1
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
2
|
Acciarino A, Diwakarla S, Handreck J, Bergola C, Sahakian L, McQuade RM. The role of the gastrointestinal barrier in obesity-associated systemic inflammation. Obes Rev 2024; 25:e13673. [PMID: 38111141 DOI: 10.1111/obr.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 12/20/2023]
Abstract
Systemic inflammation is a key contributor to the onset and progression of several obesity-associated diseases and is thought to predominantly arise from the hyperplasia and hypertrophy of white adipose tissue. However, a growing body of works suggests that early changes in the gastrointestinal (GI) barrier may contribute to both local, within the GI lining, and systemic inflammation in obesity. Intestinal barrier dysfunction is well-characterized in inflammatory GI disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) and is known to contribute to systemic inflammation. Thus, drawing parallels between GI disorders, where intestinal permeability and systemic inflammation are prominent features, and obesity-induced GI manifestations may provide insights into the potential role of the intestinal barrier in systemic inflammation in obesity. This review summarizes the current literature surrounding intestinal barrier dysfunction in obesity and explores the potential role of intestinal hyperpermeability and intestinal barrier dysfunction in the development of systemic inflammation and GI dysfunction in obesity.
Collapse
Affiliation(s)
- Adriana Acciarino
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shanti Diwakarla
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Handreck
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cedrick Bergola
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren Sahakian
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel M McQuade
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Melbourne University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Wang J, Zhao K, Li M, Fan H, Wang M, Xia S, Chen Y, Bai X, Liu Z, Ni J, Sun W, Jia X, Lai S. A Preliminary Study of the Potential Molecular Mechanisms of Individual Growth and Rumen Development in Calves with Different Feeding Patterns. Microorganisms 2023; 11:2423. [PMID: 37894081 PMCID: PMC10609084 DOI: 10.3390/microorganisms11102423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
At present, it is common to feed calves with "Concentrate", "Concentrate + hay" and TMR "Total Mixed Rations" feeding patterns in China, which achieved well feeding efficiency, but the three feeding patterns molecular regulation mechanism in actual production is still unclear. The study aimed to explore the most suitable feeding pattern for Chinese Holstein calves to improve the rumen fermentation function and growth performance of calves. In this regard, the interactions between rumen microorganisms and host metabolism were investigated. The rumen volume and weight of calves in the GF group were significantly higher than those in the GFF and TMR groups (p < 0.05), and the rumen pH of calves in the GF group was 6.47~6.79. Metagenomics analysis revealed that the rumen microbiome of GF and GFF calves had higher relative abundances of Methanobrevibacter, Methanosphaera, and Methanolacinia (p < 0.05). Prevotella multisaccharivorax was significantly more abundant in the rumen of GF calves (p < 0.05), indicating that GF group calves had a stronger ability to ferment sugars. Notably, in the pyruvate metabolic pathway, phosphoenolpyruvate carboxylase was significantly up-regulated in GF calves compared with the TMR group, and pyruvate-phosphate dikinase was significantly down-regulated. Metabolomic results showed that Ursodeoxycholic acid was significantly up-regulated in GF calves, and most of the differential metabolites were enriched in Bile secretion pathways. The association analysis study found that the microorganisms of Prevotella and Ruminococcaceae might cooperate with the host, which was helpful for the digestion and absorption of lipids and made the calves have better growth. The three feeding modes had similar effects, but the 'GF' feeding pattern was more beneficial to the individual growth and ruminal development regarding ruminal morphology, contents physiology and microorganisms. Furthermore, the synergistic effect of rumen microorganisms and the host could more effectively hydrolyze lipid substances and promote the absorption of lipids, which was of great significance to the growth of calves.
Collapse
Affiliation(s)
- Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.)
| | - Kaisen Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Mianying Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Yang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Xue Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Jiale Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.Z.); (M.L.); (H.F.); (S.X.)
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.)
| |
Collapse
|
4
|
Fan S, Chen S, Lin L. Research progress of gut microbiota and obesity caused by high-fat diet. Front Cell Infect Microbiol 2023; 13:1139800. [PMID: 36992691 PMCID: PMC10040832 DOI: 10.3389/fcimb.2023.1139800] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Obesity, a chronic metabolic disorder caused by an energy imbalance, has been increasingly prevalent and poses a global health concern. The multifactorial etiology of obesity includes genetics factors, high-fat diet, gut microbiota, and other factors. Among these factors, the implication of gut microbiota in the pathogenesis of obesity has been prominently acknowledged. This study endeavors to investigate the potential contribution of gut microbiota to the development of high-fat diet induced obesity, as well as the current state of probiotic intervention therapy research, in order to provide novel insights for the prevention and management of obesity.
Collapse
Affiliation(s)
- Shuyi Fan
- Scientific Research Department, Brain Hospital of Hunan Province, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Suyun Chen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Lin Lin
- Scientific Research Department, Brain Hospital of Hunan Province, Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
5
|
Ağagündüz D, Cocozza E, Cemali Ö, Bayazıt AD, Nanì MF, Cerqua I, Morgillo F, Saygılı SK, Berni Canani R, Amero P, Capasso R. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front Pharmacol 2023; 14:1130562. [PMID: 36762108 PMCID: PMC9903080 DOI: 10.3389/fphar.2023.1130562] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Gastrointestinal cancer represents one of the most diagnosed types of cancer. Cancer is a genetic and multifactorial disease, influenced by the host and environmental factors. It has been stated that 20% of cancer is caused by microorganisms such as Helicobacter pylori, hepatitis B and C virus, and human papillomavirus. In addition to these well-known microorganisms associated with cancer, it has been shown differences in the composition of the microbiota between healthy individuals and cancer patients. Some studies have suggested the existence of the selected microorganisms and their metabolites that can promote or inhibit tumorigenesis via some mechanisms. Recent findings have shown that gut microbiome and their metabolites can act as cancer promotors or inhibitors. It has been shown that gastrointestinal cancer can be caused by a dysregulation of the expression of non-coding RNA (ncRNA) through the gut microbiome. This review will summarize the latest reports regarding the relationship among gut microbiome, ncRNAs, and gastrointestinal cancer. The potential applications of diagnosing and cancer treatments will be discussed.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | | | - Özge Cemali
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | - Ayşe Derya Bayazıt
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | | | - Ida Cerqua
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Suna Karadeniz Saygılı
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Histology and Embryology, Kütahya Health Sciences University, Kütahya, Turkey
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE Biotechnologies Research Center and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: Raffaele Capasso, ; Paola Amero,
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy,*Correspondence: Raffaele Capasso, ; Paola Amero,
| |
Collapse
|
6
|
Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut 2023; 72:180-191. [PMID: 36171079 PMCID: PMC9763197 DOI: 10.1136/gutjnl-2022-328166] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Accumulating evidence indicates that gut transit time is a key factor in shaping the gut microbiota composition and activity, which are linked to human health. Both population-wide and small-scale studies have identified transit time as a top covariate contributing to the large interindividual variation in the faecal microbiota composition. Despite this, transit time is still rarely being considered in the field of the human gut microbiome. Here, we review the latest research describing how and why whole gut and segmental transit times vary substantially between and within individuals, and how variations in gut transit time impact the gut microbiota composition, diversity and metabolism. Furthermore, we discuss the mechanisms by which the gut microbiota may causally affect gut motility. We argue that by taking into account the interindividual and intraindividual differences in gut transit time, we can advance our understanding of diet-microbiota interactions and disease-related microbiome signatures, since these may often be confounded by transient or persistent alterations in transit time. Altogether, a better understanding of the complex, bidirectional interactions between the gut microbiota and transit time is required to better understand gut microbiome variations in health and disease.
