1
|
Winkelmann H, Richter CP, Eising J, Piehler J, Kurre R. Correlative single-molecule and structured illumination microscopy of fast dynamics at the plasma membrane. Nat Commun 2024; 15:5813. [PMID: 38987559 PMCID: PMC11236984 DOI: 10.1038/s41467-024-49876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy offers powerful means to uncover the functional organization of proteins in the plasma membrane with very high spatial and temporal resolution. Traditional TIRF illumination, however, shows a Gaussian intensity profile, which is typically deteriorated by overlaying interference fringes hampering precise quantification of intensities-an important requisite for quantitative analyses in single-molecule localization microscopy (SMLM). Here, we combine flat-field illumination by using a standard πShaper with multi-angular TIR illumination by incorporating a spatial light modulator compatible with fast super-resolution structured illumination microscopy (SIM). This distinct combination enables quantitative multi-color SMLM with a highly homogenous illumination. By using a dual camera setup with optimized image splitting optics, we achieve a versatile combination of SMLM and SIM with up to three channels. We deploy this setup for establishing robust detection of receptor stoichiometries based on single-molecule intensity analysis and single-molecule Förster resonance energy transfer (smFRET). Homogeneous illumination furthermore enables long-term tracking and localization microscopy (TALM) of cell surface receptors identifying spatial heterogeneity of mobility and accessibility in the plasma membrane. By combination of TALM and SIM, spatially and molecularly heterogenous diffusion properties can be correlated with nanoscale cytoskeletal organization and dynamics.
Collapse
Affiliation(s)
- Hauke Winkelmann
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Christian P Richter
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Jasper Eising
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
| | - Rainer Kurre
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Integrated Bioimaging Facility iBiOs, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
| |
Collapse
|
2
|
Fellows AP, John B, Wolf M, Thämer M. Spiral packing and chiral selectivity in model membranes probed by phase-resolved sum-frequency generation microscopy. Nat Commun 2024; 15:3161. [PMID: 38605056 PMCID: PMC11009297 DOI: 10.1038/s41467-024-47573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Since the lipid raft model was developed at the end of the last century, it became clear that the specific molecular arrangements of phospholipid assemblies within a membrane have profound implications in a vast range of physiological functions. Studies of such condensed lipid islands in model systems using fluorescence and Brewster angle microscopies have shown a wide range of sizes and morphologies, with suggestions of substantial in-plane molecular anisotropy and mesoscopic structural chirality. Whilst these variations can significantly alter many membrane properties including its fluidity, permeability and molecular recognition, the details of the in-plane molecular orientations underlying these traits remain largely unknown. Here, we use phase-resolved sum-frequency generation microscopy on model membranes of mixed chirality phospholipid monolayers to fully determine the three-dimensional molecular structure of the constituent micron-scale condensed domains. We find that the domains possess curved molecular directionality with spiralling mesoscopic packing, where both the molecular and spiral turning directions depend on the lipid chirality, but form structures clearly deviating from mirror symmetry for different enantiomeric mixtures. This demonstrates strong enantioselectivity in the domain growth process and indicates fundamental thermodynamic differences between homo- and heterochiral membranes, which may be relevant in the evolution of homochirality in all living organisms.
Collapse
Affiliation(s)
| | - Ben John
- Fritz-Haber-Institute of the Max-Planck-Society, Berlin, Germany
| | - Martin Wolf
- Fritz-Haber-Institute of the Max-Planck-Society, Berlin, Germany
| | - Martin Thämer
- Fritz-Haber-Institute of the Max-Planck-Society, Berlin, Germany.
| |
Collapse
|
3
|
Schütz GJ, Pabst G. The asymmetric plasma membrane-A composite material combining different functionalities?: Balancing Barrier Function and Fluidity for Effective Signaling. Bioessays 2023; 45:e2300116. [PMID: 37712937 PMCID: PMC11475564 DOI: 10.1002/bies.202300116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
One persistent puzzle in the life sciences is the asymmetric lipid composition of the cellular plasma membrane: while the exoplasmic leaflet is enriched in lipids carrying predominantly saturated fatty acids, the cytoplasmic leaflet hosts preferentially lipids with (poly-)unsaturated fatty acids. Given the high energy requirements necessary for cells to maintain this asymmetry, the question naturally arises regarding its inherent benefits. In this paper, we propose asymmetry to represent a potential solution for harmonizing two conflicting requirements for the plasma membrane: first, the need to build a barrier for the uncontrolled influx or efflux of substances; and second, the need to form a fluid and dynamic two-dimensional substrate for signaling processes. We hence view here the plasma membrane as a composite material, where the exoplasmic leaflet is mainly responsible for the functional integrity of the barrier and the cytoplasmic leaflet for fluidity. We reinforce the validity of the proposed mechanism by presenting quantitative data from the literature, along with multiple examples that bolster our model.
Collapse
Affiliation(s)
| | - Georg Pabst
- BiophysicsInstitute of Molecular Bioscience (IMB)NAWI GrazUniversity of GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth—University of GrazGrazAustria
| |
Collapse
|
4
|
Marques-da-Silva D, Lagoa R. Rafting on the Evidence for Lipid Raft-like Domains as Hubs Triggering Environmental Toxicants' Cellular Effects. Molecules 2023; 28:6598. [PMID: 37764374 PMCID: PMC10536579 DOI: 10.3390/molecules28186598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The plasma membrane lipid rafts are cholesterol- and sphingolipid-enriched domains that allow regularly distributed, sub-micro-sized structures englobing proteins to compartmentalize cellular processes. These membrane domains can be highly heterogeneous and dynamic, functioning as signal transduction platforms that amplify the local concentrations and signaling of individual components. Moreover, they participate in cell signaling routes that are known to be important targets of environmental toxicants affecting cell redox status and calcium homeostasis, immune regulation, and hormonal functions. In this work, the evidence that plasma membrane raft-like domains operate as hubs for toxicants' cellular actions is discussed, and suggestions for future research are provided. Several studies address the insertion of pesticides and other organic pollutants into membranes, their accumulation in lipid rafts, or lipid rafts' disruption by polychlorinated biphenyls (PCBs), benzo[a]pyrene (B[a]P), and even metals/metalloids. In hepatocytes, macrophages, or neurons, B[a]P, airborne particulate matter, and other toxicants caused rafts' protein and lipid remodeling, oxidative changes, or amyloidogenesis. Different studies investigated the role of the invaginated lipid rafts present in endothelial cells in mediating the vascular inflammatory effects of PCBs. Furthermore, in vitro and in vivo data strongly implicate raft-localized NADPH oxidases, the aryl hydrocarbon receptor, caveolin-1, and protein kinases in the toxic mechanisms of occupational and environmental chemicals.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
5
|
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides. Cells 2023; 12:1700. [PMID: 37443733 PMCID: PMC10340183 DOI: 10.3390/cells12131700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.
