1
|
McAfee A, Magaña AA, Foster LJ, Hoover SE. Differences in honeybee queen pheromones revealed by LC-MS/MS: Reassessing the honest signal hypothesis. iScience 2024; 27:110906. [PMID: 39391732 PMCID: PMC11465126 DOI: 10.1016/j.isci.2024.110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
The honest signal hypothesis posits that social insect queens emit pheromonal signals that convey information about fecundity, which workers use to make decisions around investing in direct or indirect fitness. We used liquid chromatography-tandem mass spectrometry to measure honeybee (Apis mellifera) queen retinue pheromone (QRP) in relation to age, laying status, and acceptance using a protocol that enables concurrent metabolomic and lipidomic analyses. Older queens produced higher levels of the QRP components 9-R-hydroxydec-2(E)-enoic acid (9(R)-HDA), linolenic acid (LEA), and 4-hydroxy-3-methoxyphenylethanol (HVA) compared to younger queens, with HVA also correlating with ovary mass. However, ovary mass was not an influential metric for worker decision-making around queen acceptance; therefore, the relationship between HVA and ovary mass is merely an "honest signal" of a non-influential metric. Parallel metabolomic and lipidomic analyses showed that samples cluster according to queen age and mating status, but not ovary mass, revealing many other physiological changes occurring in the queen's early life.
Collapse
Affiliation(s)
- Alison McAfee
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Armando Alcazar Magaña
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J. Foster
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Shelley E. Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
2
|
Sahm J, Brobeil B, Grubmüller E, Conrad T, Schott M, Stökl J, Steiger S. The scent of offspring: chemical profiles of larvae change during development and affect parental behavior in a burying beetle. Behav Ecol 2024; 35:arae061. [PMID: 39139623 PMCID: PMC11319877 DOI: 10.1093/beheco/arae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Chemical cues and signals, especially in insects, play a pivotal role in mediating interactions between individuals. Past studies have largely focused on adult semiochemicals and have neglected those of juvenile stages. Especially in the context of parental care, the larval odor might have a profound impact on parenting behavior, guiding parents in how much resources they should allocate to the different developmental stages. However, whether ontogenetic changes occur in subsocial species and whether larval-emitted scents influence parent-offspring interactions is largely unknown. Using 3 different sampling techniques, we analyzed the cuticular and VOC profile of the 3 larval instars of the burying beetle Nicrophorus vespilloides, which is known for its elaborate parental care. We found distinct differences in the cuticular and VOC profiles across the 3 larval stages. Second-instar larvae, which receive more frequent feedings from parents than the other larval stages, released greater amounts of acetophenone, methyl geranate, and octanoic acid isopropyl ester than the first and third instar. Additionally, using a newly developed bioassay with automated video tracking, we found that adding the odor of second-instar larvae to first-instar larvae increased the number of maternal feeding trips. Our results suggest that the odor produced by larvae plays an important role in mediating parent-offspring interactions. Given these findings, burying beetles might emerge as a promising candidate for identifying a potential begging pheromone.
Collapse
Affiliation(s)
- Jacqueline Sahm
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Beatrice Brobeil
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Eric Grubmüller
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Taina Conrad
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Matthias Schott
- Department of Animal Ecology I, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Johannes Stökl
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sandra Steiger
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
3
|
Moore D, Liebig J. Innate and learned components of egg recognition in the ant Camponotus floridanus. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231837. [PMID: 39100179 PMCID: PMC11295788 DOI: 10.1098/rsos.231837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 08/06/2024]
Abstract
Insect societies discriminate against foreigners to avoid exploitation. In ants, helper workers only accept individuals with the familiar chemical cues of their colony. Similarly, unfamiliar eggs may get rejected at their first appearance in the nest. We investigated egg acceptance mechanisms by introducing different types of foreign eggs into worker groups of the ant Camponotus floridanus. Workers from established colonies familiar with queen-laid eggs always accepted eggs from highly fecund queens, but worker-laid eggs only after exposure for several weeks. Workers naive to eggs only rejected worker-laid eggs once they had prior exposure to eggs laid by highly fecund queens, suggesting that prior exposure to such eggs is necessary for discrimination. The general acceptance of eggs from highly fecund queens, irrespective of previous worker egg exposure, suggests an innate response to the queen pheromone these eggs carry. Workers learned to accept queen-laid eggs from different species, indicating high flexibility in learning egg-recognition cues. In incipient colonies with queen-laid eggs that carry a weak queen pheromone, worker-laid eggs were more likely to get accepted than queen-laid eggs from a different species, suggesting that the similarity of egg-recognition cues between the two types of C. floridanus eggs increases acceptance.
Collapse
Affiliation(s)
- Dani Moore
- School of Life Sciences, Arizona State University, Tempe, AZ85287, USA
| | - Juergen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
4
|
Nguyen JB, Marshall CW, Cook CN. The buzz within: the role of the gut microbiome in honeybee social behavior. J Exp Biol 2024; 227:jeb246400. [PMID: 38344873 DOI: 10.1242/jeb.246400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Gut symbionts influence the physiology and behavior of their host, but the extent to which these effects scale to social behaviors is an emerging area of research. The use of the western honeybee (Apis mellifera) as a model enables researchers to investigate the gut microbiome and behavior at several levels of social organization. Insight into gut microbial effects at the societal level is critical for our understanding of how involved microbial symbionts are in host biology. In this Commentary, we discuss recent findings in honeybee gut microbiome research and synthesize these with knowledge of the physiology and behavior of other model organisms to hypothesize how host-microbe interactions at the individual level could shape societal dynamics and evolution.
Collapse
Affiliation(s)
- J B Nguyen
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - C W Marshall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - C N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
5
|
da Silva RC, Oi CA, do Nascimento FS. Chemical Resemblance of Egg Surface Compounds and Dufour's Gland in Two Neotropical Polistinae Wasps Polistes versicolor (Olivier) and Mischocyttarus metathoracicus (de Saussure, 1854). NEOTROPICAL ENTOMOLOGY 2023; 52:1041-1056. [PMID: 37861965 DOI: 10.1007/s13744-023-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Chemical communication plays a major role in regulating social dynamics in social insect colonies. The most studied class of chemical compounds are the cuticular hydrocarbons (CHCs), compounds with high molecular weight that cover the insect body. CHCs are used in nestmate recognition and to signal reproductive status. Brood, in the form of larvae and eggs, is known to participate in chemical communication and social dynamics by performing hunger behaviour and inducing interaction with adults and conferring nest and maternity identity. CHCs of adults and egg surface compounds are similar in composition in social insect species. The main source of egg compounds is proposed to be Dufour's gland, an accessory reproductive gland found in several Hymenoptera females. There is still a lack of information about the level of similarity among CHCs, compounds of egg surface and Dufour's gland for several wasp species, which could provide correlational evidence about the origins of egg-marking compounds. Thus, we investigated whether egg surface compounds were more similar to CHCs or Dufour's gland secretions in two Neotropical primitively eusocial wasp species, Polistes versicolor (Olivier) and Mischocyttarus metathoracicus (de Saussure, 1854). As expected, there was a higher chemical similarity between eggs and Dufour's gland secretions in both studied species, supporting the hypothesis that this gland is the source of chemical compounds found over the eggs in these two primitively eusocial species.
Collapse
Affiliation(s)
- Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Depto de Biologia, Univ de São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Cintia Akemi Oi
- Univ College London, London, UK
- Univ of Leuven, KU Leuven, Louvain, Belgium
| | - Fabio Santos do Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Depto de Biologia, Univ de São Paulo - USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Benvenuto C, Lorenzi MC. Social regulation of reproduction: control or signal? Trends Ecol Evol 2023; 38:1028-1040. [PMID: 37385846 DOI: 10.1016/j.tree.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023]
Abstract
Traditionally, dominant breeders have been considered to be able to control the reproduction of other individuals in multimember groups that have high variance in reproductive success/reproductive skew (e.g., forced sterility/coercion of conspecifics in eusocial animals; sex-change suppression in sequential hermaphrodites). These actions are typically presented as active impositions by reproductively dominant individuals. However, how can individuals regulate the reproductive physiology of others? Alternatively, all contestants make reproductive decisions, and less successful individuals self-downregulate reproduction in the presence of dominant breeders. Shifting perspective from a top-down manipulation to a broader view, which includes all contenders, and using a multitaxon approach, we propose a unifying framework for the resolution of reproductive skew conflicts based on signalling rather than control, along a continuum of levels of strategic regulation of reproduction.