Collapse
Affiliation(s)
- Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Gwen Falony
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University, Kgs. Lyngby, Denmark
| | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Tan HE. The microbiota-gut-brain axis in stress and depression. Front Neurosci 2023; 17:1151478. [PMID: 37123352 PMCID: PMC10140437 DOI: 10.3389/fnins.2023.1151478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Humans and animals are evolved to have instinctive physiological responses to threats. The perception of threat by the brain triggers a multitude of changes across the brain and body. A large body of research have demonstrated that our hardwired survival instinct, the stress response, can become maladaptive and promote major depressive disorders and other neuropsychiatric impairments. However, gaps in our understanding of how chronic stress contributes to depression and mental disorders suggest that we also need to consider factors beyond the biology of the host. The unravelling of the structure and function of microorganisms that humans and animals are host to have driven a paradigm shift in understanding the individual as a collective network composed of the host plus microbes. Well over 90% of bacteria in the body reside in the large intestines, and these microbes in the lower gut function almost like an organ in the body in the way it interacts with the host. Importantly, bidirectional interactions between the gut microbiota and the brain (i.e., the two-way microbiota-gut-brain axis) have been implicated in the pathophysiology of mental disorders including depression. Here, in summarizing the emerging literature, we envisage that further research particularly on the efferent brain-gut-microbiota axis will uncover transformative links in the biology of stress and depression.
Collapse
|
8
|
Gut Microbiota Dysbiosis in the Development and Progression of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9971619. [PMID: 36072968 PMCID: PMC9441395 DOI: 10.1155/2022/9971619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022]
Abstract
Objectives This study aims to explore gut microbiota dysbiosis in the histological stages of gastric cancer (GC). Methods Feces samples and clinical characteristics were collected from patients with different stages of GC, including 15 superficial gastritis (SG), 13 atrophic gastritis (AG), 8 gastric mucosal atypical hyperplasia (GMAH), and 15 advanced GC cases. The diversity and composition of gut microbiota among the four groups were determined by sequencing the V4 region of bacterial 16S rRNA genes. Results Reduced gut microbial alpha diversity and altered dissimilarity of the microbial community structure were found among the four groups. In addition, 18 species, 6 species, 6 species, and 16 species of bacteria were enriched in the SG, AG, GMAH, and GC groups, respectively, using the linear discriminant analysis (LDA) effect size (LEfSe) analyses. Besides, we found that two new genera, Scardovia and Halomonas, are associated with GC and the metabolic pathways of Genetic information processing and Circulatory System were more abundant in the GC group compared with noncancer groups. Conclusions We identified differences in microbial compositional changes across stages of GC. Six genera and two metabolic pathways were more abundant in the GC group than noncancer groups, suggesting that these findings may contribute to the therapy strategies in GC in the near feature.
Collapse
|
9
|
The Potential Role of m6A in the Regulation of TBI-Induced BGA Dysfunction. Antioxidants (Basel) 2022; 11:antiox11081521. [PMID: 36009239 PMCID: PMC9405408 DOI: 10.3390/antiox11081521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The brain–gut axis (BGA) is an important bidirectional communication pathway for the development, progress and interaction of many diseases between the brain and gut, but the mechanisms remain unclear, especially the post-transcriptional regulation of BGA after traumatic brain injury (TBI). RNA methylation is one of the most important modifications in post-transcriptional regulation. N6-methyladenosine (m6A), as the most abundant post-transcriptional modification of mRNA in eukaryotes, has recently been identified and characterized in both the brain and gut. The purpose of this review is to describe the pathophysiological changes in BGA after TBI, and then investigate the post-transcriptional bidirectional regulation mechanisms of TBI-induced BGA dysfunction. Here, we mainly focus on the characteristics of m6A RNA methylation in the post-TBI BGA, highlight the possible regulatory mechanisms of m6A modification in TBI-induced BGA dysfunction, and finally discuss the outcome of considering m6A as a therapeutic target to improve the recovery of the brain and gut dysfunction caused by TBI.
Collapse
|
10
|
Liu G, Lu J, Sun W, Jia G, Zhao H, Chen X, Kim IH, Zhang R, Wang J. Tryptophan Supplementation Enhances Intestinal Health by Improving Gut Barrier Function, Alleviating Inflammation, and Modulating Intestinal Microbiome in Lipopolysaccharide-Challenged Piglets. Front Microbiol 2022; 13:919431. [PMID: 35859741 PMCID: PMC9289565 DOI: 10.3389/fmicb.2022.919431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) can modify the gut microbiota. However, there is no information about the effect of Trp on intestinal microbiota after lipopolysaccharide (LPS) challenge. This study aimed to investigate the effect of Trp on intestinal barrier function, inflammation, antioxidant status, and microbiota in LPS-challenged piglets. A total of 18 weaned castrated piglets were randomly divided into three treatments with 6 replicate per treatment, namely, (i) non-challenged control (CON); (ii) LPS-challenged control (LPS-CON); and (iii) LPS + 0.2% Trp (LPS-Trp). After feeding with control or 0.2% tryptophan-supplemented diets for 35 days, pigs were intraperitoneally injected with LPS (100 μg/kg body weight) or saline. At 4 h post-challenge, all pigs were slaughtered, and colonic samples were collected. The samples were analyzed for gut microbiota, fatty acids, antioxidant parameters, and the expression of mRNA and protein. The community bar chart showed that Trp supplementation to LPS-challenged pigs increased the relative abundance of Anaerostipes (P < 0.05) and tended to increase the relative abundance of V9D2013_group (P = 0.09), while decreased the relative abundance of Corynebacterium (P < 0.05) and unclassified_c__Bacteroidia (P < 0.01). Gas chromatography showed that Trp increased the concentrations of acetate, propionate, butyrate, and isovalerate in the colonic digesta (P < 0.05). Trp reduced the mRNA level of pro-inflammatory cytokines (P < 0.01), and increased mRNA level of aryl hydrocarbon receptor, cytochrome P450 (CYP) 1A1 and CYP1B1 (P < 0.05). Correlation analysis results showed that acetate, propionate, and butyrate concentrations were positively correlated with mRNA level of occludin and CYP1B1 (P < 0.05), and were negatively correlated with pro-inflammatory cytokines gene expression (P < 0.05). Isovalerate concentration was positively correlated with catalase activity (P < 0.05), and was negatively correlated with pro-inflammatory cytokines gene expression (P < 0.05). Furthermore, Trp enhanced the antioxidant activities (P < 0.01), and increased mRNA and protein expressions of claudin-1, occludin, and zonula occludens-1 (P < 0.01) after LPS challenge. These results suggest that Trp enhanced intestinal health by a modulated intestinal microbiota composition, improved the short chain fatty acids synthesis, reduced inflammation, increased antioxidant capacity, and improved intestinal barrier function.