Collapse
Affiliation(s)
- Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary;
- TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| |
Collapse
|
6
|
Spiegel F, Trollmann MFW, Kara S, Pöhnl M, Brandner AF, Nimmerjahn F, Lux A, Böckmann RA. Role of lipid nanodomains for inhibitory FcγRIIb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540011. [PMID: 37214871 PMCID: PMC10197649 DOI: 10.1101/2023.05.09.540011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The inhibitory Fcγ receptor FcγRIIb is involved in immune regulation and is known to localize to specific regions of the plasma membrane called lipid rafts. Previous studies suggested a link between the altered lateral receptor localization within the plasma membrane and the functional impairment of the FcγRIIb-I232T variant that is associated with systemic lupus erythematosus. Here, we conducted microsecond all-atom molecular dynamics simulations and IgG binding assays to investigate the lipid nano-environment of FcγRIIb monomers and of the FcγRIIb-I232T mutant within a plasma membrane model, the orientation of the FcγRIIb ectodomain, and its accessibility to IgG ligands. In contrast to previously proposed models, our simulations indicated that FcγRIIb does not favor a cholesterol- or a sphingolipid-enriched lipid environment. Interestingly, cholesterol was depleted for all studied FcγRIIb variants within a 2-3 nm environment of the receptor, counteracting the usage of raft terminology for models on receptor functionality. Instead, the receptor interacts with lipids that have poly-unsaturated fatty acyl chains and with (poly-) anionic lipids within the cytosolic membrane leaflet. We also found that FcγRIIb monomers adopt a conformation that is not suitable for binding to its IgG ligand, consistent with a lack of detectable binding of monomeric IgG in experiments on primary immune cells. However, our results propose that multivalent IgG complexes might stabilize FcγRIIb in a binding-competent conformation. We suggest differences in receptor complex formation within the membrane as a plausible cause of the altered membrane localization or clustering and the altered suppressive function of the FcγRIIb-I232T variant.
Collapse
Affiliation(s)
- Franziska Spiegel
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Marius F W Trollmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU)
| | - Sibel Kara
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Matthias Pöhnl
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Astrid F Brandner
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Current address: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Rainer A Böckmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU)
| |
Collapse
|
7
|
Kusumi A, Tsunoyama TA, Tang B, Hirosawa KM, Morone N, Fujiwara TK, Suzuki KGN. Cholesterol- and actin-centered view of the plasma membrane: updating the Singer-Nicolson fluid mosaic model to commemorate its 50th anniversary †. Mol Biol Cell 2023; 34:pl1. [PMID: 37039596 PMCID: PMC10162409 DOI: 10.1091/mbc.e20-12-0809] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 04/12/2023] Open
Abstract
Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taka A. Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Bo Tang
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Takahiro K. Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi G. N. Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
8
|
Harant K, Čajka T, Angelisová P, Pokorná J, Hořejší V. Composition of raft-like cell membrane microdomains resistant to styrene-maleic acid copolymer (SMA) solubilization. Biophys Chem 2023; 296:106989. [PMID: 36898346 DOI: 10.1016/j.bpc.2023.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
An advantageous alternative to the use of detergents in biochemical studies on membrane proteins are the recently developed styrene-maleic acid (SMA) amphipathic copolymers. In our recent study [1] we demonstrated that using this approach, most T cell membrane proteins were fully solubilized (presumably in small nanodiscs), while two types of raft proteins, GPI-anchored proteins and Src family kinases, were mostly present in much larger (>250 nm) membrane fragments markedly enriched in typical raft lipids, cholesterol and lipids containing saturated fatty acid residues. In the present study we demonstrate that disintegration of membranes of several other cell types by means of SMA copolymer follows a similar pattern and we provide a detailed proteomic and lipidomic characterization of these SMA-resistant membrane fragments (SRMs).
Collapse
Affiliation(s)
- Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, Prague 2 CZ-128 01, Czechia.
| | - Tomáš Čajka
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská, 1083 142 20 Praha 4, Czechia.
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083 142 20 Praha 4, Czechia
| | - Jana Pokorná
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083 142 20 Praha 4, Czechia
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083 142 20 Praha 4, Czechia.
| |
Collapse
|
9
|
Luethi D, Maier J, Rudin D, Szöllősi D, Angenoorth TJF, Stankovic S, Schittmayer M, Burger I, Yang JW, Jaentsch K, Holy M, Das AK, Brameshuber M, Camacho-Hernandez GA, Casiraghi A, Newman AH, Kudlacek O, Birner-Gruenberger R, Stockner T, Schütz GJ, Sitte HH. Phosphatidylinositol 4,5-bisphosphate (PIP 2) facilitates norepinephrine transporter dimerization and modulates substrate efflux. Commun Biol 2022; 5:1259. [PMID: 36396757 PMCID: PMC9672106 DOI: 10.1038/s42003-022-04210-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
The plasmalemmal norepinephrine transporter (NET) regulates cardiovascular sympathetic activity by clearing extracellular norepinephrine in the synaptic cleft. Here, we investigate the subunit stoichiometry and function of NET using single-molecule fluorescence microscopy and flux assays. In particular, we show the effect of phosphatidylinositol 4,5-bisphosphate (PIP2) on NET oligomerization and efflux. NET forms monomers (~60%) and dimers (~40%) at the plasma membrane. PIP2 depletion results in a decrease in the average oligomeric state and decreases NET-mediated substrate efflux while not affecting substrate uptake. Mutation of the putative PIP2 binding residues R121, K334, and R440 to alanines does not affect NET dimerization but results in decreased substrate efflux that is not altered upon PIP2 depletion; this indicates that PIP2 interactions with these residues affect NET-mediated efflux. A dysregulation of norepinephrine and PIP2 signaling have both been implicated in neuropsychiatric and cardiovascular diseases. This study provides evidence that PIP2 directly regulates NET organization and function.
Collapse
Affiliation(s)
- Dino Luethi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060, Vienna, Austria
| | - Julian Maier
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Deborah Rudin
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Thomas J F Angenoorth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Stevan Stankovic
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Isabella Burger
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Kathrin Jaentsch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Anand Kant Das
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060, Vienna, Austria
- Physics Program, New York University Abu Dhabi, Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates
| | - Mario Brameshuber
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060, Vienna, Austria
| | - Gisela Andrea Camacho-Hernandez
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD, 21224, USA
| | - Andrea Casiraghi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD, 21224, USA
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060, Vienna, Austria.