Collapse
Affiliation(s)
- Chiara Benvenuto
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| | - Maria Cristina Lorenzi
- Laboratoire d'Ethologie Expérimentale et Comparée (LEEC), Université Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
7
|
da Silva RC, do Nascimento FS, Wenseleers T, Oi CA. Chemical signatures of egg maternity and Dufour's gland in Vespine wasps. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:25. [PMID: 37227507 DOI: 10.1007/s00114-023-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Cuticular hydrocarbons (CHCs) are often used in the chemical communication among social insects. CHCs can be used in nestmate recognition and as queen pheromones, the latter allows the regulation of the reproductive division of labor. In the common wasp Vespula vulgaris, CHCs and egg-marking hydrocarbons are caste-specific, being hydrocarbon queen pheromones and egg maternity signals. Whether these compounds are conserved among other Vespinae wasps remains unknown. Queens, virgin queens, reproductive workers, and workers belonging to four different wasp species, Dolichovespula media, Dolichovespula saxonica, Vespa crabro, and Vespula germanica, were collected and studied. The cuticular hydrocarbons, egg surface, and Dufour's gland composition were characterized and it was found that chemical compounds are caste-specific in the four species. Quantitative and qualitative differences were detected in the cuticle, eggs, and Dufour's gland. Some specific hydrocarbons that were shown to be overproduced in the cuticle of queens were also present in higher quantities in queen-laid eggs and in their Dufour's gland. These hydrocarbons can be indicated as putative fertility signals that regulate the division of reproductive labor in these Vespine societies. Our results are in line with the literature for V. vulgaris and D. saxonica, in which hydrocarbons were shown to be conserved queen signals. This work presents correlative evidence that queen chemical compounds are found not only over the body surface of females but also in other sources, such as the Dufour's gland and eggs.
Collapse
Affiliation(s)
- Rafael Carvalho da Silva
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - USP, Avenida Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Fabio Santos do Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - USP, Avenida Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14040-900, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven - University of Leuven, Leuven, Belgium
| | - Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
8
|
Dolejšová K, Křivánek J, Štáfková J, Horáček N, Havlíčková J, Roy V, Kalinová B, Roy A, Kyjaková P, Hanus R. Identification of a queen primer pheromone in higher termites. Commun Biol 2022; 5:1165. [PMID: 36323794 PMCID: PMC9630296 DOI: 10.1038/s42003-022-04163-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
It is long established that queens of social insects, including termites, maintain their reproductive dominance with queen primer pheromones (QPPs). Yet, the QPP chemistry has only been elucidated in a single species of lower termites. By contrast, the most diversified termite family Termitidae (higher termites), comprising over 70% of termite species, has so far resisted all attempts at QPP identification. Here, we show that the queen- and egg-specific sesquiterpene (3R,6E)-nerolidol acts as the QPP in the higher termite Embiratermes neotenicus. This species has a polygynous breeding system, in which the primary queen is replaced by multiple neotenic queens of parthenogenetic origin. We demonstrate that (3R,6E)-nerolidol suppresses the development of these parthenogenetic queens and thus mimics the presence of mature queen(s). It acts as an airborne signal and may be used to optimize the number of queens, thus being the key regulatory element in the special breeding system of E. neotenicus.
Collapse
Affiliation(s)
- Klára Dolejšová
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Křivánek
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Štáfková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Natan Horáček
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Havlíčková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Virginie Roy
- Université Paris Est Créteil, Sorbonne Université, Université Paris Cité, CNRS, INRAE, IRD, iEES Paris, Créteil, France
| | | | - Amit Roy
- Czech University of Life Sciences, Prague, Czech Republic
| | - Pavlína Kyjaková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Hanus
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
9
|
Juvenile hormone regulates reproductive physiology and the production of fertility cues in the swarm-founding wasp Polybia occidentalis. CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Price TN, Field J. Sisters doing it for themselves: extensive reproductive plasticity in workers of a primitively eusocial bee. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Plasticity is a key trait when an individual’s role in the social environment, and hence its optimum phenotype, fluctuates unpredictably. Plasticity is especially important in primitively eusocial insects where small colony sizes and little morphological caste differentiation mean that individuals may find themselves switching from non-reproductive to reproductive roles. To understand the scope of this plasticity, workers of the primitively eusocial sweat bee Lasioglossum malachurum were experimentally promoted to the reproductive role (worker-queens) and their performance compared with foundress-queens. We focussed on how their developmental trajectory as workers influenced three key traits: group productivity, monopolisation of reproduction, and social control of foraging nest-mates. No significant difference was found between the number of offspring produced by worker-queens and foundress-queens. Genotyping of larvae showed that worker-queens monopolised reproduction in their nests to the same extent as foundress queens. However, non-reproductives foraged less and produced a smaller total offspring biomass when the reproductive was a promoted worker: offspring of worker-queens were all males, which are the cheaper sex to produce. Greater investment in each offspring as the number of foragers increased suggests a limit to both worker-queen and foundress-queen offspring production when a greater quantity of pollen arrives at the nest. The data presented here suggest a remarkable level of plasticity and represent one of the first quantitative studies of worker reproductive plasticity in a non-model primitively eusocial species.
Significance statement
The ability of workers to take on a reproductive role and produce offspring is expected to relate strongly to the size of their colony. Workers in species with smaller colony sizes should have greater reproductive potential to insure against the death of the queen. We quantified the reproductive plasticity of workers in small colonies of sweat bees by removing the queen and allowing the workers to control the reproductive output of the nest. A single worker then took on the reproductive role and hence prevented her fellow workers from producing offspring of their own. These worker-queens produced as many offspring as control queens, demonstrating remarkable worker plasticity in a primitively eusocial species.
Collapse
|
11
|
da Silva RC, Prato A, Tannure-Nascimento I, Akemi Oi C, Wenseleers T, Nascimento F. Cuticular hydrocarbons as caste-linked cues in Neotropical swarm-founding wasps. PeerJ 2022; 10:e13571. [PMID: 35694385 PMCID: PMC9186331 DOI: 10.7717/peerj.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Wasps (Vespidae) are important organisms to understand the evolution of social behaviour. Wasps show different levels of sociality, which includes solitary to highly eusocial organisms. In social insect species, queens and workers differ in physiology and morphology. The Neotropical swarm-founding wasps (Epiponini) show a variety of caste syndromes. In this clade, the caste-flexibility is a unique characteristic, in which workers can become queens and swarm to start a new nest. The investigation of the caste system comparing several Epiponini species show a clear-cut morphological distinction between queens and workers, with a morphological continuum between queens and workers. However, whether cuticular hydrocarbons (CHCs) are used as cues for caste recognition in swarm-founding wasps is still unknown. We studied whether CHCs may display caste-linked differences in eleven species of Epiponini wasps and if CHCs differences would follow morphological patterns. Our results suggest that queens and workers of Epiponini wasps are chemically different from each other at two levels, qualitatively and quantitatively, or merely quantitatively. This variation seems to exist regardless of their morphological traits and may be useful to help us understanding how chemical communication evolved differently in these species.
Collapse
Affiliation(s)
- Rafael Carvalho da Silva
- Departamento de Biologia/Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Prato
- Departamento de Biologia/Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ivelize Tannure-Nascimento
- Departamento de Biologia/Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil,Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, Katholieke Universiteit Leuven, Leuven, Belgium,Centre for Biodiversity and Environment Research, University College London, University of London, London, United Kingdom
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Fabio Nascimento
- Departamento de Biologia/Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Strachecka A, Chobotow J, Kuszewska K, Olszewski K, Skowronek P, Bryś M, Paleolog J, Woyciechowski M. Morphology of Nasonov and Tergal Glands in Apis mellifera Rebels. INSECTS 2022; 13:401. [PMID: 35621739 PMCID: PMC9146257 DOI: 10.3390/insects13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Social insect societies are characterized by a high level of organization. This is made possible through a remarkably complex array of pheromonal signals produced by all members of the colony. The queen's pheromones signal the presence of a fertile female and induce daughter workers to remain sterile. However, the lack of the queen mandibular pheromone leads to the emergence of rebels, i.e., workers with increased reproductive potential. We suggested that the rebels would have developed tergal glands and reduced Nasonov glands, much like the queen but contrary to normal workers. Our guess turned out to be correct and may suggest that the rebels are more queen-like than previously thought. The tergal gland cells found in the rebels were numerous but they did not adhere as closely to one another as they did in queens. In the rebels, the number of Nasonov gland cells was very limited (from 38 to 53) and there were fat body trophocytes between the glandular cells. The diameters of the Nasonov gland cell nuclei were smaller in the rebels than in the normal workers. These results are important for understanding the formation of the different castes of Apis mellifera females, as well as the division of labor in social insect societies.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Jacek Chobotow
- Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-400 Lublin, Poland;
| | - Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (K.K.); (M.W.)
| | - Krzysztof Olszewski
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Patrycja Skowronek
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Maciej Bryś
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Jerzy Paleolog
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland; (P.S.); (M.B.); (J.P.)
| | - Michał Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (K.K.); (M.W.)
