1
|
R D, S W, D P D, R S. Cracking a cancer code DNA methylation in epigenetic modification: an in-silico approach on efficacy assessment of Sri Lanka-oriented nutraceuticals. J Biomol Struct Dyn 2024:1-21. [PMID: 38425013 DOI: 10.1080/07391102.2024.2321235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
DNA methyltransferase (DNMTs) are essential epigenetic modifiers that play a critical role in gene regulation. These enzymes add a methyl group to cytosine's 5'-carbon, specifically within CpG dinucleotides, using S-adenosyl-L-methionine. Abnormal overexpression of DNMTs can alter the gene expression patterns and contribute to cancer development in the human body. Therefore, the inhibition of DNMT is a promising therapeutic approach to cancer treatment. This study was aimed to identify potential nutraceutical inhibitors from the Sri Lanka Flora database using computational methods, which provided an atomic-level description of the drug binding site and examined the interactions between nutraceuticals and amino acids of the DNMT enzyme. A series of nutraceuticals from Sri Lanka-oriented plants were selected and evaluated to assess their inhibitory effects on DNMT using absorption, distribution, metabolism, excretion and toxicity analysis, virtual screening, molecular docking, molecular dynamics simulation and trajectory analysis. Azacitidine, a DNMT inhibitor approved by the US Food and Drug Administration, was selected as a reference inhibitor. The complexes with more negative binding energies were selected and further assessed for their potency. Seven molecules were identified from 200 nutraceuticals, demonstrating significantly negative binding energies against the DNMT enzyme. Various trajectory analyses were conducted to investigate the stability of the DNMT enzyme. The results indicated that petchicine (NP#0003), ouregidione (NP#0011) and azacitidine increased the stability of the DNMT enzyme. Consequently, these two nutraceuticals showed inhibitory efficacies similar to azacitidine, making them potential candidates for therapeutic interventions targeting DNMT enzyme-related cancers. Additional bioassay testing is recommended to confirm the efficacies of these nutraceuticals and explore their applicability in clinical treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dushanan R
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| | - Weerasinghe S
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Dissanayake D P
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Senthilnithy R
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Sri Lanka
| |
Collapse
|
2
|
CRISPR-Cas9-Mediated Mutation of Methyltransferase METTL4 Results in Embryonic Defects in Silkworm Bombyx mori. Int J Mol Sci 2023; 24:ijms24043468. [PMID: 36834878 PMCID: PMC9965800 DOI: 10.3390/ijms24043468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
DNA N6-methyladenine (6mA) has recently been found to play regulatory roles in gene expression that links to various biological processes in eukaryotic species. The functional identification of 6mA methyltransferase will be important for understanding the underlying molecular mechanism of epigenetic 6mA methylation. It has been reported that the methyltransferase METTL4 can catalyze the methylation of 6mA; however, the function of METTL4 remains largely unknown. In this study, we aim to investigate the role of the Bombyx mori homolog METTL4 (BmMETTL4) in silkworm, a lepidopteran model insect. By using CRISPR-Cas9 system, we somatically mutated BmMETTL4 in silkworm individuates and found that disruption of BmMETTL4 caused the developmental defect of late silkworm embryo and subsequent lethality. We performed RNA-Seq and identified that there were 3192 differentially expressed genes in BmMETTL4 mutant including 1743 up-regulated and 1449 down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that genes involved in molecular structure, chitin binding, and serine hydrolase activity were significantly affected by BmMETTL4 mutation. We further found that the expression of cuticular protein genes and collagens were clearly decreased while collagenases were highly increased, which had great contributions to the abnormal embryo and decreased hatchability of silkworm. Taken together, these results demonstrated a critical role of 6mA methyltransferase BmMETTL4 in regulating embryonic development of silkworm.
Collapse
|
3
|
Yang M, Leng D, Zeng B, Wang T, Xu Z, Li D. Characteristics and functions of DNA N(6)-methyladenine in embryonic chicken muscle development. Poult Sci 2023; 102:102528. [PMID: 36907131 PMCID: PMC10024188 DOI: 10.1016/j.psj.2023.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA N(6)-methyladenine (DNA-6mA) is a new epigenetic mark in eukaryotes, the distribution and functions of which in genomic DNA remain unknown. Although recent studies have suggested that 6mA is present in multiple model organisms and is dynamically regulated during development, the genomic features of 6mA in avian species have yet to be elucidated. 6mA immunoprecipitation sequencing approach was used to analysis the distribution and function of 6mA in the muscle genomic DNA during embryonic chicken development. 6mA immunoprecipitation sequencing was combined with transcriptomic sequencing to reveal the role of 6mA in the regulation of gene expression and to explore possible pathways by which 6mA is involved in muscle development. We here provide evidence that 6mA modification exists widely throughout the chicken genome, and show preliminary data regarding genome-wide distribution of this epigenetic mark. Gene expression was shown to be inhibited by 6mA modification in promoter regions. In addition, the promoters of some genes related to development were modified by 6mA, indicating that 6mA may be involved in embryonic chicken development. Furthermore, 6mA may participate in muscle development and immune function by regulating HSPB8 and OASL expression. Our study improves our understanding of the distribution and function of 6mA modification in higher organisms and provide new information about differences between mammals and other vertebrates. These findings demonstrate an epigenetic role for 6mA in gene expression and potential involvement in chicken muscle development. Furthermore, the results suggest a potential epigenetic role for 6mA in avian embryonic development.