Collapse
Affiliation(s)
- Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Guangmang Liu,
| | - Jiajia Lu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Weixiao Sun
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Ruinan Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Ruinan Zhang,
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Dai X, Chen L, Liu M, Liu Y, Jiang S, Xu T, Wang A, Yang S, Wei W. Effect of 6-Methoxybenzoxazolinone on the Cecal Microbiota of Adult Male Brandt's Vole. Front Microbiol 2022; 13:847073. [PMID: 35422782 PMCID: PMC9002351 DOI: 10.3389/fmicb.2022.847073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anti-microbial effects of plant secondary metabolite (PSM) 6-methoxybenzoxazolinone (6-MBOA) have been overlooked. This study investigated the effect of 6-MBOA on the cecal microbiota of adult male Brandt’s voles (Lasiopodomys brandtii), to evaluate its effect on the physiology of mammalian herbivores. The growth of voles was inhibited by 6-MBOA. A low dose of 6-MBOA enhanced the observed species, as well as the Chao1 and abundance-based coverage estimator (ACE) indices and introduced changes in the structure of cecal microbiota. The abundance of the phylum Tenericutes, classes Mollicutes and Negativicutes, order Selenomonadales, families Ruminococcaceae and Veillonellaceae, genera Quinella, Caproiciproducens, Anaerofilum, Harryflintia, and unidentified Spirochaetaceae in the cecal microbiota was enhanced upon administration of a low dose of 6-MBOA, which also inhibited glucose metabolism and protein digestion and absorption in the cecal microbiota. 6-MBOA treatment also stimulated butyrate production and dose-dependently enhanced the metabolism of xenobiotics in the cecal microbiome. Our findings indicate that 6-MBOA can affect Brandt’s voles by inducing changes in the abundance of cecal bacteria, thereby, altering the contents of short-chain fatty acids (SCFAs) and pathway intermediates, ultimately inhibiting the growth of voles. Our research suggests that 6-MBOA could potentially act as a digestion-inhibiting PSM in the interaction between mammalian herbivores and plants.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lin Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Mengyue Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ying Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Tingting Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Aiqin Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengmei Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Hinrichsen F, Hamm J, Westermann M, Schröder L, Shima K, Mishra N, Walker A, Sommer N, Klischies K, Prasse D, Zimmermann J, Kaiser S, Bordoni D, Fazio A, Marinos G, Laue G, Imm S, Tremaroli V, Basic M, Häsler R, Schmitz RA, Krautwald S, Wolf A, Stecher B, Schmitt-Kopplin P, Kaleta C, Rupp J, Bäckhed F, Rosenstiel P, Sommer F. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab 2021; 33:2355-2366.e8. [PMID: 34847376 DOI: 10.1016/j.cmet.2021.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/07/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Hexokinases (HK) catalyze the first step of glycolysis limiting its pace. HK2 is highly expressed in gut epithelium, contributes to immune responses, and is upregulated during inflammation. We examined the microbial regulation of HK2 and its impact on inflammation using mice lacking HK2 in intestinal epithelial cells (Hk2ΔIEC). Hk2ΔIEC mice were less susceptible to acute colitis. Analyzing the epithelial transcriptome from Hk2ΔIEC mice during colitis and using HK2-deficient intestinal organoids and Caco-2 cells revealed reduced mitochondrial respiration and epithelial cell death in the absence of HK2. The microbiota strongly regulated HK2 expression and activity. The microbially derived short-chain fatty acid (SCFA) butyrate repressed HK2 expression via histone deacetylase 8 (HDAC8) and reduced mitochondrial respiration in wild-type but not in HK2-deficient Caco-2 cells. Butyrate supplementation protected wild-type but not Hk2ΔIEC mice from colitis. Our findings define a mechanism how butyrate promotes intestinal homeostasis and suggest targeted HK2-inhibition as therapeutic avenue for inflammation.
Collapse
Affiliation(s)
- Finn Hinrichsen
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Magdalena Westermann
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Lena Schröder
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Kenneth Klischies
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Daniela Prasse
- Institute of General Microbiology, University of Kiel, 24118 Kiel, Germany
| | | | - Sina Kaiser
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Dora Bordoni
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Georgios Marinos
- Institute of Experimental Medicine, University of Kiel, 24105 Kiel, Germany
| | - Georg Laue
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Simon Imm
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany; Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, University of Kiel, 24118 Kiel, Germany
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Andrea Wolf
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, University of Kiel, 24105 Kiel, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany.
| |
Collapse
|
13
|
Ding H, Yi X, Zhang X, Wang H, Liu H, Mou WW. Imbalance in the Gut Microbiota of Children With Autism Spectrum Disorders. Front Cell Infect Microbiol 2021; 11:572752. [PMID: 34790583 PMCID: PMC8591234 DOI: 10.3389/fcimb.2021.572752] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
Background Autism spectrum disorder (ASD) are complex behavioral changes manifesting early in childhood, which impacts how an individual perceives and socializes with others. The study aims to assess the disparities in gut microbiota (GM) amongst healthy controls and children with ASD. Methods The study was performed on 25 children with ASD and 20 healthy children. Autistic symptoms were diagnosed and assessed with the Diagnostic and Statistical Manual for Mental Disorders and the Autism Treatment Evaluation Checklist (ATEC). Gastrointestinal (GI) symptoms were assessed with a GI Severity Index (GSI) questionnaire. The fecal bacteria composition was investigated by the high−throughput sequencing of the V3–V4 region of the 16S rRNA gene. The alpha diversity was estimated using the Shannon, Chao, and ACE indexes. The unweighted UniFrac analysis and the PCA plots were used to represent the beta diversity. LDA and LEfSe were used to assess the effect sizes of each abundant differential taxon. Results Children with high GSI scores had much higher ATEC Total scores than those with lower GSI-scores. GI symptoms were strongly associated with symptoms of ASD. There was no difference in Chao, ACE, and Shannon indexes between ASD patients and healthy controls. Both groups showed a significant microbiota structure clustering in the plotted PCAs and significant differences in its composition at the family, order, genus, and phyla levels. There were also noteworthy overall relative differences in Actinobacteria and Firmicutes between both groups. Conclusions This study shows the relationship between the clinical manifestations of Autistic symptoms and GI symptoms. ASD patients have dysbiosis of gut microbiota, which may be related to the onset of ASD. These findings may be beneficial for developing ASD symptoms by changing gut microbiota.
Collapse
Affiliation(s)
- Hongfang Ding
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| | - Xinhao Yi
- Department of Central Laboratory, Shengli Oil Field Central Hospital, Dongying, China
| | - Xiaohua Zhang
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| | - Hui Wang
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| | - Hui Liu
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| | - Wei-Wei Mou
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| |
Collapse
|
14
|
Franson JJ, Grose JH, Larson KW, Bridgewater LC. Gut Microbiota Regulates the Interaction between Diet and Genetics to Influence Glucose Tolerance. MEDICINES (BASEL, SWITZERLAND) 2021; 8:34. [PMID: 34357150 PMCID: PMC8304968 DOI: 10.3390/medicines8070034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Background: Metabolic phenotypes are the result of an intricate interplay between multiple factors, including diet, genotype, and the gut microbiome. Per-Arnt-Sim (PAS) kinase is a nutrient-sensing serine/threonine kinase, whose absence (PASK-/-) protects against triglyceride accumulation, insulin resistance, and weight gain on a high-fat diet; conditions that are associated with dysbiosis of the gut microbiome. Methods: Herein, we report the metabolic effects of the interplay of diet (high fat high sugar, HFHS), genotype (PASK-/-), and microbiome (16S sequencing). Results: Microbiome analysis identified a diet-induced, genotype-independent forked shift, with two discrete clusters of HFHS mice having increased beta and decreased alpha diversity. A "lower" cluster contained elevated levels of Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Defferibacteres, and was associated with increased weight gain, glucose intolerance, triglyceride accumulation, and decreased claudin-1 expression. Genotypic effects were observed within the clusters, lower cluster PASK-/- mice displayed increased weight gain and decreased triglyceride accumulation, whereas upper PASK-/- were resistant to decreased claudin-1. Conclusions: These results confirm previous reports that PAS kinase deficiency can protect mice against the deleterious effects of diet, and they suggest that microbiome imbalances can override protection. In addition, these results support a healthy diet for beneficial microbiome maintenance and suggest microbial culprits associated with metabolic disease.