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
11
|
Geda O, Tábi T, Lakatos PP, Szökő É. Differential Ganglioside and Cholesterol Depletion by Various Cyclodextrin Derivatives and Their Effect on Synaptosomal Glutamate Release. Int J Mol Sci 2022; 23:ijms23169460. [PMID: 36012724 PMCID: PMC9409351 DOI: 10.3390/ijms23169460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gangliosides are glycosphingolipids of the plasma membrane and are highly enriched in the nervous system where they play a vital role in normal cell functions. Furthermore, several studies suggest their potential involvement in the pathogenesis of neurological conditions. Since cyclodextrins (CDs) can form inclusion complexes with various lipids, methylated beta-CDs are widely used in biomedical research to extract cholesterol from the membrane and study its cellular role. Despite CDs being known to interact with other membrane lipid components, their effect on gangliosides is poorly characterized. The aim of this research was to investigate the effect of dimethyl-beta-cyclodextrin (DIMEB), hydroxypropyl-beta-cyclodextrin (HPBCD), randomly methylated-alpha-cyclodextrin (RAMEA), and hydroxypropyl-alpha-cyclodextrin (HPACD) on ganglioside and cholesterol levels in rat brain synaptosomes. Their effect on membrane integrity and viability was also assessed. We examined the role of lipid depletion by CDs on the release of the major excitatory neurotransmitter, glutamate. Selective concentration range for cholesterol depletion was only found with HPBCD, but not with DIMEB. Selective depletion of gangliosides was achieved by both RAMEA and HPACD. The inhibition of stimulated glutamate release upon ganglioside depletion was found, suggesting their potential role in neurotransmission. Our study highlights the importance of the characterization of the lipid depleting capability of different CDs.
Collapse
|
12
|
Sarkar P, Chattopadhyay A. Statin-induced Increase in Actin Polymerization Modulates GPCR Dynamics and Compartmentalization. Biophys J 2022:S0006-3495(22)00708-1. [DOI: 10.1016/j.bpj.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
|
13
|
Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophys Rev 2022; 14:655-678. [PMID: 35791389 DOI: 10.1007/s12551-022-00967-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
As a model of lipid rafts, the liquid-ordered (Lo) phase formed by sphingomyelin (SM) and cholesterol (Cho) in bilayer membranes has long attracted the attention of biophysics researchers. New approaches and methodologies have led to a better understanding of the molecular basis of the Lo domain structure. This review summarizes studies on model membrane systems consisting of SM/unsaturated phospholipid/Cho implying that the Lo phase contains SM-based nanodomains (or nano-subdomains). Some of the Lo phase properties may be attributed to these nanodomains. Several studies suggest that the nanodomains contain clustered SM molecules packed densely to form gel-phase-like subdomains of single-digit nanometer size at physiological temperatures. Cho and unsaturated lipids located in the Lo phase are likely to be concentrated at the boundaries between the subdomains. These subdomains are not readily detected in the Lo phase formed by saturated phosphatidylcholine (PC) molecules, suggesting that they are strongly stabilized by homophilic interactions specific to SM, e.g., between SM amide groups. This model for the Lo phase is supported by experiments using dihydro-SM, which is thought to have stronger homophilic interactions than SM, as well as by studies using the enantiomer of SM having opposite stereochemistry to SM at the 2 and 3 positions and by some molecular dynamics (MD) simulations of lipid bilayers containing Lo-lipids. Nanosized gel subdomains seem to play an important role in controlling membrane organization and function in biological membranes.
Collapse
Affiliation(s)
- Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Masanao Kinoshita
- ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215 USA
| |
Collapse
|
14
|
Lata K, Singh M, Chatterjee S, Chattopadhyay K. Membrane Dynamics and Remodelling in Response to the Action of the Membrane-Damaging Pore-Forming Toxins. J Membr Biol 2022; 255:161-173. [PMID: 35305136 DOI: 10.1007/s00232-022-00227-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming protein toxins (PFTs) represent a diverse class of membrane-damaging proteins that are produced by a wide variety of organisms. PFT-mediated membrane perforation is largely governed by the chemical composition and the physical properties of the plasma membranes. The interaction between the PFTs with the target membranes is critical for the initiation of the pore-formation process, and can lead to discrete membrane reorganization events that further aids in the process of pore-formation. Punching holes on the plasma membranes by the PFTs interferes with the cellular homeostasis by disrupting the ion-balance inside the cells that in turn can turn on multiple signalling cascades required to restore membrane integrity and cellular homeostasis. In this review, we discuss the physicochemical attributes of the plasma membranes associated with the pore-formation processes by the PFTs, and the subsequent membrane remodelling events that may start off the membrane-repair mechanisms.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
15
|
Approach to map nanotopography of cell surface receptors. Commun Biol 2022; 5:218. [PMID: 35264712 PMCID: PMC8907216 DOI: 10.1038/s42003-022-03152-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/09/2022] [Indexed: 12/18/2022] Open
Abstract
Cells communicate with their environment via surface receptors, but nanoscopic receptor organization with respect to complex cell surface morphology remains unclear. This is mainly due to a lack of accessible, robust and high-resolution methods. Here, we present an approach for mapping the topography of receptors at the cell surface with nanometer precision. The method involves coating glass coverslips with glycine, which preserves the fine membrane morphology while allowing immobilized cells to be positioned close to the optical surface. We developed an advanced and simplified algorithm for the analysis of single-molecule localization data acquired in a biplane detection scheme. These advancements enable direct and quantitative mapping of protein distribution on ruffled plasma membranes with near isotropic 3D nanometer resolution. As demonstrated successfully for CD4 and CD45 receptors, the described workflow is a straightforward quantitative technique to study molecules and their interactions at the complex surface nanomorphology of differentiated metazoan cells. A super-resolution localisation-based method is shown to map receptor topography in immune cells, which allows quantitative study of molecules and their interactions at the complex surface nanomorphology of cells.
Collapse
|
16
|
Kenworthy AK, Schmieder SS, Raghunathan K, Tiwari A, Wang T, Kelly CV, Lencer WI. Cholera Toxin as a Probe for Membrane Biology. Toxins (Basel) 2021; 13:543. [PMID: 34437414 PMCID: PMC8402489 DOI: 10.3390/toxins13080543] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cholera toxin B-subunit (CTxB) has emerged as one of the most widely utilized tools in membrane biology and biophysics. CTxB is a homopentameric stable protein that binds tightly to up to five GM1 glycosphingolipids. This provides a robust and tractable model for exploring membrane structure and its dynamics including vesicular trafficking and nanodomain assembly. Here, we review important advances in these fields enabled by use of CTxB and its lipid receptor GM1.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Stefanie S. Schmieder
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Krishnan Raghunathan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA;
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Ting Wang
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (A.T.); (T.W.)