Collapse
Affiliation(s)
- Maosen Yang
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Leng
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637002, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Švorcová J. Transgenerational Epigenetic Inheritance of Traumatic Experience in Mammals. Genes (Basel) 2023; 14:120. [PMID: 36672861 PMCID: PMC9859285 DOI: 10.3390/genes14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years, we have seen an increasing amount of evidence pointing to the existence of a non-genetic heredity of the effects of events such as separation from parents, threat to life, or other traumatising experiences such as famine. This heredity is often mediated by epigenetic regulations of gene expression and may be transferred even across several generations. In this review, we focus on studies which involve transgenerational epigenetic inheritance (TEI), with a short detour to intergenerational studies focused on the inheritance of trauma or stressful experiences. The reviewed studies show a plethora of universal changes which stress exposure initiates on multiple levels of organisation ranging from hormonal production and the hypothalamic-pituitary-adrenal (HPA) axis modulation all the way to cognition, behaviour, or propensity to certain psychiatric or metabolic disorders. This review will also provide an overview of relevant methodology and difficulties linked to implementation of epigenetic studies. A better understanding of these processes may help us elucidate the evolutionary pathways which are at work in the course of emergence of the diseases and disorders associated with exposure to trauma, either direct or in a previous generation.
Collapse
Affiliation(s)
- Jana Švorcová
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
5
|
Yin J, Hong X, Wang J, Li W, Shi Y, Wang D, Liu R. DNA methylation 6 mA and histone methylation involved in multi-/trans-generational reproductive effects in Caenorhabditis elegans induced by Atrazine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114348. [PMID: 36508798 DOI: 10.1016/j.ecoenv.2022.114348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATR), a widely used triazine herbicide, is an environmental endocrine disruptor that can cause health problems. However, whether there are multi/trans-generational reproductive impacts of ATR have not been studied. Therefore, in this study, Caenorhabditis elegans was used as a preferable model organism to identify the multi/trans-generational reproductive toxicity of ATR. Only parental C.elegans (P0) were exposed to different concentrations (0.0004-40 mg/L) for 48 h and the subsequent offspring (F1-F5) were grown under ATR-free conditions and ATR conditions.The results showed that ATR exposure during P0 decreased fecundity, including a reduction in fertilized eggs, oocytes, and ovulation rate, delayed gonadal development, and decreased the relative area of gonad arm and germ cell number. Furthermore, continuous ATR exposure (P0-F5) causes a significant increase in reproductive toxicity in subsequent generations, although no significant toxicity occurred in the P0 generation after exposure to environmental-related concentrations, suggesting that ATR exposure might have cumulative effects. Likewise, parental exposure to ATR caused transgenerational toxicity impairments. Interestingly, only reproductive toxicity, not development toxicity, was transmitted to several generations (F1-F4), and the F2 generation showed the most notable changes. QRT-PCR results showed that genes expression related to DNA methylation 6 mA (damt-1, nmad-1) and histone H3 methylation (mes-4, met-2, set-25, set-2, and utx-1) can also be passed on to offspring. The function of H3K4 and H3K9 methylation were explored by using loss-of-function mutants for set-2, set-25, and met-2. Transmissible reproductive toxicity was absent in met-2(n4256), set-2(ok952), and set-25(n5021) mutants, which suggests that the histone methyltransferases H3K4 and H3K9 activity are indispensable for the transgenerational effect of ATR. Finally, the downstream genes of DNA methylation and histone H3 methylation were determined. ATR upregulated the expression of ZC317.7, hsp-6, and hsp-60. Mitochondrial stress in parental generation dependent transcription 6 mA modifiers may establish these epigenetic marks in progeny.