| |
Collapse
|
13
|
Shimoji H, Dobata S. The build-up of dominance hierarchies in eusocial insects. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200437. [PMID: 35000446 PMCID: PMC8743887 DOI: 10.1098/rstb.2020.0437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Reproductive division of labour is a hallmark of eusocial insects. However, its stability can often be hampered by the potential for reproduction by otherwise sterile nest-mates. Dominance hierarchy has a crucial role in some species in regulating which individuals reproduce. Compared with those in vertebrates, the dominance hierarchies in eusocial insects tend to involve many more individuals, and should require additional selective forces unique to them. Here, we provide an overview of a series of studies on dominance hierarchies in eusocial insects. Although reported from diverse eusocial taxa, dominance hierarchies have been extensively studied in paper wasps and ponerine ants. Starting from molecular physiological attributes of individuals, we describe how the emergence of dominance hierarchies can be understood as a kind of self-organizing process through individual memory and local behavioural interactions. The resulting global structures can be captured by using network analyses. Lastly, we argue the adaptive significance of dominance hierarchies from the standpoint of sterile subordinates. Kin selection, underpinned by relatedness between nest-mates, is key to the subordinates' acceptance of their positions in the hierarchies. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Hiroyuki Shimoji
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Shigeto Dobata
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
14
|
Sahm J, Prang MA, Steiger S. Parent-offspring conflict and its outcome under uni-and biparental care. Sci Rep 2022; 12:1999. [PMID: 35132107 PMCID: PMC8821718 DOI: 10.1038/s41598-022-05877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022] Open
Abstract
Conflicts over parental investment are predicted to be common among family members, especially between parents and their offspring. Parent-offspring conflict has been studied in many brood-caring organisms, but whether its outcome is closer to the parental or offspring optimum is usually unknown, as is whether the presence of a second parent, a caring male partner, can affect the outcome. Here, we manipulated the initial brood size of single and paired female burying beetles to examine how many offspring are necessary to maintain parental care in the current brood. We found that mothers continued to invest in small broods even if their reproductive output would have been higher if they had discontinued their care and produced a second brood instead. Consequently, our data suggests that the offspring have the upper hand in the conflict. However, our results further show that paired females laid a second egg clutch more often and produced more offspring than single females, suggesting that the presence of a male partner shifts the conflict outcome towards the parental optimum. This latter result not only is a novel aspect of parent-offspring theory, but also represents an additional factor that might explain the evolution of biparental care.
Collapse
Affiliation(s)
- Jacqueline Sahm
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| | - Madlen A Prang
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Sandra Steiger
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
15
|
Rodríguez-Flores MS, Falcão SI, Escuredo O, Queijo L, Seijo MC, Vilas-Boas M. Assessment of the In Vivo and In Vitro Release of Chemical Compounds from Vespa velutina. Molecules 2021; 26:molecules26226769. [PMID: 34833861 PMCID: PMC8621894 DOI: 10.3390/molecules26226769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022] Open
Abstract
Vespa velutina has been rapidly expanding throughout Galicia since 2012. It is causing human health risks and well-known losses in the beekeeping sector. Control methods are scarce, unspecific, and ineffective. Semiochemicals are insect-derived chemicals that play a role in communication and they could be used an integrated pest management tool alternative to conventional pesticides. A previous determination of the organic chemical profile should be the first step in the study of these semiochemicals. HS-SPME in living individuals and the sting apparatus extraction followed by GC-MS spectrometry were combined to extract a possible profile of these compounds in 43 hornets from Galicia. The identified compounds were hydrocarbons, ketones, terpenes, and fatty acid, and fatty acid esters. Nonanal aldehyde appeared in important concentrations in living individuals. While pentadecane, 8-hexyl- and ethyl oleate were mainly extracted from the venom apparatus. Ketones 2-nonanone, 2-undecanone and 7-nonen-2-one, 4,8-dimethyl- were identified by both procedures, as was 1,7-Nonadiene, 4,8-dimethyl-. Some compounds were detected for the first time in V. velutina such as naphthalene, 1,6-dimethyl-4-(1-methylethyl). The chemical profile by caste was also characterized.
Collapse
Affiliation(s)
- M. Shantal Rodríguez-Flores
- Department of Plant Biology and Soil Sciences, Facultad de Ciencias, Campus As Lagoas, University of Vigo, 32004 Ourense, Spain; (O.E.); (M.C.S.)
- Correspondence:
| | - Soraia I. Falcão
- Centro de Investigação de Montanha (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (M.V.-B.)
| | - Olga Escuredo
- Department of Plant Biology and Soil Sciences, Facultad de Ciencias, Campus As Lagoas, University of Vigo, 32004 Ourense, Spain; (O.E.); (M.C.S.)
| | - Luis Queijo
- Department of Mechanical Technology, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - M. Carmen Seijo
- Department of Plant Biology and Soil Sciences, Facultad de Ciencias, Campus As Lagoas, University of Vigo, 32004 Ourense, Spain; (O.E.); (M.C.S.)
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (M.V.-B.)
| |
Collapse
|
16
|
Lorenzi MC. Chemically Insignificant Social Parasites Exhibit More Anti-Dehydration Behaviors than Their Hosts. INSECTS 2021; 12:insects12111006. [PMID: 34821806 PMCID: PMC8624806 DOI: 10.3390/insects12111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Social parasites use a variety of deceptive mechanisms to avoid detection by their social-insect hosts and get tolerance in their colonies. One of these mechanisms is chemical insignificance, where social parasites have reduced amounts of recognition cues—hydrocarbons—on their cuticle, thus evading host chemical detection. This exposes social parasites to dehydration stress, as cuticular hydrocarbons also limit body water loss. By analyzing behavioral data from field observations, here we show that a Polistes wasp social parasite exhibits water-saving behaviors; parasites were less active than their cohabiting host foundresses, spent more time at the nest, and rested in the shadow, contradicting the rule that dominant individuals occupy prominent positions at the nest. Abstract Social parasites have evolved adaptations to overcome host resistance as they infiltrate host colonies and establish there. Among the chemical adaptations, a few species are chemically “insignificant”; they are poor in recognition cues (cuticular hydrocarbons) and evade host detection. As cuticular hydrocarbons also serve a waterproofing function, chemical insignificance is beneficial as it protects parasites from being detected but is potentially harmful because it exposes parasites to desiccation stress. Here I tested whether the social parasites Polistes atrimandibularis employ behavioral water-saving strategies when they live at Polistes biglumis colonies. Observations in the field showed that parasites were less active than their cohabiting host foundresses, spent more time at the nest, and rested in the shadowy, back face of the nest, rather than at the front face, which contradicted expectations for the use of space for dominant females—typically, dominants rest at the nest front-face. These data suggest that behavioral adaptations might promote resistance to desiccation stress in chemical insignificant social parasites.
Collapse
Affiliation(s)
- Maria Cristina Lorenzi
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, UR 4443, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France
| |
Collapse
|
17
|
Godfrey RK, Oberski JT, Allmark T, Givens C, Hernandez-Rivera J, Gronenberg W. Olfactory System Morphology Suggests Colony Size Drives Trait Evolution in Odorous Ants (Formicidae: Dolichoderinae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In social insects colony fitness is determined in part by individual worker phenotypes. Across ant species, colony size varies greatly and is thought to affect worker trait variation in both proximate and ultimate ways. Little is known about the relationship between colony size and worker trait evolution, but hypotheses addressing the role of social structure in brain evolution suggest workers of small-colony species may have larger brains or larger brain regions necessary for complex behaviors. In previous work on odorous ants (Formicidae: Dolichoderinae) we found no correlation between colony size and these brain properties, but found that relative antennal lobe size scaled negatively with colony size. Therefore, we now test whether sensory systems scale with colony size, with particular attention to olfactory components thought to be involved in nestmate recognition. Across three species of odorous ants, Forelius mccooki, Dorymyrmex insanus, and D. bicolor, which overlap in habitat and foraging ecology but vary in colony size, we compare olfactory sensory structures, comparing those thought to be involved in nestmate recognition. We use the visual system, a sensory modality not as important in social communication in ants, as a control comparison. We find that body size scaling largely explains differences in eye size, antennal length, antennal sensilla density, and total number of olfactory glomeruli across these species. However, sensilla basiconica and olfactory glomeruli in the T6 cluster of the antennal lobe, structures known to be involved in nestmate recognition, do not follow body size scaling observed for other structures. Instead, we find evidence from the closely related Dorymyrmex species that the larger colony species, D. bicolor, invests more in structures implicated in nestmate recognition. To test for functional consequences, we compare nestmate and non-nestmate interactions between these two species and find D. bicolor pairs of either type engage in more interactions than D. insaus pairs. Thus, we do not find evidence supporting a universal pattern of sensory system scaling associated with changes in colony size, but hypothesize that observed differences in the olfactory components in two closely related Dorymyrmex species are evidence of a link between colony size and sensory trait evolution.