| | - Christopher V. Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Wayne I. Lencer
- Division of Gastroenterology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Diseases Center, Boston, MA 02115, USA
| |
Collapse
|
17
|
Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, Kinoshita M, Matsumori N, Komura N, Ando H, Suzuki KGN. Defining raft domains in the plasma membrane. Traffic 2021; 21:106-137. [PMID: 31760668 DOI: 10.1111/tra.12718] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023]
Abstract
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - An-An Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
18
|
What Can Mushroom Proteins Teach Us about Lipid Rafts? MEMBRANES 2021; 11:membranes11040264. [PMID: 33917311 PMCID: PMC8067419 DOI: 10.3390/membranes11040264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
The lipid raft hypothesis emerged as a need to explain the lateral organization and behavior of lipids in the environment of biological membranes. The idea, that lipids segregate in biological membranes to form liquid-disordered and liquid-ordered states, was faced with a challenge: to show that lipid-ordered domains, enriched in sphingomyelin and cholesterol, actually exist in vivo. A great deal of indirect evidence and the use of lipid-binding probes supported this idea, but there was a lack of tools to demonstrate the existence of such domains in living cells. A whole new toolbox had to be invented to biochemically characterize lipid rafts and to define how they are involved in several cellular functions. A potential solution came from basic biochemical experiments in the late 1970s, showing that some mushroom extracts exert hemolytic activities. These activities were later assigned to aegerolysin-based sphingomyelin/cholesterol-specific cytolytic protein complexes. Recently, six sphingomyelin/cholesterol binding proteins from different mushrooms have been identified and have provided some insight into the nature of sphingomyelin/cholesterol-rich domains in living vertebrate cells. In this review, we dissect the accumulated knowledge and introduce the mushroom lipid raft binding proteins as molecules of choice to study the dynamics and origins of these liquid-ordered domains in mammalian cells.
Collapse
|
19
|
Li M, Yu Y. Innate immune receptor clustering and its role in immune regulation. J Cell Sci 2021; 134:134/4/jcs249318. [PMID: 33597156 DOI: 10.1242/jcs.249318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of receptor clustering in the activation of adaptive immune cells has revolutionized our understanding of the physical basis of immune signal transduction. In contrast to the extensive studies of adaptive immune cells, particularly T cells, there is a lesser, but emerging, recognition that the formation of receptor clusters is also a key regulatory mechanism in host-pathogen interactions. Many kinds of innate immune receptors have been found to assemble into nano- or micro-sized domains on the surfaces of cells. The clusters formed between diverse categories of innate immune receptors function as a multi-component apparatus for pathogen detection and immune response regulation. Here, we highlight these pioneering efforts and the outstanding questions that remain to be answered regarding this largely under-explored research topic. We provide a critical analysis of the current literature on the clustering of innate immune receptors. Our emphasis is on studies that draw connections between the phenomenon of receptor clustering and its functional role in innate immune regulation.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
20
|
Batta G, Hajdu T, Nagy P. Characterization of the Effect of Sphingolipid Accumulation on Membrane Compactness, Dipole Potential, and Mobility of Membrane Components. Methods Mol Biol 2021; 2187:283-301. [PMID: 32770513 DOI: 10.1007/978-1-0716-0814-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Communication between cells and their environment is carried out through the plasma membrane including the action of most pharmaceutical drugs. Although such a communication typically involves specific binding of a messenger to a membrane receptor, the biophysical state of the lipid bilayer strongly influences the outcome of this interaction. Sphingolipids constitute an important part of the lipid membrane, and their mole fraction modifies the biophysical characteristics of the membrane. Here, we describe methods that can be used for measuring how sphingolipid accumulation alters the compactness, microviscosity, and dipole potential of the lipid bilayer and the mobility of membrane components.
Collapse
Affiliation(s)
- Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tímea Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
21
|
Zapata-Morin PA, Sierra-Valdez FJ, Ruiz-Suárez JC. The cut-off effect of n-alcohols in lipid rafts: A lipid-dependent phenomenon ☆. J Mol Graph Model 2020; 101:107732. [PMID: 32920240 DOI: 10.1016/j.jmgm.2020.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
n-Aliphatic alcohols act as anesthetics only up to a certain chain length, beyond which its biological activity disappears. This is known as the 'cut-off' phenomenon. Although the most accepted explanation is based on action sites in membrane proteins, it is not well understood why alcohols alter their functions. The structural dependence of these protein receptors to lipid domains known as 'lipid rafts', suggests a new approach to tackle the puzzling phenomenon. In this work, by performing molecular dynamic simulations (MDS) to explore the lipid role, we provide relevant molecular details about the membrane-alcohol interaction at the cut-off point regime. Since the high variability of the cut-off points found on protein receptors in neurons may be a consequence of differences in the lipid composition surrounding such proteins, our results could have a clear-cut importance.
Collapse
Affiliation(s)
- Patricio A Zapata-Morin
- Facultad de Ciencias Biológicas, Laboratorio de Micología y Fitopatología, Universidad Autónoma de Nuevo León, San Nicolás de Los Garza, Nuevo León, 66455, Mexico
| | - F J Sierra-Valdez
- Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, Ave. Batallón de San Patricio 112, San Pedro Garza García, 66278, Nuevo León, Mexico; Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, 64849, Mexico
| | | |
Collapse
|
22
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
23
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
24
|
Fathizadeh A, Valentine M, Baiz CR, Elber R. Phase Transition in a Heterogeneous Membrane: Atomically Detailed Picture. J Phys Chem Lett 2020; 11:5263-5267. [PMID: 32525318 PMCID: PMC7334090 DOI: 10.1021/acs.jpclett.0c01255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Membranes serve diverse functions in biological systems. Variations in their molecular compositions impact their physical properties and lead to rich phase behavior such as switching from the gel to fluid phase and/or separation to micro- and macrodomains with different molecular compositions. We present a combined computational and experimental study of the phase behavior of a mixed membrane of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) molecules. This heterogeneous membrane changes from gel to fluid and shows separate domains as a function of temperature. Atomically detailed simulations provide microscopic information about these molecular assemblies. However, these systems are challenging for computations since approaching equilibrium necessitates exceptionally long molecular dynamics trajectories. We use the simulation method of MDAS (Molecular Dynamics with Alchemical Steps) to generate adequate statistics. Isotope-edited IR spectroscopy of the lipids was used to benchmark the simulations. Together, simulations and experiments provide insight into the structural and dynamical features of the phase diagram.