Collapse
Affiliation(s)
| | | | | | - Laura C. Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (J.J.F.); (K.W.L.)
| |
Collapse
|
15
|
Luo J, Xu T, Sun K. N6-Methyladenosine RNA Modification in Inflammation: Roles, Mechanisms, and Applications. Front Cell Dev Biol 2021; 9:670711. [PMID: 34150765 PMCID: PMC8213350 DOI: 10.3389/fcell.2021.670711] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification. m6A can be installed by the methyltransferase complex and removed by demethylases, which are involved in regulating post-transcriptional expression of target genes. RNA methylation is linked to various inflammatory states, including autoimmunity, infection, metabolic disease, cancer, neurodegenerative diseases, heart diseases, and bone diseases. However, systematic knowledge of the relationship between m6A modification and inflammation in human diseases remains unclear. In this review, we will discuss the association between m6A modification and inflammatory response in diseases, especially the role, mechanisms, and potential clinical application of m6A as a biomarker and therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Luo
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Research progress on gut microbiota in patients with gastric cancer, esophageal cancer, and small intestine cancer. Appl Microbiol Biotechnol 2021; 105:4415-4425. [PMID: 34037843 DOI: 10.1007/s00253-021-11358-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The pathogenesis of gut microbiota in humans can be indicated due to the wide application of techniques, such as 16S rRNA sequencing. Presently, several studies have found a significant difference in fecal flora between normal individuals and patients with gastric cancer. Although clinical research on the feedback mechanism of gastric flora and gut microbiota is lacking, clarifying the relationship between gut microbiota and the characteristics of cancer is significant for the early diagnosis of gastric cancer. This study was conducted to review the results of several studies in the past 5 years and analyze the intestinal bacteria in patients with gastric cancer and compare them with those in patients with esophageal and small intestine cancers. It was found that the gut microbiota in patients with gastric cancer was similar to that in patients with esophageal cancer. However, making an analysis and comparing the gut microbiota in patients with small intestine and gastric cancers was impossible due to the low incidence of small intestinal cancer. Our review summarized the research progress on using the gut microbiota for early screening for gastric cancer, and the results of this study will provide a further direction in this field. KEY POINTS: • We reviewed several relative mechanisms of the gut microbiota related to gastric cancer. • The gut microbiota in gastric, esophageal, and small intestine cancers are significantly different in types and quantity, and we have provided some tips for further research. • A prospective review of sequencing methods and study results on the gut microbiota in gastric, esophageal, and small intestine cancers was described.
Collapse
|
17
|
CD101 as an indicator molecule for pathological changes at the interface of host-microbiota interactions. Int J Med Microbiol 2021; 311:151497. [PMID: 33773220 DOI: 10.1016/j.ijmm.2021.151497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Intestinal microbiota signal to local and distant tissues in the body. Thus, they also regulate biochemical, metabolic and immunological processes in the gut and in the pancreas. Vice versa, eating habits or the immune system of the host shape the intraluminal microbiota. Disruptions of these versatile host-microbiota interactions underlie the pathogenesis of complex immune-mediated disorders such as inflammatory bowel disease (IBD) or type 1 diabetes (T1D). Consequently, dysbiosis and increased intestinal permeability associated with both disorders change the biology of underlying tissues, as evidenced, for example, by an altered expression of surface markers such as CD101 on immune cells located at these dynamic host-microbiota interfaces. CD101, a heavily glycosylated member of the immunoglobulin superfamiliy, is predominantly detected on myeloid cells, intraepithelial lymphocytes (IELs) and regulatory T cells (Tregs) in the gut. The expression of CD101 on both myeloid cells and T lymphocytes protects from experimental enterocolitis and T1D. The improved outcome of both diseases is associated with an anti-inflammatory cytokine profile and a reduced expansion of T cells. However, distinct bacteria suppress the expression of CD101 on myeloid cells, similar as does inflammation on T cells. Thus, the reduced CD101 expression in T1D and IBD patients might be a consequence of an altered composition of the intestinal microbiota, enhanced bacterial translocation and a subsequent primining of local and systemic inflammatory immune responses.
Collapse
|
18
|
Su Y, Li X, Li D, Sun J. Fecal Microbiota Transplantation Shows Marked Shifts in the Multi-Omic Profiles of Porcine Post-weaning Diarrhea. Front Microbiol 2021; 12:619460. [PMID: 33708182 PMCID: PMC7940351 DOI: 10.3389/fmicb.2021.619460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Weaning is the most critical phase in pig production and is generally associated with significant impacts on intestinal morphology, structure, physiology, and immune responses, which can lead to subsequent production inefficiencies such as decreases in growth and intake and increases in morbidity and mortality. In the present study, we attempted to explore the effects of fecal microbiota transplantation (FMT) on the fecal microbiota, fecal metabolites, and transcriptome in the jejunum, colon, liver, spleen, and oral mucosa in piglets with post-weaning diarrhea and to evaluate the therapeutic potential of FMT in piglets with post-weaning diarrhea. We found that FMT partially relieved the symptoms of diarrhea in piglets, and microbiota analysis results indicated that unclassified_f_Prevotellaceae was identified as an FMT-associated bacterial family at 66 day and that the Shannon index in the healthy group at 34, 38, and 66 days were higher than that at 21 day. Functional enrichment analysis of the oral mucosa, liver, jejunum, and colon showed that most of the differentially expressed genes (DEGs) were enriched in the terms metabolic process, immune response, and inflammatory response. Moreover, the enriched fecal metabolites focused mostly on apoptosis, beta-alanine metabolism, glutathione metabolism, and sphingolipid metabolism. We tried to detect specific "metabolite-bacterium" pairs, such as "g_Catenisphaera-stigmastentriol," "p_Bacteroidetes-(6beta,22E)-6-hydroxystigmasta-4,22-dien-3-one," and "g_Prevotellaceae_NK3B31_group-stenocereol." Overall, the present study provides a theoretical basis for the alleviation of weaning stress and contributes to the realization of effective and sustainable application of FMT in the pig production industry in the future.
Collapse
Affiliation(s)
- Yuan Su
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolei Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Chongqing Academy of Animal Sciences, Chongqing, China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| |
Collapse
|
19
|
Arnaud AP, Hascoet J, Berneau P, LeGouevec F, Georges J, Randuineau G, Formal M, Henno S, Boudry G. A piglet model of iatrogenic rectosigmoid hypoganglionosis reveals the impact of the enteric nervous system on gut barrier function and microbiota postnatal development. J Pediatr Surg 2021; 56:337-345. [PMID: 32680586 DOI: 10.1016/j.jpedsurg.2020.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hirschsprung-associated enterocolitis physiopathology likely involves disturbed interactions between gut microbes and the host during the early neonatal period. Our objective was to create a neonatal porcine model of iatrogenic aganglionosis to evaluate the impact of the enteric nervous system (ENS) on microbiota and intestinal barrier postnatal development. METHODS Under general anesthesia, the rectosigmoid serosa of 5-day-old suckling piglets was exposed to 0.5% benzalkonium chloride solution (BAC, n = 7) or saline (SHAM, n = 5) for 1 h. After surgery, animals returned to their home-cage with the sow and littermates and were studied 21 days later. RESULTS BAC treatment induced partial aganglionosis with absence of myenteric plexus and reduced surface area of submucosal plexus ganglia (-58%, P < 0.05) in one third of the rectosigmoid circumference. Epithelial permeability of this zone was increased (conductance +63%, FITC-dextran flux +386%, horseradish-peroxidase flux +563%, P < 0.05). Tight junction protein remodeling was observed with decreased ZO-1 (-95%, P < 0.05) and increased claudin-3 and e-cadherin expressions (+197% and 61%, P < 0.05 and P = 0.06, respectively). BAC piglets harbored greater abundance of proinflammatory bacteria (Bilophila, Fusobacterium) compared to SHAM in the rectosigmoid lumen. CONCLUSIONS This large animal model demonstrates that hypoganglionosis is associated with dramatic defects of gut barrier function and establishment of proinflammatory bacteria.