Collapse
|
18
|
Saleh NW, Hodgson K, Pokorny T, Mullins A, Chouvenc T, Eltz T, Ramírez SR. Social Behavior, Ovary Size, and Population of Origin Influence Cuticular Hydrocarbons in the Orchid Bee Euglossa dilemma. Am Nat 2021; 198:E136-E151. [PMID: 34648396 DOI: 10.1086/716511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCuticular hydrocarbons (CHCs) are waxy compounds on the surface of insects that prevent desiccation and frequently serve as chemical signals mediating social and mating behaviors. Although their function in eusocial species has been heavily investigated, little is known about the evolution of CHC-based communication in species with simpler forms of social organization lacking specialized castes. Here we investigate factors shaping CHC variation in the orchid bee Euglossa dilemma, which forms casteless social groups of two to three individuals. We first assess geographic variation, examining CHC profiles of males and females from three populations. We also consider CHC variation in the sister species, Euglossa viridissima, which occurs sympatrically with one population of E. dilemma. Next, we consider variation associated with female behavioral phases, to test the hypothesis that CHCs reflect ovary size and social dominance. We uncover a striking CHC polymorphism in E. dilemma spanning populations. In addition, we identify a separate set of CHCs that correlate with ovary size, social dominance, and expression of genes associated with social behavior, suggesting that CHCs convey reproductive and social information in E. dilemma. Together, our results reveal complex patterns of variation in which a subset of CHCs reflect the social and reproductive status of nestmates.
Collapse
|
19
|
Oi CA, da Silva RC, Stevens I, Ferreira HM, Nascimento FS, Wenseleers T. Hormonal modulation of reproduction and fertility signaling in polistine wasps. Curr Zool 2021; 67:519-530. [PMID: 34616950 PMCID: PMC8489163 DOI: 10.1093/cz/zoab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
In social insects, it has been suggested that reproduction and the production of particular fertility-linked cuticular hydrocarbons (CHC) may be under shared juvenile hormone (JH) control, and this could have been key in predisposing such cues to later evolve into full-fledged queen pheromone signals. However, to date, only few studies have experimentally tested this "hormonal pleiotropy" hypothesis. Here, we formally test this hypothesis using data from four species of Polistine wasps, Polistes dominula, Polistes satan, Mischocyttarus metathoracicus, and Mischocyttarus cassununga, and experimental treatments with JH using the JH analogue methoprene and the anti-JH precocene. In line with reproduction being under JH control, our results show that across these four species, precocene significantly decreased ovary development when compared with both the acetone solvent-only control and the methoprene treatment. Consistent with the hormonal pleiotropy hypothesis, these effects on reproduction were further matched by subtle shifts in the CHC profiles, with univariate analyses showing that in P. dominula and P. satan the abundance of particular linear alkanes and mono-methylated alkanes were affected by ovary development and our hormonal treatments. The results indicate that in primitively eusocial wasps, and particularly in Polistes, reproduction and the production of some CHC cues are under joint JH control. We suggest that pleiotropic links between reproduction and the production of such hydrocarbon cues have been key enablers for the origin of true fertility and queen signals in more derived, advanced eusocial insects.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven 3000, Belgium
| | - Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo-USP, Ribeirão Preto, SP 14040-901, Brazil
| | - Ian Stevens
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven 3000, Belgium
| | | | - Fabio Santos Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo-USP, Ribeirão Preto, SP 14040-901, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
20
|
Cini A, Casacci LP, Nehring V. Uncovering variation in social insect communication. Curr Zool 2021; 67:515-518. [PMID: 34616949 PMCID: PMC8489175 DOI: 10.1093/cz/zoab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Alessandro Cini
- Centre for Biodiversity & Environment Research, University College London, Gower Street, London, WC1E 6BT, UK
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, Sesto Fiorentino, Firenze, 50019, Italy
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, Turin, 10123, Italy
| | - Volker Nehring
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, Freiburg (Brsg.), 79104, Germany
| |
Collapse
|
21
|
Van Winkle T, Ponce M, Quellhorst H, Bruce A, Albin CE, Kim TN, Zhu KY, Morrison WR. Microbial Volatile Organic Compounds from Tempered and Incubated Grain Mediate Attraction by a Primary but Not Secondary Stored Product Insect Pest in Wheat. J Chem Ecol 2021; 48:27-40. [PMID: 34542783 PMCID: PMC8801404 DOI: 10.1007/s10886-021-01312-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/31/2021] [Accepted: 08/22/2021] [Indexed: 12/04/2022]
Abstract
There has been a dearth of research elucidating the behavioral effect of microbially-produced volatile organic compounds on insects in postharvest agriculture. Demonstrating attraction to MVOC’s by stored product insects would provide an additional source of unique behaviorally-relevant stimuli to protect postharvest commodities at food facilities. Here, we assessed the behavioral response of a primary (Rhyzopertha dominica) and secondary (Tribolium castaneum) grain pest to bouquets of volatiles produced by whole wheat that were untempered, or tempered to 12%, 15%, or 19% grain moisture and incubated for 9, 18, or 27 days. We hypothesized that MVOC’s may be more important for the secondary feeder because they signal that otherwise unusable, intact grains have become susceptible by weakening of the bran. However, contrary to our expectations, we found that the primary feeder, R. dominica, but not T. castaneum was attracted to MVOC’s in a wind tunnel experiment, and in a release-recapture assay using commercial traps baited with grain treatments. Increasing grain moisture resulted in elevated grain damage detected by near-infrared spectroscopy and resulted in small but significant differences in the blend of volatiles emitted by treatments detected by gas chromatography coupled with mass spectrometry (GC–MS). In sequencing the microbial community on the grain, we found a diversity of fungi, suggesting that an assemblage was responsible for emissions. We conclude that R. dominica is attracted to a broader suite of MVOC’s than T. castaneum, and that our work highlights the importance of understanding insect-microbe interactions in the postharvest agricultural supply chain.
Collapse
Affiliation(s)
- Taylor Van Winkle
- School of Planning, Design, and Construction, Michigan State University, East Lansing, MI, USA
| | - Marco Ponce
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hannah Quellhorst
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Alexander Bruce
- USDA-ARS Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA
| | - Chloe E Albin
- Department of Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Tania N Kim
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - William R Morrison
- USDA-ARS Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA.
| |
Collapse
|
22
|
Orlova M, Amsalem E. Bumble bee queen pheromones are context-dependent. Sci Rep 2021; 11:16931. [PMID: 34417514 PMCID: PMC8379210 DOI: 10.1038/s41598-021-96411-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
Queen pheromones have long been studied as a major factor regulating reproductive division of labor in social insects. Hitherto, only a handful of queen pheromones were identified and their effects on workers have mostly been studied in isolation from the social context in which they operate. Our study examined the importance of behavioral and social context for the perception of queen semiochemicals by bumble bee workers. Our results indicate that a mature queen’s cuticular semiochemicals are capable of inhibiting worker reproduction only when accompanied by the queen’s visual presence and the offspring she produces, thus, when presented in realistic context. Queen’s chemistry, queen’s visual presence and presence of offspring all act to regulate worker reproduction, but none of these elements produces an inhibitory effect on its own. Our findings highlight the necessity to reconsider what constitutes a queen pheromone and suggest a new approach to the study of chemical ecology in social insects.
Collapse
Affiliation(s)
- Margarita Orlova
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
23
|
Oi CA, Ferreira HM, da Silva RC, Bienstman A, do Nascimento FS, Wenseleers T. Effects of juvenile hormone in fertility and fertility-signaling in workers of the common wasp Vespula vulgaris. PLoS One 2021; 16:e0250720. [PMID: 33999926 PMCID: PMC8128253 DOI: 10.1371/journal.pone.0250720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
In the highly eusocial wasp, Vespula vulgaris, queens produce honest signals to alert their subordinate workers of their fertility status, and therefore they are reproductively suppressed and help in the colony. The honesty of the queen signals is likely maintained due to hormonal regulation, which affects fertility and fertility cue expression. Here, we tested if hormonal pleiotropy could support the hypothesis that juvenile hormone controls fertility and fertility signaling in workers. In addition, we aimed to check oocyte size as a proxy of fertility. To do that, we treated V. vulgaris workers with synthetic versions of juvenile hormone (JH) analogue and a JH inhibitor, methoprene and precocene, respectively. We dissected the treated females to check ovary activation and analyzed their chemical profile. Our results showed that juvenile hormone has an influence on the abundance of fertility linked compounds produced by workers, and it also showed to increase oocyte size in workers. Our results corroborate the hypothesis that juvenile hormone controls fertility and fertility signaling in workers, whereby workers are unable to reproduce without alerting other colony members of their fertility. This provides supports the hypothesis that hormonal pleiotropy contributes to keeping the queen fertility signals honest.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | | | - Rafael Carvalho da Silva
- Departamento de Biologia, Universidade de São Paulo – USP/ Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Andreas Bienstman
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Fabio Santos do Nascimento
- Departamento de Biologia, Universidade de São Paulo – USP/ Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Steitz I, Paxton RJ, Schulz S, Ayasse M. Chemical Variation among Castes, Female Life Stages and Populations of the Facultative Eusocial Sweat Bee Halictus rubicundus (Hymenoptera: Halictidae). J Chem Ecol 2021; 47:406-419. [PMID: 33788128 PMCID: PMC8116247 DOI: 10.1007/s10886-021-01267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
In eusocial insects, chemical communication is crucial for mediating many aspects of social activities, especially the regulation of reproduction. Though queen signals are known to decrease ovarian activation of workers in highly eusocial species, little is known about their evolution. In contrast, some primitively eusocial species are thought to control worker reproduction through physical aggression by the queen rather than via pheromones, suggesting the evolutionary establishment of chemical signals with more derived sociality. However, studies supporting this hypothesis are largely missing. Socially polymorphic halictid bees, such as Halictus rubicundus, with social and solitary populations in both Europe and North America, offer excellent opportunities to illuminate the evolution of caste-specific signals. Here we compared the chemical profiles of social and solitary populations from both continents and tested whether (i) population or social level affect chemical dissimilarity and whether (ii) caste-specific patterns reflect a conserved queen signal. Our results demonstrate unique odor profiles of European and North American populations, mainly due to different isomers of n-alkenes and macrocyclic lactones; chemical differences may be indicative of phylogeographic drift in odor profiles. We also found common compounds overproduced in queens compared to workers in both populations, indicating a potential conserved queen signal. However, North American populations have a lower caste-specific chemical dissimilarity than European populations which raises the question if both use different mechanisms of regulating reproductive division of labor. Therefore, our study gives new insights into the evolution of eusocial behavior and the role of chemical communication in the inhibition of reproduction.