Collapse
Affiliation(s)
- Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Eprintsev AT, Fedorin DN, Igamberdiev AU. Light Dependent Changes in Adenylate Methylation of the Promoter of the Mitochondrial Citrate Synthase Gene in Maize ( Zea mays L.) Leaves. Int J Mol Sci 2022; 23:13495. [PMID: 36362281 PMCID: PMC9653993 DOI: 10.3390/ijms232113495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 09/29/2023] Open
Abstract
Limited methyl-specific restriction of genomic DNA by endonuclease MAL1 revealed the changes in its methyl status caused by adenine modification in maize (Zea mays L.) leaves under different light conditions (dark, light, irradiation by red and far-red light). Incubation in the light and irradiation by red light exhibited an activating effect on DNA adenine methylase activity, which was reflected in an increase in the number of methylated adenines in GATC sites. Far-red light and darkness exhibited an opposite effect. The use of nitrite conversion of DNA followed by methyladenine-dependent restriction by MboI nuclease revealed a phytochrome B-dependent mechanism of regulation of the methyl status of adenine in the GATC sites in the promoter of the gene encoding the mitochondrial isoform of citrate synthase. Irradiation of plants with red light caused changes in the adenine methyl status of the analyzed amplicon, as evidenced by the presence of restriction products of 290, 254, and 121 nucleotides. Adenine methylation occurred at all three GATC sites in the analyzed DNA sequence. It is concluded that adenylate methylation is controlled by phytochrome B via the transcription factor PIF4 and represents an important mechanism for the tricarboxylic acid cycle regulation by light.
Collapse
Affiliation(s)
- Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry N. Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
7
|
Jiménez-Ramírez IA, Pijeira-Fernández G, Moreno-Cálix DM, De-la-Peña C. Same modification, different location: the mythical role of N 6-adenine methylation in plant genomes. PLANTA 2022; 256:9. [PMID: 35696004 DOI: 10.1007/s00425-022-03926-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The present review summarizes recent advances in the understanding of 6mA in DNA as an emergent epigenetic mark with distinctive characteristics, discusses its importance in plant genomes, and highlights its chemical nature and functions. Adenine methylation is an epigenetic modification present in DNA (6mA) and RNA (m6A) that has a regulatory function in many cellular processes. This modification occurs through a reversible reaction that covalently binds a methyl group, usually at the N6 position of the purine ring. This modification carries biophysical properties that affect the stability of nucleic acids as well as their binding affinity with other molecules. DNA 6mA has been related to genome stability, gene expression, DNA replication, and repair mechanisms. Recent advances have shown that 6mA in plant genomes is related to development and stress response. In this review, we present recent advances in the understanding of 6mA in DNA as an emergent epigenetic mark with distinctive characteristics. We discuss the key elements of this modification, focusing mainly on its importance in plant genomes. Furthermore, we highlight its chemical nature and the regulatory effects that it exerts on gene expression and plant development. Finally, we emphasize the functions of 6mA in photosynthesis, stress, and flowering.
Collapse
Affiliation(s)
- Irma A Jiménez-Ramírez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Gema Pijeira-Fernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Delia M Moreno-Cálix
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
8
|
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet 2022; 23:411-428. [PMID: 35256817 PMCID: PMC9354840 DOI: 10.1038/s41576-022-00456-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
N6-methyl-2'-deoxyadenosine (6mA or m6dA) has been reported in the DNA of prokaryotes and eukaryotes ranging from unicellular protozoa and algae to multicellular plants and mammals. It has been proposed to modulate DNA structure and transcription, transmit information across generations and have a role in disease, among other functions. However, its existence in more recently evolved eukaryotes remains a topic of debate. Recent technological advancements have facilitated the identification and quantification of 6mA even when the modification is exceptionally rare, but each approach has limitations. Critical assessment of existing data, rigorous design of future studies and further development of methods will be required to confirm the presence and biological functions of 6mA in multicellular eukaryotes.
Collapse
|
9
|
O’Brown ZK, Greer EL. N6-methyladenine: A Rare and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:177-210. [DOI: 10.1007/978-3-031-11454-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Guo T, Akan OD, Luo F, Lin Q. Dietary polysaccharides exert biological functions via epigenetic regulations: Advance and prospectives. Crit Rev Food Sci Nutr 2021; 63:114-124. [PMID: 34227906 DOI: 10.1080/10408398.2021.1944974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive substances derived from natural products are valued for effective health-related activities. As extremely important component of plants, animal cell membrane and microbes cytoderm, polysaccharides have been applied as medications, foods and cosmetics stemming from their prominent biological functions and minor side-effects. Recent studies indicate that polysaccharides exert biological effects also through epigenetic mechanism. Through the intervention of DNA methylation, histone modification, and non-coding RNA, polysaccharides participatate in regulation of immunity/inflammation, glucose and lipid metabolism, antioxidant damage and anti-tumor, which presents novel mechanism of polysaccharide exerting various functions. In this review, the latest advances in the biological functions of dietary polysaccharides via epigenetic regulations were comprehensively summarized and discussed. From the view point of epigenetic regulation, investigating the relationship between polysaccharides and biological effects will enhance our understandings of polysaccharides and also means huge breakthrough of molecular mechanism in the polysaccharide research fields. The paper will provide important reference to these investigators of polysaccharide research and expand the applications of dietary polysaccharides in the functional food developments.