Collapse
Affiliation(s)
- Alexis Pierre Arnaud
- Institut NuMeCan INRAE, INSERM, Univ Rennes, Saint-Gilles, France; Service de chirurgie pédiatrique, CHU Rennes, Univ Rennes, Rennes, France.
| | - Juliette Hascoet
- Institut NuMeCan INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Pauline Berneau
- Institut NuMeCan INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | | | - Michèle Formal
- Institut NuMeCan INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Sébastien Henno
- Service d'anatomo-pathologie, CHU Rennes, Univ Rennes, Rennes, France
| | - Gaelle Boudry
- Institut NuMeCan INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| |
Collapse
|
20
|
Netto Cândido TL, da Silva LE, Cândido FG, Valente FX, da Silva JS, Gomes Lopes DR, do Carmo Gouveia Peluzio M, Mantovani HC, de Cássia Gonçalves Alfenas R. Effect of the ingestion of vegetable oils associated with energy-restricted normofat diet on intestinal microbiota and permeability in overweight women. Food Res Int 2020; 139:109951. [PMID: 33509504 DOI: 10.1016/j.foodres.2020.109951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
Previous studies suggest that the type of dietary fatty acid may modulate the intestinal bacterial ecosystem. However, this effect is still inconclusive. Thus, the aim of this study was to investigate the effect of the intake of vegetable oils rich in different types of fatty acids, associated with energy-restricted normofat diets, on the composition of intestinal microbiota and permeability, on LPS concentrations, and fecal short chain fatty acids and pH. This was a 9 consecutive weeks (±5 days), randomized, parallel, double-blind clinical trial. Overweight women received daily breakfast containing 25 mL of one of the test oils: soybean oil (n = 17), extra virgin olive oil (n = 19) or coconut oil (n = 16). Blood, fecal and urine samples were collected on the first and last day of the experiment for the analysis of the variables of interest. The consumption of the three oils did not affect the diversity and relative abundance of intestinal bacteria. We observed an increase in bacterial richness estimated by the Chao 1 index, and a reduction in the concentration of isovaleric fatty acid in the group that ingested soybean oil. Paracellular and transcellular permeability increased after the ingestion of extra virgin olive oil and coconut oil. However, LPS concentrations remained unchanged. The intake of different types of fatty acids associated with the energy-restricted normofat diet modestly affected the intestinal microbiota and permeability, without resulting in metabolic endotoxemia in overweight women.
Collapse
Affiliation(s)
- Thalita Lin Netto Cândido
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil.
| | - Laís Emilia da Silva
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Flávia Galvão Cândido
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Flávia Xavier Valente
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Juliana Soares da Silva
- Laboratory Anaerobic Microbiology, Department of Microbiology, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Déborah Romaskevis Gomes Lopes
- Laboratory Anaerobic Microbiology, Department of Microbiology, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Hilário Cuquetto Mantovani
- Laboratory Anaerobic Microbiology, Department of Microbiology, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Rita de Cássia Gonçalves Alfenas
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Chu F, Esworthy RS, Shen B, Doroshow JH. Role of the microbiota in ileitis of a mouse model of inflammatory bowel disease-Glutathione peroxide isoenzymes 1 and 2-double knockout mice on a C57BL background. Microbiologyopen 2020; 9:e1107. [PMID: 32810389 PMCID: PMC7568258 DOI: 10.1002/mbo3.1107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
C57Bl6 (B6) mice devoid of glutathione peroxidases 1 and 2 (Gpx1/2-DKO) develop ileitis after weaning. We previously showed germ-free Gpx1/2-DKO mice of mixed B6.129 background did not develop ileocolitis. Here, we examine the composition of the ileitis provoking microbiota in B6 Gpx1/2-DKO mice. DNA was isolated from the ileum fecal stream and subjected to high-throughput sequencing of the V3 and V4 regions of the 16S rRNA gene to determine the abundance of operational taxonomic units (OTUs). We analyzed the role of bacteria by comparing the microbiomes of the DKO and pathology-free non-DKO mice. Mice were treated with metronidazole, streptomycin, and vancomycin to alter pathology and correlate the OTU abundances with pathology levels. Principal component analysis based on Jaccard distance of abundance showed 3 distinct outcomes relative to the source Gpx1/2-DKO microbiome. Association analyses of pathology and abundance of OTUs served to rule out 7-11 of 24 OTUs for involvement in the ileitis. Collections of OTUs were identified that appeared to be linked to ileitis in this animal model and would be classified as commensals. In Gpx1/2-DKO mice, host oxidant generation from NOX1 and DUOX2 in response to commensals may compromise the ileum epithelial barrier, a role generally ascribed to oxidants generated from mitochondria, NOX2 and endoplasmic reticulum stress in response to presumptive pathogens in IBD. Elevated oxidant levels may contribute to epithelial cell shedding, which is strongly associated with progress toward inflammation in Gpx1/2-DKO mice and predictive of relapse in IBD by allowing leakage of microbial components into the submucosa.
Collapse
Affiliation(s)
- Fong‐Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of HenanUniversity of Science and TechnologyLuoyangChina
| | - R. Steven Esworthy
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of HopeDuarteCAUSA
| | - Binghui Shen
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of HopeDuarteCAUSA
| | - James H. Doroshow
- Center for Cancer Research and Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMDUSA
| |
Collapse
|
22
|
Kennedy MS, Chang EB. The microbiome: Composition and locations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:1-42. [PMID: 33814111 DOI: 10.1016/bs.pmbts.2020.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human body is home to a diverse and functionally important assemblage of symbiotic microbes that varies predictably over different spatial scales, both within and across body sites. The composition of these spatially distinct microbial consortia can be impacted by a variety of stochastic and deterministic forces, including dispersal from different source communities, and selection by regionally-specific host processes for the enrichment of physiologically significant taxa. In this chapter, we review the composition, function, and assembly of the healthy human gastrointestinal, skin, vaginal, and respiratory microbiomes, with special emphasis on the regional distribution of microbes throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Megan S Kennedy
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States; Department of Ecology & Evolution, The University of Chicago, Chicago, IL, United States
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
23
|
The Role of Rhizosphere Bacteriophages in Plant Health. Trends Microbiol 2020; 28:709-718. [DOI: 10.1016/j.tim.2020.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
|
24
|
A novel apidaecin Api-PR19 synergizes with the gut microbial community to maintain intestinal health and promote growth performance of broilers. J Anim Sci Biotechnol 2020; 11:61. [PMID: 32551109 PMCID: PMC7298829 DOI: 10.1186/s40104-020-00462-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Antibiotic growth promoters (AGPs) have been used as growth promoters to maintain animal intestinal health and improve feed efficiency in broilers by inhibiting pathogen proliferation. In view of the growing emergence of antibiotic-resistant pathogen strains and drug residue issues, novel treatments are increasingly required. This study aimed to compare two antimicrobial approaches for managing pathogen infection and maintaining animal intestinal health in broilers by supplying Apidaecin Api-PR19 and AGPs over 42 d of a feeding trial. Results Compared with the broilers that were only fed a corn-soybean basal diet (CON group), supplementation with Api-PR19 and AGP (respectively named the ABP and AGP groups) both increased the feed conversion efficiency. When compared with the AGP group, Api-PR19 supplementation could significantly increase the organ index of the bursa of fabricius and subtype H9 antibody level in broiler chickens. Moreover, when compared with the CON group, the intestinal villus height, intestinal nutrient transport, and intestinal sIgA content were all increased in the Api-PR19 group, while AGP supplementation was harmful to the intestinal villus height and intestinal nutrient transport. By assessing the antibacterial effect of Api-PR19 and antibiotics in vitro and in vivo, we found that Api-PR19 and antibiotics both inhibited the growth of pathogens, including Escherichia coli and Campylobacter jejuni. Furthermore, by using 16S rRNA gene sequencing, the beneficial bacteria and microbiota in broilers were not disturbed but improved by apidaecin Api-PR19, including the genera of Eubacterium and Christensenella and the species of uncultured_Eubacterium_sp, Clostridium_asparagiforme, and uncultured_Christensenella_sp, which were positively related to improved intestinal development, absorption, and immune function. Conclusion Apidaecin Api-PR19 treatment could combat pathogen infection and had little negative impact on beneficial bacteria in the gut compared to antibiotic treatment, subsequently improving intestinal development, absorption, and immune function.