Collapse
Affiliation(s)
- Iris Steitz
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Stefan Schulz
- Departement of Life Sciences, Institute of Organic Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
25
|
González-Forero M, Peña J. Eusociality through conflict dissolution. Proc Biol Sci 2021; 288:20210386. [PMID: 33878926 PMCID: PMC8059605 DOI: 10.1098/rspb.2021.0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
Eusociality, where largely unreproductive offspring help their mothers reproduce, is a major form of social organization. An increasingly documented feature of eusociality is that mothers induce their offspring to help by means of hormones, pheromones or behavioural displays, with evidence often indicating that offspring help voluntarily. The co-occurrence of maternal influence and offspring voluntary help may be explained by what we call the converted helping hypothesis, whereby maternally manipulated helping subsequently becomes voluntary. Such hypothesis requires that parent-offspring conflict is eventually dissolved-for instance, if the benefit of helping increases sufficiently over evolutionary time. We show that help provided by maternally manipulated offspring can enable the mother to sufficiently increase her fertility to transform parent-offspring conflict into parent-offspring agreement. This conflict-dissolution mechanism requires that helpers alleviate maternal life-history trade-offs, and results in reproductive division of labour, high queen fertility and honest queen signalling suppressing worker reproduction-thus exceptionally recovering diverse features of eusociality. As such trade-off alleviation seemingly holds widely across eusocial taxa, this mechanism offers a potentially general explanation for the origin of eusociality, the prevalence of maternal influence, and the offspring's willingness to help. Overall, our results explain how a major evolutionary transition can happen from ancestral conflict.
Collapse
Affiliation(s)
| | - Jorge Peña
- Institute for Advanced Study in Toulouse, University of Toulouse Capitole, Toulouse, France
| |
Collapse
|
26
|
Duncan EJ, Leask MP, Dearden PK. Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera). Mol Biol Evol 2021; 37:1964-1978. [PMID: 32134461 PMCID: PMC7306700 DOI: 10.1093/molbev/msaa057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity, the ability of an organism to alter its phenotype in response to an environmental cue, facilitates rapid adaptation to changing environments. Plastic changes in morphology and behavior are underpinned by widespread gene expression changes. However, it is unknown if, or how, genomes are structured to ensure these robust responses. Here, we use repression of honeybee worker ovaries as a model of plasticity. We show that the honeybee genome is structured with respect to plasticity; genes that respond to an environmental trigger are colocated in the honeybee genome in a series of gene clusters, many of which have been assembled in the last 80 My during the evolution of the Apidae. These clusters are marked by histone modifications that prefigure the gene expression changes that occur as the ovary activates, suggesting that these genomic regions are poised to respond plastically. That the linear sequence of the honeybee genome is organized to coordinate widespread gene expression changes in response to environmental influences and that the chromatin organization in these regions is prefigured to respond to these influences is perhaps unexpected and has implications for other examples of plasticity in physiology, evolution, and human disease.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Megan P Leask
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Lin S, Werle J, Korb J. Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun Biol 2021; 4:384. [PMID: 33753888 PMCID: PMC7985136 DOI: 10.1038/s42003-021-01892-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Organisms are typically characterized by a trade-off between fecundity and longevity. Notable exceptions are social insects. In insect colonies, the reproducing caste (queens) outlive their non-reproducing nestmate workers by orders of magnitude and realize fecundities and lifespans unparalleled among insects. How this is achieved is not understood. Here, we identified a single module of co-expressed genes that characterized queens in the termite species Cryptotermes secundus. It encompassed genes from all essential pathways known to be involved in life-history regulation in solitary model organisms. By manipulating its endocrine component, we tested the recent hypothesis that re-wiring along the nutrient-sensing/endocrine/fecundity axis can account for the reversal of the fecundity/longevity trade-off in social insect queens. Our data from termites do not support this hypothesis. However, they revealed striking links to social communication that offer new avenues to understand the re-modelling of the fecundity/longevity trade-off in social insects.
Collapse
Affiliation(s)
- Silu Lin
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Jana Werle
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Judith Korb
- grid.5963.9Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Kingwell C, Böröczky K, Steitz I, Ayasse M, Wcislo W. Cuticular and Dufour's Gland Chemistry Reflect Reproductive and Social State in the Facultatively Eusocial Sweat Bee Megalopta genalis (Hymenoptera: Halictidae). J Chem Ecol 2021; 47:420-432. [PMID: 33682070 DOI: 10.1007/s10886-021-01262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
Queen pheromones evolved independently in multiple eusocial insect lineages, in which they mediate reproductive conflict by inhibiting worker ovarian development. Although fundamentally important for reproductive division of labor - the hallmark of eusociality - their evolutionary origins are enigmatic. Here, we analyze cuticular and Dufour's gland chemistries across alternative social and reproductive phenotypes in Megalopta genalis bees (tribe Augochlorini, family Halictidae) that facultatively express simple eusociality. Reproductive bees have distinct overall glandular and cuticular chemical phenotypes compared with non-reproductive workers. On the cuticle, a likely site of signal transmission, reproductives are enriched for certain alkenes, most linear alkanes, and are heavily enriched for all methyl-branched alkanes. Chemicals belonging to these compound classes are known to function as fertility signals in other eusocial insect taxa. Some macrocyclic lactones, compounds that serve as queen pheromones in the other eusocial halictid tribe (Halictini), are also enriched among reproductives relative to workers. The intra-population facultative eusociality of M. genalis permits direct comparisons between individuals expressing alternative reproductive phenotypes - females that reproduce alone (solitary reproductives) and social queens - to highlight traits in the latter that may be important mediators of eusociality. Compared with solitary reproductives, the cuticular chemistries of queens are more strongly differentiated from those of workers, and furthermore are especially enriched for methyl-branched alkanes. Determining the pheromonal function(s) and information content of the candidate signaling compounds we identify will help illuminate the early evolutionary history of queen pheromones, chemical signals central to the organization of insect eusocial behavior.
Collapse
Affiliation(s)
- Callum Kingwell
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| | - Katalin Böröczky
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Iris Steitz
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
29
|
Eyer PA, Salin J, Helms AM, Vargo EL. Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes. Sci Rep 2021; 11:4471. [PMID: 33627740 PMCID: PMC7904765 DOI: 10.1038/s41598-021-83976-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
The production of royal pheromones by reproductives (queens and kings) enables social insect colonies to allocate individuals into reproductive and non-reproductive roles. In many termite species, nestmates can develop into neotenics when the primary king or queen dies, which then inhibit the production of additional reproductives. This suggests that primary reproductives and neotenics produce royal pheromones. The cuticular hydrocarbon heneicosane was identified as a royal pheromone in Reticulitermes flavipes neotenics. Here, we investigated the presence of this and other cuticular hydrocarbons in primary reproductives and neotenics of this species, and the ontogeny of their production in primary reproductives. Our results revealed that heneicosane was produced by most neotenics, raising the question of whether reproductive status may trigger its production. Neotenics produced six additional cuticular hydrocarbons absent from workers and nymphs. Remarkably, heneicosane and four of these compounds were absent in primary reproductives, and the other two compounds were present in lower quantities. Neotenics therefore have a distinct 'royal' blend from primary reproductives, and potentially over-signal their reproductive status. Our results suggest that primary reproductives and neotenics may face different social pressures. Future studies of these pressures should provide a more complete understanding of the mechanisms underlying social regulation in termites.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA.
| | - Jared Salin
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Anjel M Helms
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| |
Collapse
|
30
|
Dufour's gland analysis reveals caste and physiology specific signals in Bombus impatiens. Sci Rep 2021; 11:2821. [PMID: 33531560 PMCID: PMC7854627 DOI: 10.1038/s41598-021-82366-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
Reproductive division of labor in insect societies is regulated through multiple concurrent mechanisms, primarily chemical and behavioral. Here, we examined if the Dufour’s gland secretion in the primitively eusocial bumble bee Bombus impatiens signals information about caste, social condition, and reproductive status. We chemically analyzed Dufour’s gland contents across castes, age groups, social and reproductive conditions, and examined worker behavioral and antennal responses to gland extracts. We found that workers and queens each possess caste-specific compounds in their Dufour’s glands. Queens and gynes differed from workers based on the presence of diterpene compounds which were absent in workers, whereas four esters were exclusive to workers. These esters, as well as the total amounts of hydrocarbons in the gland, provided a separation between castes and also between fertile and sterile workers. Olfactometer bioassays demonstrated attraction of workers to Dufour’s gland extracts that did not represent a reproductive conflict, while electroantennogram recordings showed higher overall antennal sensitivity in queenless workers. Our results demonstrate that compounds in the Dufour’s gland act as caste- and physiology-specific signals and are used by workers to discriminate between workers of different social and reproductive status.