Collapse
Affiliation(s)
- Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
11
|
Cao X, Lintelmann J, Padoan S, Bauer S, Huber A, Mudan A, Oeder S, Adam T, Di Bucchianico S, Zimmermann R. Adenine derivatization for LC-MS/MS epigenetic DNA modifications studies on monocytic THP-1 cells exposed to reference particulate matter. Anal Biochem 2021; 618:114127. [PMID: 33571488 DOI: 10.1016/j.ab.2021.114127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the impact of three different standard reference particulate matter (ERM-CZ100, SRM-1649, and SRM-2975) on epigenetic DNA modifications including cytosine methylation, cytosine hydroxymethylation, and adenine methylation. For the determination of low levels of adenine methylation, we developed and applied a novel DNA nucleobase chemical derivatization and combined it with liquid chromatography tandem mass spectrometry. The developed method was applied for the analysis of epigenetic modifications in monocytic THP-1 cells exposed to the three different reference particulate matter for 24 h and 48 h. The mass fraction of epigenetic active elements As, Cd, and Cr was analyzed by inductively coupled plasma mass spectrometry. The exposure to fine dust ERM-CZ100 and urban dust SRM-1649 decreased cytosine methylation after 24 h exposure, whereas all 3 p.m. increased cytosine hydoxymethylation following 24 h exposure, and the epigenetic effects induced by SRM-1649 and diesel SRM-2975 were persistent up to 48 h exposure. The road tunnel dust ERM-CZ100 significantly increased adenine methylation following the shorter exposure time. Two-dimensional scatters analysis between different epigenetic DNA modifications were used to depict a significantly negative correlation between cytosine methylation and cytosine hydroxymethylation supporting their possible functional relationship. Metals and polycyclic aromatic hydrocarbons differently shapes epigenetic DNA modifications.
Collapse
Affiliation(s)
- Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jutta Lintelmann
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Sara Padoan
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ajit Mudan
- University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Guo Y, Pei Y, Li K, Cui W, Zhang D. DNA N 6-methyladenine modification in hypertension. Aging (Albany NY) 2020; 12:6276-6291. [PMID: 32283543 PMCID: PMC7185115 DOI: 10.18632/aging.103023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
DNA methylation has a role in the pathogenesis of essential hypertension. DNA N6-methyladenine (6mA) modification as a novel adenine methylation exists in human tissues, but whether it plays a role in hypertension development remains unclear. Here, we reported that the global 6mA DNA level in leukocytes was significantly reduced in patients with hypertension and was reversed with successful treatment. Age, systolic blood pressure, and serum total cholesterol and high-density lipoprotein levels were associated with decreased leukocyte 6mA DNA level. Elevated ALKBH1 (AlkB homolog 1), a demethylase of 6mA, level mediated this dynamic change in 6mA level in leukocytes and vascular smooth muscle cells in hypertension mouse and rat models. Knockdown of ALKBH1 suppressed angiotensin II-induced vascular smooth muscle phenotype transformation, proliferation and migration. ALKBH1-6mA directly and negatively regulated hypoxia inducible factor 1 α (HIF1α), which responded to angiotensin II-induced vascular remodeling. Collectively, our results demonstrate a potential epigenetic role for ALKBH1-6mA regulation in hypertension development, diagnosis and treatment.
Collapse
Affiliation(s)
- Ye Guo
- Department of Laboratory Medicine, Peking Union Medical College Hospital and Peking Union Medical College, Beijing 100021, PR China
| | - Yuqing Pei
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Georgia State University, Research Science Center, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Li Y, Zhang XM, Luan MW, Xing JF, Chen J, Xie SQ. Distribution Patterns of DNA N6-Methyladenosine Modification in Non-coding RNA Genes. Front Genet 2020; 11:268. [PMID: 32265991 PMCID: PMC7105833 DOI: 10.3389/fgene.2020.00268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/05/2020] [Indexed: 01/20/2023] Open
Abstract
N6-methyladenosine (6mA) DNA modification played an important role in epigenetic regulation of gene expression. And the aberrational expression of non-coding genes, as important regular elements of gene expression, was related to many diseases. However, the distribution and potential functions of 6mA modification in non-coding RNA (ncRNA) genes are still unknown. In this study, we analyzed the 6mA distribution of ncRNA genes and compared them with protein-coding genes in four species (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens) using single-molecule real-time (SMRT) sequencing data. The results indicated that the consensus motifs of short nucleotides at 6mA location were highly conserved in four species, and the non-coding gene was less likely to be methylated compared with protein-coding gene. Especially, the 6mA-methylated lncRNA genes were expressed significant lower than genes without methylation in A. thaliana (p = 3.295e-4), D. melanogaster (p = 3.439e-11), and H. sapiens (p = 9.087e-3). The detection and distribution profiling of 6mA modification in ncRNA regions from four species reveal that 6mA modifications may have effects on their expression level.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, China
| | - Xiao-Ming Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot, China
| | - Mei-Wei Luan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, China
| | - Jian-Feng Xing
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, China
| | - Jianguo Chen
- School of Life Sciences, Hubei University, Wuhan, China