Collapse
|
25
|
Ghosh U, Weliky DP. 2H nuclear magnetic resonance spectroscopy supports larger amplitude fast motion and interference with lipid chain ordering for membrane that contains β sheet human immunodeficiency virus gp41 fusion peptide or helical hairpin influenza virus hemagglutinin fusion peptide at fusogenic pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183404. [PMID: 32585207 DOI: 10.1016/j.bbamem.2020.183404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
Enveloped viruses are surrounded by a membrane which is obtained from an infected host cell during budding. Infection of a new cell requires joining (fusion) of the virus and cell membranes. This process is mediated by a monotopic viral fusion protein with a large ectodomain outside the virus. The ectodomains of class I enveloped viruses have a N-terminal "fusion peptide" (fp) domain that is critical for fusion and binds to the cell membrane. In this study, 2H NMR spectra are analyzed for deuterated membrane with fp from either HIV gp41 (GP) or influenza hemagglutinin (HA) fusion proteins. In addition, the HAfp samples are studied at more fusogenic pH 5 and less fusogenic pH 7. GPfp adopts intermolecular antiparallel β sheet structure whereas HAfp is a monomeric helical hairpin. The data are obtained for a set of temperatures between 35 and 0 °C using DMPC-d54 lipid with perdeuterated acyl chains. The DMPC has liquid-crystalline (Lα) phase with disordered chains at higher temperature and rippled gel (Pβ') or gel phase (Lβ') with ordered chains at lower temperature. At given temperature T, the no peptide and HAfp, pH 7 samples exhibit similar spectral lineshapes. Spectral broadening with reduced temperature correlates with the transition from Lα to Pβ' and then Lβ' phases. At given T, the lineshapes are narrower for HAfp, pH 5 vs. no peptide and HAfp, pH 7 samples, and even narrower for the GPfp sample. These data support larger-amplitude fast (>105 Hz) lipid acyl chain motion for samples with fusogenic peptides, and peptide interference with chain ordering. The NMR data of the present paper correlate with insertion of these peptides into the hydrocarbon core of the membrane and support a significant fusion contribution from the resultant lipid acyl chain disorder, perhaps because of reduced barriers between the different membrane topologies in the fusion pathway. Membrane insertion and lipid perturbation appear common to both β sheet and helical hairpin peptides.
Collapse
Affiliation(s)
- Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Albanesi JP, Barylko B, DeMartino GN, Jameson DM. Palmitoylated Proteins in Dendritic Spine Remodeling. Front Synaptic Neurosci 2020; 12:22. [PMID: 32655390 PMCID: PMC7325885 DOI: 10.3389/fnsyn.2020.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory. In this review article, we highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high-throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains.
Collapse
Affiliation(s)
- Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
27
|
Pérez-Isidoro R, Costas M. The effect of neuroleptic drugs on DPPC/sphingomyelin/cholesterol membranes. Chem Phys Lipids 2020; 229:104913. [PMID: 32335028 DOI: 10.1016/j.chemphyslip.2020.104913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
The hydrophobic nature of neuroleptic drugs renders that these molecules interact not only with protein receptors, but also with the lipids constituting the membrane bilayer. We present a systematic study of the effect of seven neuroleptic drugs on a biomembrane model composed of DPPC, sphingomyelin, and cholesterol. Differential scanning calorimetry (DSC) measurements were used to monitor the gel-fluid phase transition of the lipid bilayer at three pH values and also as a function of drug concentration. The implementation of a new methodology to mix lipids homogeneously allowed us to assemble bilayers completely free of organic solvents. The seven neuroleptics were: trifluoperazine, haloperidol decanoate, clozapine, quetiapine, olanzapine, aripiprazole, and amisulpride. The DSC results show that the insertion of the drug into the bilayer produces a fluidization and a disordering of the bilayer. The bilayer perturbation is qualitatively the same for all the studied drugs, but quantitatively different. The driving force for the neuroleptic drug to place itself in the lipid bilayer is entropic in nature, signaling to the importance of the size and geometry of the drugs. The drug protonated species produce stronger effects than their non-protonated forms. At high concentrations two of the neuroleptics revert the fluidization effect and another completely abolishes the gel-fluid transition. The DSC data and the associated discussion contribute to the understanding of the interactions between neuroleptic drugs and lipid membranes.
Collapse
Affiliation(s)
- R Pérez-Isidoro
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| | - M Costas
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| |
Collapse
|
28
|
Salinas ML, Fuentes NR, Choate R, Wright RC, McMurray DN, Chapkin RS. AdipoRon Attenuates Wnt Signaling by Reducing Cholesterol-Dependent Plasma Membrane Rigidity. Biophys J 2020; 118:885-897. [PMID: 31630812 PMCID: PMC7036725 DOI: 10.1016/j.bpj.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of adult and adolescent obesity and its associated risk of colorectal cancer reinforces the urgent need to elucidate the underlying mechanisms contributing to the promotion of colon cancer in obese individuals. Adiponectin is an adipose tissue-derived adipokine, whose levels are reduced during obesity. Both epidemiological and preclinical data indicate that adiponectin suppresses colon tumorigenesis. We have previously demonstrated that both adiponectin and AdipoRon, a small-molecule adiponectin receptor agonist, suppress colon cancer risk in part by reducing the number of Lgr5+ stem cells in mouse colonic organoids. However, the mechanism by which the adiponectin signaling pathway attenuates colon cancer risk remains to be addressed. Here, we have hypothesized that adiponectin signaling supports colonic stem cell maintenance through modulation of the biophysical properties of the plasma membrane (PM). Specifically, we investigated the effects of adiponectin receptor activation by AdipoRon on the biophysical perturbations linked to the attenuation of Wnt-driven signaling and cell proliferation as determined by LEF luciferase reporter assay and colonic organoid proliferation, respectively. Using physicochemical sensitive dyes, Di-4-ANEPPDHQ and C-laurdan, we demonstrated that AdipoRon decreased the rigidity of the colonic cell PM. The decrease in membrane rigidity was associated with a reduction in PM free cholesterol levels and the intracellular accumulation of free cholesterol in lysosomes. These results suggest that adiponectin signaling plays a role in modulating cellular cholesterol homeostasis, PM biophysical properties, and Wnt-driven signaling. These findings are noteworthy because they may in part explain how obesity drives colon cancer progression.
Collapse
Affiliation(s)
- Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas
| | - Rachel Choate
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - David N McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas; Center for Environmental Health Research, Texas A&M University, College Station, Texas.