Collapse
|
31
|
Blomquist GJ, Ginzel MD. Chemical Ecology, Biochemistry, and Molecular Biology of Insect Hydrocarbons. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:45-60. [PMID: 33417824 DOI: 10.1146/annurev-ento-031620-071754] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insect cuticular hydrocarbons (CHCs) consist of complex mixtures of straight-chain alkanes and alkenes, and methyl-branched hydrocarbons. In addition to restricting water loss through the cuticle and preventing desiccation, they have secondarily evolved to serve a variety of functions in chemical communication and play critical roles as signals mediating the life histories of insects. In this review, we describe the physical properties of CHCs that allow for both waterproofing and signaling functions, summarize their roles as inter- and intraspecific chemical signals, and discuss the influences of diet and environment on CHC profiles. We also present advances in our understanding of hydrocarbon biosynthesis. Hydrocarbons are biosynthesized in oenocytes and transported to the cuticle by lipophorin proteins. Recent work on the synthesis of fatty acids and their ultimate reductive decarbonylation to hydrocarbons has taken advantage of powerful new tools of molecular biology, including genomics and RNA interference knockdown of specific genes, to provide new insights into the biosynthesis of hydrocarbons.
Collapse
Affiliation(s)
- Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA;
| | - Matthew D Ginzel
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA;
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
32
|
Oi CA, Brown RL, da Silva RC, Wenseleers T. Reproduction and signals regulating worker policing under identical hormonal control in social wasps. Sci Rep 2020; 10:18971. [PMID: 33149171 PMCID: PMC7643062 DOI: 10.1038/s41598-020-76084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
In social Hymenoptera, fertility and fertility signalling are often under identical hormonal control, and it has been suggested that such hormonal pleiotropies can help to maintain signal honesty. In the common wasp Vespula vulgaris, for example, fertile queens have much higher juvenile hormone (JH) titers than workers, and JH also controls the production of chemical fertility cues present on the females’ cuticle. To regulate reproductive division of labour, queens use these fertility cues in two distinct ways: as queen pheromones that directly suppress the workers’ reproduction as well as to mark queen eggs and enable the workers to recognize and police eggs laid by other workers. Here, we investigated the hormonal pleiotropy hypothesis by testing if experimental treatment with the JH analogue methoprene could enable the workers to lay eggs that evade policing. In support of this hypothesis, we find that methoprene-treated workers laid more eggs, and that the chemical profiles of their eggs were more queen-like, thereby causing fewer of their eggs to be policed compared to in the control. Overall, our results identify JH as a key regulator of both reproduction and the production of egg marking pheromones that mediate policing behaviour in eusocial wasps.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Ge J, Ge Z, Zhu D, Wang X. Pheromonal Regulation of the Reproductive Division of Labor in Social Insects. Front Cell Dev Biol 2020; 8:837. [PMID: 32974354 PMCID: PMC7468439 DOI: 10.3389/fcell.2020.00837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
The reproductive altruism in social insects is an evolutionary enigma that has been puzzling scientists starting from Darwin. Unraveling how reproductive skew emerges and maintains is crucial to understand the reproductive altruism involved in the consequent division of labor. The regulation of adult worker reproduction involves conspecific inhibitory signals, which are thought to be chemical signals by numerous studies. Despite the primary identification of few chemical ligands, the action modes of primer pheromones that regulate reproduction and their molecular causes and effects remain challenging. Here, these questions were elucidated by comprehensively reviewing recent advances. The coordination with other modalities of queen pheromones (QPs) and its context-dependent manner to suppress worker reproduction were discussed under the vast variation and plasticity of reproduction during colony development and across taxa. In addition to the effect of QPs, special attention was paid to recent studies revealing the regulatory effect of brood pheromones. Considering the correlation between pheromone and hormone, this study focused on the production and perception of pheromones under the endocrine control and highlighted the pivotal roles of nutrition-related pathways. The novel chemicals and gene pathways discovered by recent works provide new insights into the understanding of social regulation of reproductive division of labor in insects.
Collapse
Affiliation(s)
- Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxi Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Oliveira RC, Warson J, Sillam-Dussès D, Herrera-Malaver B, Verstrepen K, Millar JG, Wenseleers T. Identification of a queen pheromone mediating the rearing of adult sexuals in the pharaoh ant Monomorium pharaonis. Biol Lett 2020; 16:20200348. [PMID: 32810428 DOI: 10.1098/rsbl.2020.0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The division of labour between reproductive queens and mostly sterile workers is among the defining characteristics of social insects. Queen-produced chemical signals advertising her presence and fertility status, i.e. queen pheromones, are normally used to assert the queen's reproductive dominance in the colony. Most queen pheromones identified to date are chemicals that stop the daughter workers from reproducing. Nevertheless, it has long been suggested that queen pheromones could also regulate reproduction in different ways. In some multiple-queen ants with obligately sterile workers, for example-such as fire ants and pharaoh ants-queen pheromones are thought to regulate reproduction by inhibiting the rearing of new sexuals. Here, we identify the first such queen pheromone in the pharaoh ant Monomorium pharaonis and demonstrate its mode of action via bioassays with the pure biosynthesized compound. In particular, we show that the monocyclic diterpene neocembrene, which in different Monomorium species is produced solely by fertile, egg-laying queens, strongly inhibits the rearing of new sexuals (queens and males) and also exerts a weakly attractive 'queen retinue' effect on the workers. This is the first time that a queen pheromone with such a dual function has been identified in a social insect species with obligately sterile workers.
Collapse
Affiliation(s)
- Ricardo Caliari Oliveira
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Jonas Warson
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology UR 4443, University Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Beatriz Herrera-Malaver
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | - Kevin Verstrepen
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA 92521, USA.,Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| |
Collapse
|
35
|
Dominance Hierarchy, Ovarian Activity and Cuticular Hydrocarbons in the Primitively Eusocial Wasp Mischocyttarus cerberus (Vespidae, Polistinae, Mischocyttarini). J Chem Ecol 2020; 46:835-844. [PMID: 32789711 DOI: 10.1007/s10886-020-01206-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
The dominance hierarchy in primitively eusocial insect societies has been shown to be mainly regulated through aggressive interactions. Females that are generally more dominant stand out and occupy the queen position, meaning that they monopolize reproduction while others perform other tasks. Chemical communication is important for maintaining social cohesion. Cuticular hydrocarbons are recognized as the main molecules responsible for mediating social interactions, especially nestmate recognition and queen signalling. Many highly eusocial groups have been studied in recent years, but primitively eusocial groups, which are key to understanding the evolution of social behavior, remain unexplored. In this study, we investigated the connection between cuticular hydrocarbons in females expressed in different social contexts in the primitively eusocial wasp Mischocyttarus cerberus. Colonies in two different ontogenetic phases, pre- and post-worker emergence, were used. We observed and categorized behavioral interactions between individual females and collected all individuals in a nest to obtain information on size, ovary activation and chemical composition. Furthermore, we conducted experiments in which the alpha (dominant) females were removed from nests to produce a new dominance hierarchy. We found that females in different hierarchical positions had small chemical difference corresponding with ovary activity. Our results support the hypothesis that cuticular hydrocarbons are associated with social context in this primitively eusocial species, with some compounds being associated with hierarchical position and ovarian activity.