| | - Shang-Qian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
14
|
Karanthamalai J, Chodon A, Chauhan S, Pandi G. DNA N 6-Methyladenine Modification in Plant Genomes-A Glimpse into Emerging Epigenetic Code. PLANTS (BASEL, SWITZERLAND) 2020; 9:E247. [PMID: 32075056 PMCID: PMC7076483 DOI: 10.3390/plants9020247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
Abstract
N6-methyladenine (6mA) is a DNA base modification at the 6th nitrogen position; recently, it has been resurfaced as a potential reversible epigenetic mark in eukaryotes. Despite its existence, 6mA was considered to be absent due to its undetectable level. However, with the new advancements in methods, considerable 6mA distribution is identified across the plant genome. Unlike 5-methylcytosine (5mC) in the gene promoter, 6mA does not have a definitive role in repression but is exposed to have divergent regulation in gene expression. Though 6mA information is less known, the available evidences suggest its function in plant development, tissue differentiation, and regulations in gene expression. The current review article emphasizes the research advances in DNA 6mA modifications, identification, available databases, analysis tools and its significance in plant development, cellular functions and future perspectives of research.
Collapse
Affiliation(s)
| | | | | | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai625021, Tamil Nadu, India; (J.K.); (A.C.); (S.C.)
| |
Collapse
|
15
|
Tsukamoto Y, Tamura T, Maeda Y, Miyake K, Ato M. N6-methylated adenine on the target sites of mamA from Mycobacterium bovis BCG enhances macrophage activation by CpG DNA in mice. Tuberculosis (Edinb) 2019; 121:101890. [PMID: 32279869 DOI: 10.1016/j.tube.2019.101890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023]
Abstract
CpG motifs in DNA sequences are recognized by Toll-like receptor 9 and activate immune cells. Bacterial genomic DNA (gDNA) has modified cytosine bases (5-methylcytosine [5 mC]) and modified adenine bases (6-methyladenine [6 mA]). 5 mC inhibits immune activation by CpG DNA; however, it is unclear whether 6 mA inhibits immune activation by CpG DNA. Mycobacterium bovis BCG (BCG) has three adenine methyltransferases (MTases) that act on specific target sequences. In this study, we examined whether the 6 mA at the target sites of adenine MTases affected the immunostimulatory activity of CpG DNA. Our results showed that only 6 mA located at the target sequence of mamA, an adenine MTase from BCG, enhanced interleukin (IL)-12p40 production from murine bone marrow-derived macrophages (BMDMs) stimulated with CpG DNA. Enhancement of IL-12p40 production in BMDMs was also observed when BMDMs were stimulated with CpG DNA ligated to oligodeoxynucleotides (ODNs) harboring 6 mA. Accordingly, we then evaluated whether gDNA from adenine MTase-deficient BCG was less efficient with regard to stimulation of BMDMs. Indeed, gDNA from a mamA-deficient BCG had less ability to activate BMDMs than that from wild-type BCG. We concluded from these results that adenine methylation on ODNs and bacterial gDNA may enhance immune activity induced by CpG DNA.
Collapse
Affiliation(s)
- Yumiko Tsukamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Toshiki Tamura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
16
|
Luan MW, Chen W, Xing JF, Xiao CL, Chen Y, Xie SQ. DNA N6-Methyladenosine modification role in transmitted variations from genomic DNA to RNA in Herrania umbratica. BMC Genomics 2019; 20:508. [PMID: 31215402 PMCID: PMC6582544 DOI: 10.1186/s12864-019-5776-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Background DNA methylation is an important epigenetic modification. Recently the developed single-molecule real-time (SMRT) sequencing technology provided an efficient way to detect DNA N6-methyladenine (6mA) modification that played an important role in epigenetic and positively regulated gene expression. In addition, the gene expression was also regulated by genetic variation. However, the relationship between DNA 6mA modification and variation is still unknown. Results We collected the SMRT long-reads DNA, Illumina short reads DNA and RNA datasets from the young leaves of Herrania umbratica, and used them to detect 35,654 6mA modification sites, 829,894 DNA variations and 60,672 RNA variations respectively, among which, there are 303 DNA variations and 19 RNA variations with 6mA modification, and 57,468 transmitted genetic variations from DNA to RNA. The results illustrated that the genes with 6mA modification were significant disadvantage to mutate than those genes without modification (p-value< 4.9e-08). And result from the linear regression model showed the 6mA densities of genes were associated with the transmitted variations type 0/1 to 1/1 (p-value < 0.001). Conclusions The variations of DNA and RNA in genes with 6mA modification were significant less than those in unmodified genes. Furthermore, the variations in 6mA modified genes were easily transmitted from DNA to RNA, especially the transmitted variation from DNA heterozygote to RNA homozygote. Electronic supplementary material The online version of this article (10.1186/s12864-019-5776-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mei-Wei Luan
- Research Center for Terrestrial Biodiversity of the South China Sea, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, 570228, China
| | - Wei Chen
- Research Center for Terrestrial Biodiversity of the South China Sea, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, 570228, China
| | - Jian-Feng Xing
- Research Center for Terrestrial Biodiversity of the South China Sea, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, 570228, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Shang-Qian Xie
- Research Center for Terrestrial Biodiversity of the South China Sea, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, 570228, China.