Collapse
|
25
|
Hausmann A, Russo G, Grossmann J, Zünd M, Schwank G, Aebersold R, Liu Y, Sellin ME, Hardt W. Germ-free and microbiota-associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes. Cell Microbiol 2020; 22:e13191. [PMID: 32068945 PMCID: PMC7317401 DOI: 10.1111/cmi.13191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial organoids established from gut tissue have become a widely used research tool. However, it remains unclear how environmental cues, divergent microbiota composition and other sources of variation before, during and after establishment confound organoid properties, and how these properties relate to the original tissue. While environmental influences cannot be easily addressed in human organoids, mice offer a controlled assay-system. Here, we probed the effect of donor microbiota differences, previously identified as a confounding factor in murine in vivo studies, on organoids. We analysed the proteomes and transcriptomes of primary organoid cultures established from two colonised and one germ-free mouse colony of C57BL/6J genetic background, and compared them to their tissue of origin and commonly used cell lines. While an imprint of microbiota-exposure was observed on the proteome of epithelial samples, the long-term global impact of donor microbiota on organoid expression patterns was negligible. Instead, stochastic culture-to-culture differences accounted for a moderate variability between independently established organoids. Integration of transcriptome and proteome datasets revealed an organoid-typic expression signature comprising 14 transcripts and 10 proteins that distinguished organoids across all donors from murine epithelial cell lines and fibroblasts and closely mimicked expression patterns in the gut epithelium. This included the inflammasome components ASC, Naip1-6, Nlrc4 and Caspase-1, which were highly expressed in all organoids compared to the reference cell line m-ICc12 or mouse embryonic fibroblasts. Taken together, these results reveal that the donor microbiota has little effect on the organoid phenotype and suggest that organoids represent a more suitable culture model than immortalised cell lines, in particular for studies of intestinal epithelial inflammasomes.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
| | - Giancarlo Russo
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Mirjam Zünd
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
| | - Gerald Schwank
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Institute of Systems Biology, Department of BiologyETH ZurichZurichSwitzerland
| | - Yansheng Liu
- Institute of Systems Biology, Department of BiologyETH ZurichZurichSwitzerland
- Department of Pharmacology, Cancer Biology InstituteYale University School of MedicineWest HavenConnecticutUSA
| | - Mikael E. Sellin
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | | |
Collapse
|
26
|
Jabs S, Biton A, Bécavin C, Nahori MA, Ghozlane A, Pagliuso A, Spanò G, Guérineau V, Touboul D, Giai Gianetto Q, Chaze T, Matondo M, Dillies MA, Cossart P. Impact of the gut microbiota on the m 6A epitranscriptome of mouse cecum and liver. Nat Commun 2020; 11:1344. [PMID: 32165618 PMCID: PMC7067863 DOI: 10.1038/s41467-020-15126-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
The intestinal microbiota modulates host physiology and gene expression via mechanisms that are not fully understood. Here we examine whether host epitranscriptomic marks are affected by the gut microbiota. We use methylated RNA-immunoprecipitation and sequencing (MeRIP-seq) to identify N6-methyladenosine (m6A) modifications in mRNA of mice carrying conventional, modified, or no microbiota. We find that variations in the gut microbiota correlate with m6A modifications in the cecum, and to a lesser extent in the liver, affecting pathways related to metabolism, inflammation and antimicrobial responses. We analyze expression levels of several known writer and eraser enzymes, and find that the methyltransferase Mettl16 is downregulated in absence of a microbiota, and one of its target mRNAs, encoding S-adenosylmethionine synthase Mat2a, is less methylated. We furthermore show that Akkermansia muciniphila and Lactobacillus plantarum affect specific m6A modifications in mono-associated mice. Our results highlight epitranscriptomic modifications as an additional level of interaction between commensal bacteria and their host.
Collapse
Affiliation(s)
- Sabrina Jabs
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France.
| | - Anne Biton
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Christophe Bécavin
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Marie-Anne Nahori
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Giulia Spanò
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Quentin Giai Gianetto
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Thibault Chaze
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Mariette Matondo
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Marie-Agnès Dillies
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
27
|
Araújo JR, Tazi A, Burlen-Defranoux O, Vichier-Guerre S, Nigro G, Licandro H, Demignot S, Sansonetti PJ. Fermentation Products of Commensal Bacteria Alter Enterocyte Lipid Metabolism. Cell Host Microbe 2020; 27:358-375.e7. [PMID: 32101704 DOI: 10.1016/j.chom.2020.01.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 01/10/2020] [Indexed: 01/25/2023]
Abstract
Despite the recognized capacity of the gut microbiota to regulate intestinal lipid metabolism, the role of specific commensal species remains undefined. Here, we aimed to understand the bacterial effectors and molecular mechanisms by which Lactobacillus paracasei and Escherichia coli regulate lipid metabolism in enterocytes. We show that L-lactate produced by L. paracasei inhibits chylomicron secretion from enterocytes and promotes lipid storage by a mechanism involving L-lactate absorption by enterocytes, its conversion to malonyl-CoA, and the subsequent inhibition of lipid beta-oxidation. In contrast, acetate produced by E. coli also inhibits chylomicron secretion by enterocytes but promotes lipid oxidation by a mechanism involving acetate absorption by enterocytes, its metabolism to acetyl-CoA and AMP, and the subsequent upregulation of the AMPK/PGC-1α/PPARα pathway. Our study opens perspectives for developing specific bacteria- and metabolite-based therapeutic interventions against obesity, atherosclerosis, and malnutrition by targeting lipid metabolism in enterocytes.
Collapse
Affiliation(s)
- João R Araújo
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 75015 Paris, France
| | - Asmaa Tazi
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 75015 Paris, France
| | | | | | - Giulia Nigro
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 75015 Paris, France
| | - Hélène Licandro
- PAM UMR A 02.102, Université de Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Sylvie Demignot
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Descartes, CNRS, EPHE, PSL University, Sorbonne Paris Cité, 75006 Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 75015 Paris, France; Collège de France, 75005, Paris, France.
| |
Collapse
|
28
|
Graham AJ, Dundas CM, Hillsley A, Kasprak DS, Rosales AM, Keitz BK. Genetic Control of Radical Cross-linking in a Semisynthetic Hydrogel. ACS Biomater Sci Eng 2020; 6:1375-1386. [PMID: 33313392 DOI: 10.1021/acsbiomaterials.9b01773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enhancing materials with the qualities of living systems, including sensing, computation, and adaptation, is an important challenge in designing next-generation technologies. Living materials address this challenge by incorporating live cells as actuating components that control material function. For abiotic materials, this requires new methods that couple genetic and metabolic processes to material properties. Toward this goal, we demonstrate that extracellular electron transfer (EET) from Shewanella oneidensis can be leveraged to control radical cross-linking of a methacrylate-functionalized hyaluronic acid hydrogel. Cross-linking rates and hydrogel mechanics, specifically storage modulus, were dependent on various chemical and biological factors, including S. oneidensis genotype. Bacteria remained viable and metabolically active in the networks for a least 1 week, while cell tracking revealed that EET genes also encode control over hydrogel microstructure. Moreover, construction of an inducible gene circuit allowed transcriptional control of storage modulus and cross-linking rate via the tailored expression of a key electron transfer protein, MtrC. Finally, we quantitatively modeled hydrogel stiffness as a function of steady-state mtrC expression and generalized this result by demonstrating the strong relationship between relative gene expression and material properties. This general mechanism for radical cross-linking provides a foundation for programming the form and function of synthetic materials through genetic control over extracellular electron transfer.