| |
Collapse
|
29
|
Sun L, Su Y, Wang JG, Xia F, Xu Y, Li D. DNA nanotweezers for stabilizing and dynamically lighting up a lipid raft on living cell membranes and the activation of T cells. Chem Sci 2020; 11:1581-1586. [PMID: 34084389 PMCID: PMC8148038 DOI: 10.1039/c9sc06203c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid rafts are generally considered as nanodomains on cell membranes and play important roles in signaling, viral infection, and membrane trafficking. However, the raft hypothesis is still debated with many inconsistencies because the nanoscale and transient heterogeneous raft structure creates difficulties in its location and functional analysis. In the present study, we report a DNA nanotweezer composed of a cholesterol-functionalized DNA duplex that stabilizes transient lipid rafts, which facilitate the further analysis of the raft component and its functions via other spectroscopy tools. The proposed DNA nanotweezer can induce clustering of raft-associated components (saturated lipids, membrane protein and possibly endogenous cholesterol), leading to the T cell proliferation through clustering of a T-cell antigen receptor (TCR). The flexibility of random sequence noncoding DNA provides versatile possibilities of manipulating lipid rafts and activating T cells, and thus opens new ways in a future T cell therapy. We report a DNA nanotweezer that recruits raft-associated lipids, proteins and possibly endogenous cholesterol on living cell membrane. The DNA nanotweezers could activate T cell proliferation in a nonspecific activation manner.![]()
Collapse
Affiliation(s)
- Lele Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
- Institute of Functional Nano & Soft Materials (FUNSOM)
| | - Yingying Su
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Jun-Gang Wang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Fei Xia
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Ying Xu
- Department of Pathophysiology
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education
- Shanghai Jiao-Tong University School of Medicine
- Shanghai
- China
| | - Di Li
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
30
|
Sahu SS, Sarkar P, Shrivastava S, Chattopadhyay A. Differential effects of simvastatin on membrane organization and dynamics in varying phases. Chem Phys Lipids 2019; 225:104831. [DOI: 10.1016/j.chemphyslip.2019.104831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022]
|
31
|
Leung SSW, Brewer J, Bagatolli LA, Thewalt JL. Measuring molecular order for lipid membrane phase studies: Linear relationship between Laurdan generalized polarization and deuterium NMR order parameter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183053. [DOI: 10.1016/j.bbamem.2019.183053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023]
|
32
|
Owen MC, Karner A, Šachl R, Preiner J, Amaro M, Vácha R. Force Field Comparison of GM1 in a DOPC Bilayer Validated with AFM and FRET Experiments. J Phys Chem B 2019; 123:7504-7517. [PMID: 31397569 DOI: 10.1021/acs.jpcb.9b05095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The great physiological relevance of glycolipids is being increasingly recognized, and glycolipid interactions have been shown to be central to cell-cell recognition, neuronal plasticity, protein-ligand recognition, and other important processes. However, detailed molecular-level understanding of these processes remains to be fully resolved. Molecular dynamics simulations could reveal the details of the glycolipid interactions, but the results may be influenced by the choice of the employed force field. Here, we have compared the behavior and properties of GM1, a common, biologically important glycolipid, using the CHARMM36, OPLS, GROMOS, and Amber99-GLYCAM06 (in bilayers comprising SLIPIDS and LIPID14 lipids) force fields in bilayers comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids and compared the results to atomic force microscopy and fluorescence resonance energy transfer experiments. We found discrepancies within the GM1 behavior displayed between the investigated force fields. Based on a direct comparison with complementary experimental results derived from fluorescence and AFM measurements, we recommend using the Amber99-GLYCAM force field in bilayers comprising LIPID14 or SLIPIDS lipids followed by CHARMM36 and OPLS force fields in simulations. The GROMOS force field is not recommended for reproducing the properties of the GM1 head group.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andreas Karner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the C.A.S., v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the C.A.S., v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
33
|
Abstract
Lipid microenvironments in the plasma membrane are known to influence many signal transduction pathways. Several of those pathways are critical for both the etiology and treatment of depression. Further, several signaling proteins are modified, covalently, by lipids, a process that alters their interface with the microenvironments mentioned above. This review presents a brief discussion of the interface of the above elements as well as a discussion about the participation of lipids and lipid moieties in the action of antidepressants.
Collapse
Affiliation(s)
- Nathan H Wray
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States
| | - Mark M Rasenick
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States; Department of Psychiatry, Chicago, IL, United States; The Jesse Brown VAMC, Chicago, IL, United States.
| |
Collapse
|
34
|
Yan R, Wang B, Xu K. Functional super-resolution microscopy of the cell. Curr Opin Chem Biol 2019; 51:92-97. [DOI: 10.1016/j.cbpa.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022]
|
35
|
Role of Transmembrane Proteins for Phase Separation and Domain Registration in Asymmetric Lipid Bilayers. Biomolecules 2019; 9:biom9080303. [PMID: 31349669 PMCID: PMC6723173 DOI: 10.3390/biom9080303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/05/2023] Open
Abstract
It is well known that the formation and spatial correlation of lipid domains in the two apposed leaflets of a bilayer are influenced by weak lipid–lipid interactions across the bilayer’s midplane. Transmembrane proteins span through both leaflets and thus offer an alternative domain coupling mechanism. Using a mean-field approximation of a simple bilayer-type lattice model, with two two-dimensional lattices stacked one on top of the other, we explore the role of this “structural” inter-leaflet coupling for the ability of a lipid membrane to phase separate and form spatially correlated domains. We present calculated phase diagrams for various effective lipid–lipid and lipid–protein interaction strengths in membranes that contain a binary lipid mixture in each leaflet plus a small amount of added transmembrane proteins. The influence of the transmembrane nature of the proteins is assessed by a comparison with “peripheral” proteins, which result from the separation of one single integral protein into two independent units that are no longer structurally connected across the bilayer. We demonstrate that the ability of membrane-spanning proteins to facilitate domain formation requires sufficiently strong lipid–protein interactions. Weak lipid–protein interactions generally tend to inhibit phase separation in a similar manner for transmembrane as for peripheral proteins.
Collapse
|
36
|
Samaha D, Hamdo HH, Wilde M, Prause K, Arenz C. Sphingolipid-Transporting Proteins as Cancer Therapeutic Targets. Int J Mol Sci 2019; 20:ijms20143554. [PMID: 31330821 PMCID: PMC6678544 DOI: 10.3390/ijms20143554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023] Open
Abstract
The understanding of the role of sphingolipid metabolism in cancer has tremendously increased in the past ten years. Many tumors are characterized by imbalances in sphingolipid metabolism. In many cases, disorders of sphingolipid metabolism are also likely to cause or at least promote cancer. In this review, sphingolipid transport proteins and the processes catalyzed by them are regarded as essential components of sphingolipid metabolism. There is much to suggest that these processes are often rate-limiting steps for metabolism of individual sphingolipid species and thus represent potential target structures for pharmaceutical anticancer research. Here, we summarize empirical and biochemical data on different proteins with key roles in sphingolipid transport and their potential role in cancer.
Collapse
Affiliation(s)
- Doaa Samaha
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
- Depatment of Pharmaceutical Chemistry, College of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Housam H Hamdo
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Max Wilde
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
| |
Collapse
|
37
|
Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol 2019; 29:727-739. [PMID: 31227311 DOI: 10.1016/j.tcb.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022]
Abstract
Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, super-resolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy - from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.