| |
Collapse
|
17
|
O'Brown ZK, Boulias K, Wang J, Wang SY, O'Brown NM, Hao Z, Shibuya H, Fady PE, Shi Y, He C, Megason SG, Liu T, Greer EL. Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA. BMC Genomics 2019; 20:445. [PMID: 31159718 PMCID: PMC6547475 DOI: 10.1186/s12864-019-5754-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Directed DNA methylation on N6-adenine (6mA), N4-cytosine (4mC), and C5-cytosine (5mC) can potentially increase DNA coding capacity and regulate a variety of biological functions. These modifications are relatively abundant in bacteria, occurring in about a percent of all bases of most bacteria. Until recently, 5mC and its oxidized derivatives were thought to be the only directed DNA methylation events in metazoa. New and more sensitive detection techniques (ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-ms/ms) and single molecule real-time sequencing (SMRTseq)) have suggested that 6mA and 4mC modifications could be present in a variety of metazoa. RESULTS Here, we find that both of these techniques are prone to inaccuracies, which overestimate DNA methylation concentrations in metazoan genomic DNA. Artifacts can arise from methylated bacterial DNA contamination of enzyme preparations used to digest DNA and contaminating bacterial DNA in eukaryotic DNA preparations. Moreover, DNA sonication introduces a novel modified base from 5mC that has a retention time near 4mC that can be confused with 4mC. Our analyses also suggest that SMRTseq systematically overestimates 4mC in prokaryotic and eukaryotic DNA and 6mA in DNA samples in which it is rare. Using UHPLC-ms/ms designed to minimize and subtract artifacts, we find low to undetectable levels of 4mC and 6mA in genomes of representative worms, insects, amphibians, birds, rodents and primates under normal growth conditions. We also find that mammalian cells incorporate exogenous methylated nucleosides into their genome, suggesting that a portion of 6mA modifications could derive from incorporation of nucleosides from bacteria in food or microbiota. However, gDNA samples from gnotobiotic mouse tissues found rare (0.9-3.7 ppm) 6mA modifications above background. CONCLUSIONS Altogether these data demonstrate that 6mA and 4mC are rarer in metazoa than previously reported, and highlight the importance of careful sample preparation and measurement, and need for more accurate sequencing techniques.
Collapse
Affiliation(s)
- Zach K O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Konstantinos Boulias
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Wang
- Department of Biochemistry and Biostatistics, University at Buffalo Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Natasha M O'Brown
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ziyang Hao
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Hiroki Shibuya
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Present address: Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Paul-Enguerrand Fady
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chuan He
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tao Liu
- Department of Biochemistry and Biostatistics, University at Buffalo Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Abstract
Epigenetic factors, including DNA methylation, play a crucial role in the development, behavior, and stress response of insects yet the analysis of DNA methylation patterns remains quite challenging. This chapter will introduce the different technologies for DNA methylation analysis and present a general methodology for the analysis of DNA methylation patterns using the commonly used technology of bisulfite sequencing. The chapter will give a short overview of the sequencing technology itself and will primarily focus on presenting the bioinformatic and statistical analysis methodology of bisulfite sequencing data to study DNA methylation patterns.
Collapse
Affiliation(s)
- Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium.
| |
Collapse
|
19
|
Asenso J, Wang L, Du Y, Liu QH, Xu BJ, Guo MZ, Tang DQ. Advances in detection and quantification of methylcytosine and its derivatives. J Sep Sci 2018; 42:1105-1116. [PMID: 30575277 DOI: 10.1002/jssc.201801100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 11/08/2022]
Abstract
Methylation of the fifth carbon atom in cytosine is an epigenetic modification of deoxyribonucleic acid that plays important roles in numerous cellular processes and disease pathogenesis. Three additional states of cytosine, that is, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine, have been identified and associated with the diagnosis and/or prognosis of diseases. However, accurate measurement of those intermediates is a challenge since their global levels are relatively low. A number of innovative methods have been developed to detect and quantify these compounds in biological samples, such as blood, tissue and urine, etc. This review focuses on recent advancement in detection and quantification of four cytosine modifications, based on which, the development, diagnosis, and prognosis of diseases could be monitored through non-invasive procedures.
