptide (Aβ) clearance from the brain is considered as one of the possible causes of amyloid accumulation and neuronal death in the sporadic form of Alzheimer's disease (AD). Aβ clearance can involve either specific proteases present in the brain or Aβ-binding/transport proteins. Among amyloid-degrading enzymes the most intensively studied are neprilysin (NEP) and insulin-degrading enzyme (IDE). Since ageing and development of brain pathologies is often accompanied by a deficit in the levels of expression and activity of these enzymes in the brain, there is an urgent need to understand the mechanisms involved in their regulation. We have recently reported that NEP and also an Aβ-transport protein, transthyretin are epigenetically co-regulated by the APP intracellular domain (AICD) and this regulation depends on the cell type and APP695 isoform expression in a process that can be regulated by the tyrosine kinase inhibitor, Gleevec. We have now extended our work and shown that, unlike NEP, another amyloid-degrading enzyme, IDE, is not related to over-expression of APP695 in neuroblastoma SH-SY5Y cells but is up-regulated by APP751 and APP770 isoforms independently of AICD but correlating with reduced HDAC1 binding to its promoter. Studying the effect of the nuclear retinoid X receptor agonist, bexarotene, on NEP and IDE expression, we have found that both enzymes can be up-regulated by this compound but this mechanism is not APP-isoform specific and does not involve AICD but, on the contrary, affects HDAC1 occupancy on the NEP gene promoter. These new insights into the mechanisms of NEP and IDE regulation suggest possible pharmacological targets in developing AD therapies.
Collapse
|
12
|
Carpentier DCJ, Gao WND, Ewles H, Morgan GW, Smith GL. Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex. PLoS Pathog 2015; 11:e1004723. [PMID: 25760349 PMCID: PMC4356562 DOI: 10.1371/journal.ppat.1004723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/01/2015] [Indexed: 11/18/2022] Open
Abstract
During vaccinia virus morphogenesis, intracellular mature virus (IMV) particles are wrapped by a double lipid bilayer to form triple enveloped virions called intracellular enveloped virus (IEV). IEV are then transported to the cell surface where the outer IEV membrane fuses with the cell membrane to expose a double enveloped virion outside the cell. The F12, E2 and A36 proteins are involved in transport of IEVs to the cell surface. Deletion of the F12L or E2L genes causes a severe inhibition of IEV transport and a tiny plaque size. Deletion of the A36R gene leads to a smaller reduction in plaque size and less severe inhibition of IEV egress. The A36 protein is present in the outer membrane of IEVs, and over-expressed fragments of this protein interact with kinesin light chain (KLC). However, no interaction of F12 or E2 with the kinesin complex has been reported hitherto. Here the F12/E2 complex is shown to associate with kinesin-1 through an interaction of E2 with the C-terminal tail of KLC isoform 2, which varies considerably between different KLC isoforms. siRNA-mediated knockdown of KLC isoform 1 increased IEV transport to the cell surface and virus plaque size, suggesting interaction with KLC isoform 1 is somehow inhibitory of IEV transport. In contrast, knockdown of KLC isoform 2 did not affect IEV egress or plaque formation, indicating redundancy in virion egress pathways. Lastly, the enhancement of plaque size resulting from loss of KLC isoform 1 was abrogated by removal of KLC isoforms 1 and 2 simultaneously. These observations suggest redundancy in the mechanisms used for IEV egress, with involvement of KLC isoforms 1 and 2, and provide evidence of interaction of F12/E2 complex with the kinesin-1 complex. Viruses often hijack the cellular transport systems to facilitate their movement within and between cells. Vaccinia virus (VACV), the smallpox vaccine, is very adept at this and exploits cellular transport machinery at several stages during its life cycle. For instance, during transport of new virus particles to the cell surface VACV interacts with a protein motor complex called kinesin-1 that moves cargo on microtubules. However, details of the cellular and viral components needed and the molecular mechanisms involved remain poorly understood. Hitherto, only the VACV protein A36 has been shown to interact with kinesin-1, however viruses lacking A36 still reach the cell surface, albeit at reduced efficiency, indicating other factors are involved. Here we describe an interaction between kinesin-1 and a complex of VACV proteins F12 and E2, which are both needed for virus transport. The F12/E2 complex associates with a subset of kinesin-1 molecules (kinesin light chain isoform 2) with a region thought to be involved in modulation of cargo binding and kinesin-1 motor activity. Further study of this interaction will enhance understanding of the VACV life cycle and of the roles of different kinesin-1 subtypes in cellular processes and the mechanisms that regulate them.
Collapse
Affiliation(s)
| | - William N. D. Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Helen Ewles
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gareth W. Morgan
- Department of Virology, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Potter H. Kinesin light chain-1 variant E disrupts axonal transport and Aβ generation in Alzheimer's disease (comment on DOI 10.1002/bies.201400131). Bioessays 2015; 37:118. [PMID: 25581896 DOI: 10.1002/bies.201400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Muresan V, Ladescu Muresan Z. Amyloid-β precursor protein: Multiple fragments, numerous transport routes and mechanisms. Exp Cell Res 2015; 334:45-53. [PMID: 25573596 DOI: 10.1016/j.yexcr.2014.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 12/26/2014] [Indexed: 02/01/2023]
Abstract
This review provides insight into the intraneuronal transport of the Amyloid-β Precursor Protein (APP), the prototype of an extensively posttranslationally modified and proteolytically cleaved transmembrane protein. Uncovering the intricacies of APP transport proves to be a challenging endeavor of cell biology research, deserving increased priority, since APP is at the core of the pathogenic process in Alzheimer's disease. After being synthesized in the endoplasmic reticulum in the neuronal soma, APP enters the intracellular transport along the secretory, endocytic, and recycling routes. Along these routes, APP undergoes cleavage into defined sets of fragments, which themselves are transported - mostly independently - to distinct sites in neurons, where they exert their functions. We review the currently known routes and mechanisms of transport of full-length APP, and of APP fragments, commenting largely on the experimental challenges posed by studying transport of extensively cleaved proteins. The review emphasizes the interrelationships between the proteolytic and posttranslational modifications, the intracellular transport, and the functions of the APP species. A goal remaining to be addressed in the future is the incorporation of the various views on APP transport into a coherent picture. In this review, the disease context is only marginally addressed; the focus is on the basic biology of APP transport under normal conditions. As shown, the studies of APP transport uncovered numerous mechanisms of transport, some of them conventional, and others, novel, awaiting exploration.
Collapse
Affiliation(s)
- Virgil Muresan
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07101-1709, USA.
| | - Zoia Ladescu Muresan
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07101-1709, USA.
| |
Collapse
|