Collapse
Affiliation(s)
- Austin J Graham
- McKetta Department of Chemical Engineering and Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher M Dundas
- McKetta Department of Chemical Engineering and Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander Hillsley
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dain S Kasprak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering and Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering and Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Martinez-Guryn K, Leone V, Chang EB. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2020; 26:314-324. [PMID: 31513770 DOI: 10.1016/j.chom.2019.08.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of gut microbes in health and disease has often been surmised from stool, which is easily sampled and rich in microbial diversity, density, and abundance. Microbial analyses of stool have been accepted as measures to determine the relationship of gut microbiomes with host health and disease, based on the belief that it represents all microbial populations throughout the gut. However, functional heterogeneity of each gastrointestinal tract (GIT) segment gives rise to regional differences in gut microbial populations. Herein, we summarize the literature regarding the microbial landscape along the rostral to caudal, i.e., horizontal mouth to anus, axis of the GIT. We aim to identify gaps in the literature, particularly regarding small intestinal microbiota abundance and diversity, highlight the importance of regional microbiota on host health and disease, as well as discuss opportunities to advance this line of research.
Collapse
Affiliation(s)
- Kristina Martinez-Guryn
- Biomedical Sciences Department, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Vanessa Leone
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
30
|
He J, Lange J, Marinos G, Bathia J, Harris D, Soluch R, Vaibhvi V, Deines P, Hassani MA, Wagner KS, Zapien-Campos R, Jaspers C, Sommer F. Advancing Our Functional Understanding of Host-Microbiota Interactions: A Need for New Types of Studies. Bioessays 2019; 42:e1900211. [PMID: 31854014 DOI: 10.1002/bies.201900211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jinru He
- Zoological Institute, University of Kiel, Kiel, 24118, Germany
| | - Janina Lange
- Zoological Institute, University of Kiel, Kiel, 24118, Germany
| | - Georgios Marinos
- Institute of Experimental Medicine, University of Kiel, Kiel, 24105, Germany
| | - Jay Bathia
- Zoological Institute, University of Kiel, Kiel, 24118, Germany
| | - Danielle Harris
- Zoological Institute, University of Kiel, Kiel, 24118, Germany
| | - Ryszard Soluch
- Institute for General Microbiology, University of Kiel, Kiel, 24118, Germany
| | - Vaibhvi Vaibhvi
- Zoological Institute, University of Kiel, Kiel, 24118, Germany
| | - Peter Deines
- Zoological Institute, University of Kiel, Kiel, 24118, Germany
| | - M Amine Hassani
- Institute for Botany, University of Kiel, Kiel, 24118, Germany.,Max Planck Institute for Evolutionary Biology, Plön, 24036, Germany
| | - Kim-Sara Wagner
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | | | - Cornelia Jaspers
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| |
Collapse
|
31
|
Capo F, Wilson A, Di Cara F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host-Microbial Interactions in Humans. Microorganisms 2019; 7:microorganisms7090336. [PMID: 31505811 PMCID: PMC6780840 DOI: 10.3390/microorganisms7090336] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.
Collapse
Affiliation(s)
- Florence Capo
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Alexa Wilson
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
32
|
Geva‐Zatorsky N, Elinav E, Pettersson S. When Cultures Meet: The Landscape of “Social” Interactions between the Host and Its Indigenous Microbes. Bioessays 2019; 41:e1900002. [DOI: 10.1002/bies.201900002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/27/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Naama Geva‐Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion—Israel Institute of TechnologyTechnion Integrated Cancer Center (TICC) Efron Street, POB 9649 Bat Galim Haifa 3109601 Israel
- Canadian Institute for Advanced Research (CIFAR)MaRS Centre West Tower 661 University Ave., Suite 505 Toronto ON M5G 1M1 Canada
| | - Eran Elinav
- Canadian Institute for Advanced Research (CIFAR)MaRS Centre West Tower 661 University Ave., Suite 505 Toronto ON M5G 1M1 Canada
- Department of ImmunologyWeizmann Institute of Science 7610001 Rehovot Israel
| | - Sven Pettersson
- Canadian Institute for Advanced Research (CIFAR)MaRS Centre West Tower 661 University Ave., Suite 505 Toronto ON M5G 1M1 Canada
- Singapore Centre for Environmental Life Sciences Engineering 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Department of Neurobiology, Care Science & SocietyKarolinska Institute Stockholm SE‐171 77 Sweden
| |
Collapse
|
33
|
Litvak Y, Bäumler AJ. Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity 2019; 51:214-224. [DOI: 10.1016/j.immuni.2019.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
|
35
|
Zhang N, Zhang N, Xu Y, Li Z, Yan C, Mei K, Ding M, Ding S, Guan P, Qian L, Du C, Hu X. Molecularly Imprinted Materials for Selective Biological Recognition. Macromol Rapid Commun 2019; 40:e1900096. [PMID: 31111979 DOI: 10.1002/marc.201900096] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Molecular imprinting is an approach of generating imprinting cavities in polymer structures that are compatible with the target molecules. The cavities have memory for shape and chemical recognition, similar to the recognition mechanism of antigen-antibody in organisms. Their structures are also called biomimetic receptors or synthetic receptors. Owing to the excellent selectivity and unique structural predictability of molecularly imprinted materials (MIMs), practical MIMs have become a rapidly evolving research area providing key factors for understanding separation, recognition, and regenerative properties toward biological small molecules to biomacromolecules, even cell and microorganism. In this review, the characteristics, morphologies, and applicability of currently popular carrier materials for molecular imprinting, especially the fundamental role of hydrogels, porous materials, hierarchical nanoparticles, and 2D materials in the separation and recognition of biological templates are discussed. Moreover, through a series of case studies, emphasis is given on introducing imprinting strategies for biological templates with different molecular scales. In particular, the differences and connections between small molecular imprinting (bulk imprinting, "dummy" template imprinting, etc.), large molecular imprinting (surface imprinting, interfacial imprinting, etc.), and cell imprinting strategies are demonstrated in detail. Finally, future research directions are provided.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.,Department of Mechanical Engineering, National University of Singapore 9 Engineering Drive 1, 117575, Singapore
| | - Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarong Xu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhiling Li
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chaoren Yan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Kun Mei
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Minling Ding
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Ping Guan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Chunbao Du
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Xiaoling Hu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
36
|
von Frieling J, Fink C, Hamm J, Klischies K, Forster M, Bosch TCG, Roeder T, Rosenstiel P, Sommer F. Grow With the Challenge - Microbial Effects on Epithelial Proliferation, Carcinogenesis, and Cancer Therapy. Front Microbiol 2018; 9:2020. [PMID: 30294304 PMCID: PMC6159313 DOI: 10.3389/fmicb.2018.02020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
The eukaryotic host is in close contact to myriads of resident and transient microbes, which influence the crucial physiological pathways. Emerging evidence points to their role of host-microbe interactions for controlling tissue homeostasis, cell fate decisions, and regenerative capacity in epithelial barrier organs including the skin, lung, and gut. In humans and mice, it has been shown that the malignant tumors of these organs harbor an altered microbiota. Mechanistic studies have shown that the altered metabolic properties and secreted factors contribute to epithelial carcinogenesis and tumor progression. Exciting recent work points toward a crucial influence of the associated microbial communities on the response to chemotherapy and immune-check point inhibitors during cancer treatment, which suggests that the modulation of the microbiota might be a powerful tool for personalized oncology. In this article, we provide an overview of how the bacterial signals and signatures may influence epithelial homeostasis across taxa from cnidarians to vertebrates and delineate mechanisms, which might be potential targets for therapy of human diseases by either harnessing barrier integrity (infection and inflammation) or restoring uncontrolled proliferation (cancer).