Collapse
Affiliation(s)
- James Asenso
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yan Du
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Qing-Hua Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Bing-Ju Xu
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Meng-Zhe Guo
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Dao-Quan Tang
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| |
Collapse
|
20
|
Villar-Briones A, Aird SD. Organic and Peptidyl Constituents of Snake Venoms: The Picture Is Vastly More Complex Than We Imagined. Toxins (Basel) 2018; 10:E392. [PMID: 30261630 PMCID: PMC6215107 DOI: 10.3390/toxins10100392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
Small metabolites and peptides in 17 snake venoms (Elapidae, Viperinae, and Crotalinae), were quantified using liquid chromatography-mass spectrometry. Each venom contains >900 metabolites and peptides. Many small organic compounds are present at levels that are probably significant in prey envenomation, given that their known pharmacologies are consistent with snake envenomation strategies. Metabolites included purine nucleosides and their bases, neurotransmitters, neuromodulators, guanidino compounds, carboxylic acids, amines, mono- and disaccharides, and amino acids. Peptides of 2⁻15 amino acids are also present in significant quantities, particularly in crotaline and viperine venoms. Some constituents are specific to individual taxa, while others are broadly distributed. Some of the latter appear to support high anabolic activity in the gland, rather than having toxic functions. Overall, the most abundant organic metabolite was citric acid, owing to its predominance in viperine and crotaline venoms, where it chelates divalent cations to prevent venom degradation by venom metalloproteases and damage to glandular tissue by phospholipases. However, in terms of their concentrations in individual venoms, adenosine, adenine, were most abundant, owing to their high titers in Dendroaspis polylepis venom, although hypoxanthine, guanosine, inosine, and guanine all numbered among the 50 most abundant organic constituents. A purine not previously reported in venoms, ethyl adenosine carboxylate, was discovered in D. polylepis venom, where it probably contributes to the profound hypotension caused by this venom. Acetylcholine was present in significant quantities only in this highly excitotoxic venom, while 4-guanidinobutyric acid and 5-guanidino-2-oxopentanoic acid were present in all venoms.
Collapse
Affiliation(s)
- Alejandro Villar-Briones
- Division of Research Support, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| | - Steven D Aird
- Division of Faculty Affairs and Ecology and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.
| |
Collapse
|
21
|
Weinhouse C, Truong L, Meyer JN, Allard P. Caenorhabditis elegans as an emerging model system in environmental epigenetics. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:560-575. [PMID: 30091255 PMCID: PMC6113102 DOI: 10.1002/em.22203] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 05/19/2023]
Abstract
The roundworm Caenorhabitis elegans has been an established model organism for the study of genetics and developmental biology, including studies of transcriptional regulation, since the 1970s. This model organism has continued to be used as a classical model system as the field of transcriptional regulation has expanded to include scientific advances in epigenetics and chromatin biology. In the last several decades, C. elegans has emerged as a powerful model for environmental toxicology, particularly for the study of chemical genotoxicity. Here, we outline the utility and applicability of C. elegans as a powerful model organism for mechanistic studies of environmental influences on the epigenome. Our goal in this article is to inform the field of environmental epigenetics of the strengths and limitations of the well-established C. elegans model organism as an emerging model for medium-throughput, in vivo exploration of the role of exogenous chemical stimuli in transcriptional regulation, developmental epigenetic reprogramming, and epigenetic memory and inheritance. As the field of environmental epigenetics matures, and research begins to map mechanisms underlying observed associations, new toolkits and model systems, particularly manipulable, scalable in vivo systems that accurately model human transcriptional regulatory circuits, will provide an essential experimental bridge between in vitro biochemical experiments and mammalian model systems. Environ. Mol. Mutagen. 59:560-575, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Lisa Truong
- UCLA Human Genetics and Genomic Analysis Training Program, University of California, Los Angeles; Los Angeles, California
| | - Joel N. Meyer
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Patrick Allard
- Institute for Society and Genetics, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
22
|
|
23
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
24
|