Collapse
|
38
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
39
|
Glatzová D, Cebecauer M. Dual Role of CD4 in Peripheral T Lymphocytes. Front Immunol 2019; 10:618. [PMID: 31001252 PMCID: PMC6454155 DOI: 10.3389/fimmu.2019.00618] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/07/2023] Open
Abstract
The interaction of T-cell receptors (TCRs) with self- and non-self-peptides in the major histocompatibility complex (MHC) stimulates crucial signaling events, which in turn can activate T lymphocytes. A variety of accessory molecules further modulate T-cell signaling. Of these, the CD4 and CD8 coreceptors make the most critical contributions to T cell sensitivity in vivo. Whereas, CD4 function in T cell development is well-characterized, its role in peripheral T cells remains incompletely understood. It was originally suggested that CD4 stabilizes weak interactions between TCRs and peptides in the MHC and delivers Lck kinases to that complex. The results of numerous experiments support the latter role, indicating that the CD4-Lck complex accelerates TCR-triggered signaling and controls the availability of the kinase for TCR in the absence of the ligand. On the other hand, extremely low affinity of CD4 for MHC rules out its ability to stabilize the receptor-ligand complex. In this review, we summarize the current knowledge on CD4 in T cells, with a special emphasis on the spatio-temporal organization of early signaling events and the relevance for CD4 function. We further highlight the capacity of CD4 to interact with the MHC in the absence of TCR. It drives the adhesion of T cells to the cells that express the MHC. This process is facilitated by the CD4 accumulation in the tips of microvilli on the surface of unstimulated T cells. Based on these observations, we suggest an alternative model of CD4 role in T-cell activation.
Collapse
Affiliation(s)
- Daniela Glatzová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
40
|
Goyette J, Nieves DJ, Ma Y, Gaus K. How does T cell receptor clustering impact on signal transduction? J Cell Sci 2019; 132:132/4/jcs226423. [DOI: 10.1242/jcs.226423] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
The essential function of the T cell receptor (TCR) is to translate the engagement of peptides on the major histocompatibility complex (pMHC) into appropriate intracellular signals through the associated cluster of differentiation 3 (CD3) complex. The spatial organization of the TCR–CD3 complex in the membrane is thought to be a key regulatory element of signal transduction, raising the question of how receptor clustering impacts on TCR triggering. How signal transduction at the TCR–CD3 complex encodes the quality and quantity of pMHC molecules is not fully understood. This question can be approached by reconstituting T cell signaling in model and cell membranes and addressed by single-molecule imaging of endogenous proteins in T cells. We highlight such methods and further discuss how TCR clustering could affect pMHC rebinding rates, the local balance between kinase and phosphatase activity and/or the lipid environment to regulate the signal efficiency of the TCR–CD3 complex. We also examine whether clustering could affect the conformation of cytoplasmic CD3 tails through a biophysical mechanism. Taken together, we highlight how the spatial organization of the TCR–CD3 complex – addressed by reconstitution approaches – has emerged as a key regulatory element in signal transduction of this archetypal immune receptor.
Collapse
Affiliation(s)
- Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Advanced Molecular imaging, University of New South Wales, Sydney 2052, Australia
| | - Daniel J. Nieves
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Advanced Molecular imaging, University of New South Wales, Sydney 2052, Australia
| | - Yuanqing Ma
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Advanced Molecular imaging, University of New South Wales, Sydney 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence in Advanced Molecular imaging, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
41
|
Das AK, Kudlacek O, Baumgart F, Jaentsch K, Stockner T, Sitte HH, Schütz GJ. Dopamine transporter forms stable dimers in the live cell plasma membrane in a phosphatidylinositol 4,5-bisphosphate-independent manner. J Biol Chem 2019; 294:5632-5642. [PMID: 30705091 PMCID: PMC6462504 DOI: 10.1074/jbc.ra118.006178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/28/2019] [Indexed: 01/01/2023] Open
Abstract
The human dopamine transporter (hDAT) regulates the level of the neurotransmitter dopamine (DA) in the synaptic cleft and recycles DA for storage in the presynaptic vesicular pool. Many neurotransmitter transporters exist as oligomers, but the physiological role of oligomerization remains unclear; for example, it has been speculated to be a prerequisite for amphetamine-induced release and protein trafficking. Previous studies point to an oligomeric quaternary structure of hDAT; however, the exact stoichiometry and the fraction of co-existing oligomeric states are not known. Here, we used single-molecule brightness analysis to quantify the degree of oligomerization of heterologously expressed hDAT fused to monomeric GFP (mGFP–hDAT) in Chinese hamster ovary (CHO) cells. We observed that monomers and dimers of mGFP–hDAT co-exist and that higher-order molecular complexes of mGFP–hDAT are absent at the plasma membrane. The mGFP–hDAT dimers were stable over several minutes, and the fraction of dimers was independent of the mGFP–hDAT surface density. Furthermore, neither oxidation nor depletion of cholesterol had any effect on the fraction of dimers. Unlike for the human serotonin transporter (hSERT), in which direct binding of phosphatidylinositol 4,5-bisphosphate (PIP2) stabilized the oligomers, the stability of mGFP–hDAT dimers was PIP2 independent.
Collapse
Affiliation(s)
- Anand Kant Das
- From the Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna and
| | - Oliver Kudlacek
- the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Florian Baumgart
- From the Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna and
| | - Kathrin Jaentsch
- the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Thomas Stockner
- the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Harald H Sitte
- the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Gerhard J Schütz
- From the Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna and
| |
Collapse
|
42
|
Baumgart F, Arnold AM, Rossboth BK, Brameshuber M, Schütz GJ. What we talk about when we talk about nanoclusters. Methods Appl Fluoresc 2018; 7:013001. [PMID: 30412469 DOI: 10.1088/2050-6120/aaed0f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superresolution microscopy results have sparked the idea that many membrane proteins are not randomly distributed across the plasma membrane but are instead arranged in nanoclusters. Frequently, these new results seemed to confirm older data based on biochemical and electron microscopy experiments. Recently, however, it was recognized that multiple countings of the very same fluorescently labeled protein molecule can be easily confused with true protein clusters. Various strategies have been developed, which are intended to solve the problem of discriminating true protein clusters from imaging artifacts. We believe that there is currently no perfect algorithm for this problem; instead, different approaches have different strengths and weaknesses. In this review, we discuss single molecule localization microscopy in view of its ability to detect nanoclusters of membrane proteins. To capture the different views on nanoclustering, we chose an unconventional style for this article: we placed its scientific content in the setting of a fictive conference, where five researchers from different fields discuss the problem of detecting and quantifying nanoclusters. Using this style, we feel that the different approaches common for different research areas can be well illustrated. Similarities to a short story by Raymond Carver are not unintentional.