Collapse
|
36
|
Friedman DA, Johnson BR, Linksvayer TA. Distributed physiology and the molecular basis of social life in eusocial insects. Horm Behav 2020; 122:104757. [PMID: 32305342 DOI: 10.1016/j.yhbeh.2020.104757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
The traditional focus of physiological and functional genomic research is on molecular processes that play out within a single multicellular organism. In the colonial (eusocial) insects such as ants, bees, and termites, molecular and behavioral responses of interacting nestmates are tightly linked, and key physiological processes are regulated at the scale of the colony. Such colony-level physiological processes regulate nestmate physiology in a distributed fashion, through various social communication mechanisms. As a result of physiological decentralization over evolutionary time, organismal mechanisms, for example related to pheromone detection, hormone signaling, and neural signaling pathways, are deployed in novel contexts to influence nestmate and colony traits. Here we explore how functional genomic, physiological, and behavioral studies can benefit from considering the traits of eusocial insects in this light. We highlight functional genomic work exploring how nestmate-level and colony-level traits arise and are influenced by interactions among physiologically-specialized nestmates of various developmental stages. We also consider similarities and differences between nestmate-level (organismal) and colony-level (superorganismal) physiological processes, and make specific hypotheses regarding the physiology of eusocial taxa. Integrating theoretical models of distributed systems with empirical functional genomics approaches will be useful in addressing fundamental questions related to the evolution of eusociality and collective behavior in natural systems.
Collapse
Affiliation(s)
- D A Friedman
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America.
| | - B R Johnson
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America
| | - T A Linksvayer
- University of Pennsylvania, Department of Biology, Pennsylvania, PA 19104, United States of America
| |
Collapse
|
37
|
Steitz I, Ayasse M. Macrocyclic Lactones Act as a Queen Pheromone in a Primitively Eusocial Sweat Bee. Curr Biol 2020; 30:1136-1141.e3. [PMID: 32059770 DOI: 10.1016/j.cub.2020.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023]
Abstract
Eusociality is characterized by the reproductive division of labor between two castes: fertile queens and largely sterile workers. Queen pheromones are known to influence worker behavior and reproductive physiology and are therefore key components in regulating complex eusocial behavior [1]. Recent studies indicate that cuticular hydrocarbons (CHCs) act as queen pheromones in various eusocial hymenopteran species [2-8]. However, almost all species investigated to date are highly eusocial and do not include extant transitory stages from solitary to eusocial behavior [9]. Indeed, primitively eusocial species, which largely lack morphologically distinct castes, are thought to control worker reproduction through the physical aggression of the queen rather than via pheromones [10-12]. Halictid or sweat bees exhibit a high variability of eusociality including solitary and facultatively eusocial species [9, 13-16]. However, the mechanisms controlling worker reproduction in these transitory species are unknown. The results of a recent correlative study based on caste-specific chemical profiles in various halictid bees of different social levels have revealed an overproduction of macrocyclic lactones in queens compared with workers [17]. Using chemical analyses and behavioral experiments in which we simulated below-ground nests of the primitively eusocial sweat bee Lasioglossum malachurum, we identified a queen pheromone and found that macrocyclic lactones, not CHCs, influence worker behavior and decrease ovarian activation in this species. Our data suggest that the evolution of queen pheromones is more complex than previously inferred from highly eusocial species and shed new light on the complexity of the evolution of queen pheromones.
Collapse
Affiliation(s)
- Iris Steitz
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| |
Collapse
|
38
|
Van Eeckhoven J, Duncan EJ. Mating status and the evolution of eusociality: Oogenesis is independent of mating status in the solitary bee Osmia bicornis. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104003. [PMID: 31883996 DOI: 10.1016/j.jinsphys.2019.104003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The fundamental trait underlying eusociality is the reproductive division of labour. In honeybees (Apis mellifera), queens lay eggs while workers forage, defend and care for brood. The division of labour is maintained by pheromones including queen mandibular pheromone (QMP) produced by the queen. QMP constrains reproduction in adult honeybee workers, but in the absence of their queen workers can activate their ovaries and, although they cannot mate, they lay haploid male eggs. The reproductive ground plan hypothesis suggests that reproductive constraint may have evolved by co-opting mechanisms of reproductive control in solitary ancestors. In many insects mating is required to activate or accelerate oogenesis. Here, we use the solitary bee Osmia bicornis (Megachilidae) to test whether reproductive constraint evolved from ancestral control of reproduction by mating status. We present a structural study of the O. bicornis ovary, and compare key stages of oogenesis with honeybee workers. Importantly, we show that mating does not affect any aspect of the reproductive physiology of O. bicornis. We therefore conclude that mechanisms governing reproductive constraint in honeybees were unlikely to have been co-opted from mechanisms pertaining to mating status.
Collapse
Affiliation(s)
- Jens Van Eeckhoven
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Elizabeth J Duncan
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
39
|
Steitz I, Brandt K, Biefel F, Minat Ä, Ayasse M. Queen Recognition Signals in Two Primitively Eusocial Halictid Bees: Evolutionary Conservation and Caste-Specific Perception. INSECTS 2019; 10:E416. [PMID: 31766459 PMCID: PMC6955767 DOI: 10.3390/insects10120416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Queen signals are known to regulate reproductive harmony within eusocial colonies by influencing worker behavior and ovarian physiology. However, decades of research have resulted in the identification of just a few queen signals, and studies of their mode of action are rare. Our aim was to identify queen recognition signals in the halictid bee Lasioglossum pauxillum and to analyze caste differences in the olfactory perception of queen signals in L. pauxillum and the closely related species L. malachurum. We performed chemical analyses and bioassays to test for caste differences in chemical profiles and worker behavior influenced by queen-specific compounds in L. pauxillum. Our results indicated that caste differences in the chemical profiles were mainly attributable to higher amounts of macrocyclic lactones in queens. Bioassays demonstrated a higher frequency of subordinate behavior in workers elicited by queen-specific amounts of macrocyclic lactones. Thus, macrocyclic lactones function as queen recognition signals in L. pauxillum, as in L. malachurum. Using electrophysiological analyses, we have demonstrated that queens of both tested species lack antennal reactions to certain macrocyclic lactones. Therefore, we assume that this is a mechanism to prevent reproductive self-inhibition in queens. Our results should stimulate debate on the conservation and mode of action of queen signals.
Collapse
Affiliation(s)
- Iris Steitz
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany; (K.B.); (F.B.); (Ä.M.); (M.A.)
| | | | | | | | | |
Collapse
|
40
|
Princen SA, Van Oystaeyen A, Petit C, van Zweden JS, Wenseleers T. Cross-activity of honeybee queen mandibular pheromone in bumblebees provides evidence for sensory exploitation. Behav Ecol 2019. [DOI: 10.1093/beheco/arz191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractThe evolutionary origin of queen pheromones (QPs), which regulate reproductive division of labor in insect societies, has been explained by two evolutionary scenarios: the sender-precursor hypothesis and the sensory exploitation hypothesis. These scenarios differ in terms of whether the signaling system was built on preadaptations on the part of either the sender queens or the receiver workers. While some social insect QPs—such as cuticular hydrocarbons—were likely derived from ancestral fertility cues and evolved according to the former theory, the honeybee’s queen mandibular pheromone (QMP) has been suggested to act directly on preexisting gene-regulatory networks linked with reproduction. This is evidenced by the fact that QMP has been shown to also inhibit ovary activation in fruit flies, thereby implying exploitation of conserved physiological pathways. To verify whether QMP has similar effects on more closely related eusocial species, we here tested for QMP cross-activity in the bumblebee Bombus terrestris. Interestingly, we found that the non-native QMP blend significantly inhibited egg laying in both worker and queen bumblebees and caused accompanying shifts in ovary activation. The native bumblebee QP pentacosane, by contrast, only inhibited the reproduction of the workers. Overall, these findings support the hypothesis that honeybee QMP likely evolved via a route of sensory exploitation. We argue that such exploitation could allow social insect queens to produce compounds that manipulate the workers to remain sterile, but that a major hurdle would be that the queens themselves would have to be immune to such compounds.
Collapse
Affiliation(s)
- Sarah A Princen
- Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat, Leuven, Belgium
| | - Annette Van Oystaeyen
- Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat, Leuven, Belgium
- Biobest Group NV, Westerlo, Belgium
| | - Clément Petit
- Biobest Group NV, Westerlo, Belgium
- Montpellier SupAgro, Montpellier, France
| | - Jelle S van Zweden
- Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat, Leuven, Belgium
| | - Tom Wenseleers
- Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat, Leuven, Belgium
| |
Collapse
|
41
|
Orlova M, Amsalem E. Context matters: plasticity in response to pheromones regulating reproduction and collective behavior in social Hymenoptera. CURRENT OPINION IN INSECT SCIENCE 2019; 35:69-76. [PMID: 31404906 DOI: 10.1016/j.cois.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Pheromones mediating social behavior are critical components in the cohesion and function of the colony and are instrumental in the evolution of eusocial insect species. However, different aspects of colony function, such as reproductive division of labor and colony maintenance (e.g. foraging, brood care, and defense), pose different challenges for the optimal function of pheromones. While reproductive communication is shaped by forces of conflict and competition, colony maintenance calls for enhanced cooperation and self-organization. Mechanisms that ensure efficacy, adaptivity and evolutionary stability of signals such as structure-to-function suitability, honesty and context are important to all chemical signals but vary to different degrees between pheromones regulating reproductive division of labor and colony maintenance. In this review, we will discuss these differences along with the mechanisms that have evolved to ensure pheromone adaptivity in reproductive and non-reproductive context.