Latchney SE, Fields AM, Susiarjo M. Linking inter-individual variability to endocrine disruptors: insights for epigenetic inheritance. Mamm Genome 2018; 29:141-152. [PMID: 29218402 PMCID: PMC5849504 DOI: 10.1007/s00335-017-9729-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/02/2017] [Indexed: 01/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can induce a myriad of adverse health effects. An area of active investigation is the multi- and transgenerational inheritance of EDC-induced adverse health effects referring to the transmission of phenotypes across multiple generations via the germline. The inheritance of EDC-induced adverse health effects across multiple generations can occur independent of genetics, spurring much research into the transmission of underlying epigenetic mechanisms. Epigenetic mechanisms play important roles in the development of an organism and are responsive to environmental exposures. To date, rodent studies have demonstrated that acquired epigenetic marks, particularly DNA methylation, that are inherited following parental EDC exposure can escape embryonic epigenome reprogramming. The acquired epimutations can lead to subsequent adult-onset diseases. Increasing studies have reported inter-individual variations that occur with epigenetic inheritance. Factors that underlie differences among individuals could reveal previously unidentified mechanisms of epigenetic transmission. In this review, we give an overview of DNA methylation and posttranslational histone modification as the potential mechanisms for disease transmission, and define the requirements for multi- and transgenerational epigenetic inheritance. We subsequently evaluate rodent studies investigating how acquired changes in epigenetic marks especially DNA methylation across multiple generations can vary among individuals following parental EDC exposure. We also discuss potential sources of inter-individual variations and the challenges in identifying these variations. We conclude our review discussing the challenges in applying rodent generational studies to humans.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ashley M Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
25
|
Stöger R. N6-methyldeoxyadenine (6mA) Is a Rare Beast - in Animals at Least (retrospective on DOI 10.1002/bies.201500076). Bioessays 2017; 39. [DOI: 10.1002/bies.201700157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Reinhard Stöger
- University of Nottingham School of Biosciences Nottingham LE12 5RD; UK
| |
Collapse
|
26
|
Kaposi's Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N 6-Adenosine Methylation To Promote Lytic Replication. J Virol 2017; 91:JVI.00466-17. [PMID: 28592530 DOI: 10.1128/jvi.00466-17] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022] Open
Abstract
N6-adenosine methylation (m6A) is the most common posttranscriptional RNA modification in mammalian cells. We found that most transcripts encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome undergo m6A modification. The levels of m6A-modified mRNAs increased substantially upon stimulation for lytic replication. The blockage of m6A inhibited splicing of the pre-mRNA encoding the replication transcription activator (RTA), a key KSHV lytic switch protein, and halted viral lytic replication. We identified several m6A sites in RTA pre-mRNA crucial for splicing through interactions with YTH domain containing 1 (YTHDC1), an m6A nuclear reader protein, in conjunction with serine/arginine-rich splicing factor 3 (SRSF3) and SRSF10. Interestingly, RTA induced m6A and enhanced its own pre-mRNA splicing. Our results not only demonstrate an essential role of m6A in regulating RTA pre-mRNA splicing but also suggest that KSHV has evolved a mechanism to manipulate the host m6A machinery to its advantage in promoting lytic replication.IMPORTANCE KSHV productive lytic replication plays a pivotal role in the initiation and progression of Kaposi's sarcoma tumors. Previous studies suggested that the KSHV switch from latency to lytic replication is primarily controlled at the chromatin level through histone and DNA modifications. The present work reports for the first time that KSHV genome-encoded mRNAs undergo m6A modification, which represents a new mechanism at the posttranscriptional level in the control of viral replication.
Collapse
|
27
|
Seifermann M, Epe B. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free Radic Biol Med 2017; 107:258-265. [PMID: 27871818 DOI: 10.1016/j.freeradbiomed.2016.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023]
Abstract
The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mutagenic DNA modification generated by endogenous or exogenous reactive oxygen species (ROS), has distinct roles in the regulation of both transcription and signal transduction. Thus, the activation of transcription by the estrogen receptor, NF-κB, MYC and other transcription factors was shown to depend on the presence of 8-oxoG in the promoter regions and its recognition by the DNA repair glycosylase OGG1. The lysine-specific histone demethylase LSD1, which produces H2O2 as a by-product, was indentified as a local generator of 8-oxoG in some of these cases. In addition, a complex of OGG1 with the excised free substrate base was demonstrated to act as a guanine nucleotide exchange factor (GEF) for small GTPases such as Ras, Rac and Rho, thus stimulating signal transduction. The various findings and intriguing novel mechanisms suggested will be described and compared in this review.
Collapse
Affiliation(s)
- Marco Seifermann
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| |
Collapse
|
28
|
Unravelling the complex mechanisms of transgenerational epigenetic inheritance. Curr Opin Chem Biol 2016; 33:101-7. [DOI: 10.1016/j.cbpa.2016.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022]
|
29
|
O'Brown ZK, Greer EL. N6-Methyladenine: A Conserved and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:213-246. [PMID: 27826841 DOI: 10.1007/978-3-319-43624-1_10] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.
Collapse
Affiliation(s)
- Zach Klapholz O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Stöger R. A as in actor: A 6mAshing performance (Comment on DOI 10.1002/bies.201500076). Bioessays 2015; 37:1152. [DOI: 10.1002/bies.201500125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Reinhard Stöger
- University of Nottingham; School of Biosciences; Sutton Bonington Campus Nottingham UK
| |
Collapse
|