Collapse
|
43
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
44
|
Carpenter TS, López CA, Neale C, Montour C, Ingólfsson HI, Di Natale F, Lightstone FC, Gnanakaran S. Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. J Chem Theory Comput 2018; 14:6050-6062. [DOI: 10.1021/acs.jctc.8b00496] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy S. Carpenter
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | | | | | - Cameron Montour
- Biochemistry and Molecular Biology Department, Georgetown University, Washington, DC 20057, United States
| | - Helgi I. Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Francesco Di Natale
- Applications, Simulations, and Quality Division, Computation Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Felice C. Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | | |
Collapse
|
45
|
Glucosylceramide modifies the LPS-induced inflammatory response in macrophages and the orientation of the LPS/TLR4 complex in silico. Sci Rep 2018; 8:13600. [PMID: 30206272 PMCID: PMC6134110 DOI: 10.1038/s41598-018-31926-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is activated by bacterial lipopolysaccharide (LPS), which drives the production of proinflammatory cytokines. Earlier studies have indicated that cholesterol- and glycosphingolipid-rich subregions of the plasma membrane (lipid domains) are important for TLR4-mediated signaling. We report that inhibition of glucosylceramide (GluCer) synthase, which resulted in decreased concentrations of the glycosphingolipid GluCer in lipid domains, reduced the LPS-induced inflammatory response in both mouse and human macrophages. Atomistic molecular dynamics simulations of the TLR4 dimer complex (with and without LPS in its MD-2 binding pockets) in membranes (in the presence and absence of GluCer) showed that: (1) LPS induced a tilted orientation of TLR4 and increased dimer integrity; (2) GluCer did not affect the integrity of the LPS/TLR4 dimer but reduced the LPS-induced tilt; and (3) GluCer increased electrostatic interactions between the membrane and the TLR4 extracellular domain, which could potentially modulate the tilt. We also showed that GCS inhibition reduced the interaction between TLR4 and the intracellular adaptor protein Mal. We conclude that the GluCer-induced effects on LPS/TLR4 orientation may influence the signaling capabilities of the LPS/TLR4 complex by affecting its interaction with downstream signaling proteins.
Collapse
|
46
|
Jamin N, Garrigos M, Jaxel C, Frelet-Barrand A, Orlowski S. Ectopic Neo-Formed Intracellular Membranes in Escherichia coli: A Response to Membrane Protein-Induced Stress Involving Membrane Curvature and Domains. Biomolecules 2018; 8:biom8030088. [PMID: 30181516 PMCID: PMC6163855 DOI: 10.3390/biom8030088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Bacterial cytoplasmic membrane stress induced by the overexpression of membrane proteins at high levels can lead to formation of ectopic intracellular membranes. In this review, we report the various observations of such membranes in Escherichia coli, compare their morphological and biochemical characterizations, and we analyze the underlying molecular processes leading to their formation. Actually, these membranes display either vesicular or tubular structures, are separated or connected to the cytoplasmic membrane, present mono- or polydispersed sizes and shapes, and possess ordered or disordered arrangements. Moreover, their composition differs from that of the cytoplasmic membrane, with high amounts of the overexpressed membrane protein and altered lipid-to-protein ratio and cardiolipin content. These data reveal the importance of membrane domains, based on local specific lipid⁻protein and protein⁻protein interactions, with both being crucial for local membrane curvature generation, and they highlight the strong influence of protein structure. Indeed, whether the cylindrically or spherically curvature-active proteins are actively curvogenic or passively curvophilic, the underlying molecular scenarios are different and can be correlated with the morphological features of the neo-formed internal membranes. Delineating these molecular mechanisms is highly desirable for a better understanding of protein⁻lipid interactions within membrane domains, and for optimization of high-level membrane protein production in E. coli.
Collapse
Affiliation(s)
- Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Manuel Garrigos
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Annie Frelet-Barrand
- Institut FEMTO-ST, UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B avenue des Montboucons, 25030 Besançon CEDEX, France.
| | - Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| |
Collapse
|
47
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
48
|
Fathizadeh A, Elber R. A mixed alchemical and equilibrium dynamics to simulate heterogeneous dense fluids: Illustrations for Lennard-Jones mixtures and phospholipid membranes. J Chem Phys 2018; 149:072325. [PMID: 30134684 PMCID: PMC6018062 DOI: 10.1063/1.5027078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
An algorithm to efficiently simulate multi-component fluids is proposed and illustrated. The focus is on biological membranes that are heterogeneous and challenging to investigate quantitatively. To achieve rapid equilibration of spatially inhomogeneous fluids, we mix conventional molecular dynamics simulations with alchemical trajectories. The alchemical trajectory switches the positions of randomly selected pairs of molecules and plays the role of an efficient Monte Carlo move. It assists in accomplishing rapid spatial de-correlations. Examples of phase separation and mixing are given in two-dimensional binary Lennard-Jones fluid and a DOPC-POPC membrane. The performance of the algorithm is analyzed, and tools to maximize its efficiency are provided. It is concluded that the algorithm is vastly superior to conventional molecular dynamics for the equilibrium study of biological membranes.
Collapse
Affiliation(s)
- Arman Fathizadeh
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ron Elber
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
49
|
The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:130-141. [PMID: 30463696 DOI: 10.1016/j.bbamem.2018.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
An emerging alternative to the use of detergents in biochemical studies on membrane proteins is apparently the use styrene-maleic acid (SMA) amphipathic copolymers. These cut the membrane into nanodiscs (SMA-lipid particles, SMALPs), which contain membrane proteins possibly surrounded by their native lipid environment. We examined this approach for studies on several types of T cell membrane proteins, previously defined as raft or non-raft associated, to see whether the properties of the raft derived SMALPs differ from non-raft SMALPs. Our results indicate that two types of raft proteins, GPI-anchored proteins and two Src family kinases, are markedly present in membrane fragments much larger (>250 nm) than those containing non-raft proteins (<20 nm). Lipid probes sensitive to membrane fluidity (membrane order) indicate that the lipid environment in the large SMALPs is less fluid (more ordered) than in the small ones which may indicate the presence of a more ordered lipid Lo phase which is characteristic of membrane rafts. Also the lipid composition of the small vs. large SMALPs is markedly different - the large ones are enriched in cholesterol and lipids containing saturated fatty acids. In addition, we confirm that T cell membrane proteins present in SMALPs can be readily immunoisolated. Our results support the use of SMA as a potentially better (less artifact prone) alternative to detergents for studies on membrane proteins and their complexes, including membrane rafts.
Collapse
|
50
|
Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment. Int J Mol Sci 2018; 19:ijms19061811. [PMID: 29921831 PMCID: PMC6032236 DOI: 10.3390/ijms19061811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol, a major component of the plasma membrane, determines the physical properties of biological membranes and plays a critical role in the assembly of membrane microdomains. Enrichment or deprivation of membrane cholesterol affects the activities of many signaling molecules at the plasma membrane. Cell detachment changes the structure of the plasma membrane and influences the localizations of lipids, including cholesterol. Recent studies showed that cell detachment changes the activities of a variety of signaling molecules. We previously reported that the localization and the function of the Src-family kinase Lyn are critically regulated by its membrane anchorage through lipid modifications. More recently, we found that the localization and the activity of Lyn were changed upon cell detachment, although the manners of which vary between cell types. In this review, we highlight the changes in the localization of Lyn and a role of cholesterol in the regulation of Lyn’s activation following cell detachment.
Collapse
|