Collapse
Affiliation(s)
- Margarita Orlova
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
42
|
Starkey J, Derstine N, Amsalem E. Do Bumble Bees Produce Brood Pheromones? J Chem Ecol 2019; 45:725-734. [PMID: 31471873 DOI: 10.1007/s10886-019-01101-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022]
Abstract
Reproductive division of labor, a defining feature of social insects, is often regulated by a combination of behavioral and chemical means. It is hypothesized that behavioral interactions play a more important role in regulating reproduction of primitive eusocial species, while pheromones are typically used by large sized, advanced eusocial species. Here we examined if worker reproduction in the primitively eusocial species Bombus impatiens is regulated by brood pheromones. We recently demonstrated that worker egg laying in this species is inhibited by young larvae and triggered by pupae. However, the mechanism by which the brood communicates its presence and whether brood or hunger pheromones are involved remain unknown. We found that workers were behaviorally attracted to pupae over larvae or control in a choice experiment, in line with their reproductive interests. However, odors from larvae or pupae were insufficient to inhibit worker reproduction. We further show that the youngest larvae are particularly vulnerable to starvation, however, despite a slight attraction and fewer eggs laid by workers in the presence of starved compared with fed larvae, these effects were insignificant. Our study demonstrates that workers can differentiate between larvae and pupae, but not between starved and fed larvae based on olfactory information. However, these signals alone do not explain the reduction in worker egg laying previously found. Bumble bee workers may use information from multiple sources or rely solely on behavioral interactions with brood and other females to make decisions about reproduction, in line with their small colony size and simple social organization.
Collapse
Affiliation(s)
- Jesse Starkey
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nathan Derstine
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
43
|
Ren W, Gries R, Kurita KL, McCaughey CS, Alamsetti SK, Linington RG, Gries G, Britton R. Isolation, Structure Elucidation, and Total Synthesis of Dolichovespulide, a Sesquiterpene from Dolichovespula Yellowjackets. JOURNAL OF NATURAL PRODUCTS 2019; 82:2009-2012. [PMID: 31244148 DOI: 10.1021/acs.jnatprod.9b00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As part of an ongoing program to identify sex attractant pheromone components that mediate sexual communication in yellowjacket wasps, a novel sesquiterpene was isolated from body surface extracts of virgin bald-faced hornet queens, Dolichovespula maculata. The gross structure of this sesquiterpene was proposed through microscale spectroscopic analyses, and the configuration of the central olefin was subsequently confirmed by total synthesis. This new natural product (termed here dolichovespulide) represents an important addition to the relatively small number of terpenoids reported from the taxonomic insect family Vespidae.
Collapse
Affiliation(s)
- Weiwu Ren
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Regine Gries
- Department of Biological Sciences , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Kenji L Kurita
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Catherine S McCaughey
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Santosh K Alamsetti
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Roger G Linington
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Gerhard Gries
- Department of Biological Sciences , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Robert Britton
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
44
|
Princen SA, Oliveira RC, Ernst UR, Millar JG, van Zweden JS, Wenseleers T. Honeybees possess a structurally diverse and functionally redundant set of queen pheromones. Proc Biol Sci 2019; 286:20190517. [PMID: 31213188 DOI: 10.1098/rspb.2019.0517] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Queen pheromones, which signal the presence of a fertile queen and induce workers to remain sterile, play a key role in regulating reproductive division of labour in insect societies. In the honeybee, volatiles produced by the queen's mandibular glands have been argued to act as the primary sterility-inducing pheromones. This contrasts with evidence from other groups of social insects, where specific queen-characteristic hydrocarbons present on the cuticle act as conserved queen signals. This led us to hypothesize that honeybee queens might also employ cuticular pheromones to stop workers from reproducing. Here, we support this hypothesis with the results of bioassays with synthetic blends of queen-characteristic alkenes, esters and carboxylic acids. We show that all these compound classes suppress worker ovary development, and that one of the blends of esters that we used was as effective as the queen mandibular pheromone (QMP) mix. Furthermore, we demonstrate that the two main QMP compounds 9-ODA and 9-HDA tested individually were as effective as the blend of all four major QMP compounds, suggesting considerable signal redundancy. Possible adaptive reasons for the observed complexity of the honeybee queen signal mix are discussed.
Collapse
Affiliation(s)
- Sarah A Princen
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium
| | - Ricardo Caliari Oliveira
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium
| | - Ulrich R Ernst
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium.,2 Department of Biology, KU Leuven, Functional Genomics and Proteomics Group , Leuven , Belgium.,3 Institute for Evolution and Biodiversity, University of Münster, Molecular Evolution and Sociobiology Group , Münster , Germany
| | - Jocelyn G Millar
- 4 Departments of Entomology and Chemistry, University of California , Riverside, CA 92521 , USA
| | - Jelle S van Zweden
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium
| | - Tom Wenseleers
- 1 Department of Biology, KU Leuven, Laboratory of Socioecology and Social Evolution , Leuven , Belgium
| |
Collapse
|
45
|
Oi CA, Oliveira RC, van Zweden JS, Mateus S, Millar JG, Nascimento FS, Wenseleers T. Do Primitively Eusocial Wasps Use Queen Pheromones to Regulate Reproduction? A Case Study of the Paper Wasp Polistes satan. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
46
|
Grüter C, Czaczkes TJ. Communication in social insects and how it is shaped by individual experience. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Comparative transcriptomics of social insect queen pheromones. Nat Commun 2019; 10:1593. [PMID: 30962449 PMCID: PMC6453924 DOI: 10.1038/s41467-019-09567-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged >150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
Collapse
|
48
|
Galang KC, Croft JR, Thompson GJ, Percival-Smith A. Analysis of the Drosophila melanogaster anti-ovarian response to honey bee queen mandibular pheromone. INSECT MOLECULAR BIOLOGY 2019; 28:99-111. [PMID: 30159981 DOI: 10.1111/imb.12531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Queen mandibular pheromone (QMP) is a potent reproductive signal to which honey bee workers respond by suppressing their ovaries and adopting alloparental roles within the colony. This anti-ovarian effect of QMP on workers can, surprisingly, be induced in other insects, including fruit flies, in which females exposed to synthetic QMP develop smaller ovaries with fewer eggs. In this study, we use the Drosophila melanogaster model to identify the components of synthetic QMP required for the anti-ovarian effect. We found that virgin females respond strongly to 9-oxo-2-decenoic acid and 10-hydroxy-2-decenoic acid (10HDA), suggesting that the decenoic acid components of QMP are essential for the anti-ovarian response. Further, a nuclear factor of activated T-cells reporter system revealed neurones expressing the olfactory receptors Or-56a, Or-49b and Or-98a are activated by QMP in the antenna. In addition, we used olfactory receptor GAL4 drivers and a neuronal activator (a neuronal activating bacterial sodium channel) to test whether the candidate neurones are potential labelled lines for a decenoic acid response. We identified Or-49b as a potential candidate receiver of the 10HDA signal. Finally, the anti-ovarian response to synthetic QMP is not mediated by decreasing the titre of the reproductive hormones ecdysone and juvenile hormone.
Collapse
Affiliation(s)
- K C Galang
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - J R Croft
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - G J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - A Percival-Smith
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
49
|
A pheromone that coordinates parental care is evolutionary conserved among burying beetles (Silphidae: Nicrophorus). CHEMOECOLOGY 2018. [DOI: 10.1007/s00049-018-0271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Grüter C. Repeated switches from cooperative to selfish worker oviposition during stingless bee evolution. J Evol Biol 2018; 31:1843-1851. [PMID: 30242940 DOI: 10.1111/jeb.13377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/29/2022]
Abstract
Reproductive division of labour is a defining feature of insect societies. Stingless bees (Meliponini) are an interesting exception among the highly eusocial insects in that workers of many species contribute significantly to the production of males. Since workers remain sterile in other species of this large tropical tribe, it has been hypothesized that, in the latter species, ancestral queens have won the conflict over who produces the males. The fact that sterile workers of some species lay trophic eggs to feed the queen and display ritualized behaviours towards her during oviposition has been interpreted as an evolutionary relic of this ancient conflict. Here, I used ancestral state estimation to test whether worker reproduction is indeed the ancestral condition and worker sterility a derived state in stingless bees. Contrary to this hypothesis, data suggest that trophic egg laying was the ancestral condition, whereas selfish worker reproduction in queenright colonies evolved subsequently during stingless bee diversification. The appearance of worker reproduction in queenright conditions was tightly linked to the laying of trophic eggs, which suggests that having activated ovaries in queen presence facilitates the evolution of worker reproduction. Worker reproduction is also linked to brood cell architecture, but surprisingly not to colony size or queen-worker dimorphism. The reason for this association between brood cell architecture and worker oviposition is currently unknown. These results suggest that trophic eggs are not a relic of an ancient conflict, but a sign of overlapping interests between the queen and workers about who produces the males.
Collapse
Affiliation(s)
- Christoph Grüter
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|