Collapse
Affiliation(s)
- Jakob von Frieling
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christine Fink
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kenneth Klischies
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas Roeder
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
37
|
Zhang M, Ma W, Zhang J, He Y, Wang J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Sci Rep 2018; 8:13981. [PMID: 30228282 PMCID: PMC6143520 DOI: 10.1038/s41598-018-32219-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental disorders. Recent studies reported that children with ASD have altered gut microbiota profiles compared with typical development (TD) children. However, few studies on gut bacteria of children with ASD have been conducted in China. Here, in order to elucidate changes of fecal microbiota in children with ASD, 16S rRNA sequencing was conducted and the 16S rRNA (V3-V4) gene tags were amplified. We investigated differences in fecal microbiota between 35 children with ASD and 6 TD children. At the phylum level, the fecal microbiota of ASD group indicated a significant increase of the Bacteroidetes/Firmicutes ratio. At the genus level, we found that the relative abundance of Sutterella, Odoribacter and Butyricimonas was much more abundant in the ASD group whereas the abundance of Veillonella and Streptococcus was decreased significantly compared to the control group. Functional analysis demonstrated that butyrate and lactate producers were less abundant in the ASD group. In addition, we downloaded the association data set of microbe-disease from human microbe-disease association database and constructed a human disease network including ASD using our gut microbiome results. In this microbe-disease network based on microbe similarity of diseases, we found that ASD is positively correlated with periodontal, negatively related to type 1 diabetes. Therefore, these results suggest that microbe-based disease analysis is able to predict novel connection between ASD and other diseases and may play a role in revealing the pathogenesis of ASD.
Collapse
Affiliation(s)
- Mengxiang Zhang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing, 100191, China
| | - Wei Ma
- Central Laboratory, Navy General Hospital of PLA, Beijing, 100191, China
| | - Juan Zhang
- Department of pediatrics, Peking University Third Hospital, Beijing, 100191, China
| | - Yi He
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Autism Research Center, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
38
|
Byndloss MX, Pernitzsch SR, Bäumler AJ. Healthy hosts rule within: ecological forces shaping the gut microbiota. Mucosal Immunol 2018; 11:1299-1305. [PMID: 29743614 DOI: 10.1038/s41385-018-0010-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/05/2018] [Indexed: 02/04/2023]
Abstract
A balanced gut microbiota is important for human health, but the mechanisms that maintain homeostasis are incompletely understood. Recent insights suggest the host plays a key role in shaping its gut microbiota to be beneficial. While host control in the small intestine curbs bacterial numbers to avoid competition for simple sugars and amino acids, the host limits oxygen availability in the large intestine to obtain microbial fermentation products from fiber. Epithelial cells are major players in imposing ecological control mechanisms, which involves the release of antimicrobial peptides by small-intestinal Paneth cells and maintenance of luminal anaerobiosis by epithelial hypoxia in the colon. Harnessing these epithelial control mechanisms for therapeutic means could provide a novel lynchpin for strategies to remediate dysbiosis.
Collapse
Affiliation(s)
- Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | | | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
39
|
Kuo SM. Does Modification of the Large Intestinal Microbiome Contribute to the Anti-Inflammatory Activity of Fermentable Fiber? Curr Dev Nutr 2018; 2:nzx004. [PMID: 30377676 PMCID: PMC6201682 DOI: 10.3945/cdn.117.001180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022] Open
Abstract
Fiber is an inadequately understood and insufficiently consumed nutrient. This review examines the possible causal relation between fiber-induced microbiome changes and the anti-inflammatory activity of fiber. To demonstrate the dominant role of fermentable plant fiber in shaping the intestinal microbiome, animal and human fiber-feeding studies are reviewed. Using culture-, PCR-, and sequencing-based microbial analyses, a higher prevalence of Bifidobacterium and Lactobacillus genera was observed from the feeding of different types of fermentable fiber. This finding was reported in studies performed on several host species including human. Health conditions and medications that are linked to intestinal microbial alterations likely also change the nutrient environment of the large intestine. The unique gene clusters of Bifidobacterium and Lactobacillus that enable the catabolism of plant glycans and the ability of Bifidobacterium and Lactobacillus to reduce the colonization of proteobacteria probably contribute to their prevalence in a fiber-rich intestinal environment. The fiber-induced microbiome changes could contribute to the anti-inflammatory activity of fiber. Although most studies did not measure fecal microbial density or total daily fecal microbial output (colon microbial load), limited evidence suggests that the increase in intestinal commensal microbial load plays an important role in the anti-inflammatory activity of fiber. Various probiotic supplements, including Bifidobacterium and Lactobacillus, showed anti-inflammatory activity only in the presence of fiber, which promoted microbial growth as indicated by increasing plasma short-chain fatty acids. Probiotics alone or pure fiber administered under sterile conditions showed no anti-inflammatory activity. The potential mechanisms that could mediate the anti-inflammatory effect of common microbial metabolites are reviewed, but more in vivo trials are needed. Future studies including simultaneous microbial composition and load measurements are also important.
Collapse
Affiliation(s)
- Shiu-Ming Kuo
- Department of Exercise and Nutrition Sciences, University at Buffalo, SUNY, Buffalo, NY
| |
Collapse
|
40
|
Abstract
L cells are an important class of enteroendocrine cells secreting hormones such as glucagon like peptide-1 and peptide YY that have several metabolic and physiological effects. The gut is home to trillions of bacteria affecting host physiology, but there has been limited understanding about how the microbiota affects gene expression in L cells. Thus, we rederived the reporter mouse strain, GLU-Venus expressing yellow fluorescent protein under the control of the proglucagon gene, as germ-free (GF). Lpos cells from ileum and colon of GF and conventionally raised (CONV-R) GLU-Venus mice were isolated and subjected to transcriptomic profiling. We observed that the microbiota exerted major effects on ileal L cells. Gene Ontology enrichment analysis revealed that microbiota suppressed biological processes related to vesicle localization and synaptic vesicle cycling in Lpos cells from ileum. This finding was corroborated by electron microscopy of Lpos cells showing reduced numbers of vesicles as well as by demonstrating decreased intracellular GLP-1 content in primary cultures from ileum of CONV-R compared with GF GLU-Venus mice. By analysing Lpos cells following colonization of GF mice we observed that the greatest transcriptional regulation was evident within 1 day of colonization. Thus, the microbiota has a rapid and pronounced effect on the L cell transcriptome, predominantly in the ileum.
Collapse
|
41
|
Hillman ET, Lu H, Yao T, Nakatsu CH. Microbial Ecology along the Gastrointestinal Tract. Microbes Environ 2017; 32:300-313. [PMID: 29129876 PMCID: PMC5745014 DOI: 10.1264/jsme2.me17017] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/19/2017] [Indexed: 02/06/2023] Open
Abstract
The ecosystem of the human gastrointestinal (GI) tract traverses a number of environmental, chemical, and physical conditions because it runs from the oral cavity to the anus. These differences in conditions along with food or other ingested substrates affect the composition and density of the microbiota as well as their functional roles by selecting those that are the most suitable for that environment. Previous studies have mostly focused on Bacteria, with the number of studies conducted on Archaea, Eukarya, and Viruses being limited despite their important roles in this ecosystem. Furthermore, due to the challenges associated with collecting samples directly from the inside of humans, many studies are still exploratory, with a primary focus on the composition of microbiomes. Thus, mechanistic studies to investigate functions are conducted using animal models. However, differences in physiology and microbiomes need to be clarified in order to aid in the translation of animal model findings into the context of humans. This review will highlight Bacteria, Archaea, Fungi, and Viruses, discuss differences along the GI tract of healthy humans, and perform comparisons with three common animal models: rats, mice, and pigs.
Collapse
Affiliation(s)
- Ethan T. Hillman
- Department of Agricultural and Biological Engineering, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Hang Lu
- Department of Animal Science, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Tianming Yao
- Department of Food Science, Purdue UniversityWest Lafayette, Indiana 47907USA
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue UniversityWest Lafayette, Indiana 47907USA
| |
Collapse
|
42
|
Sommer F, Rühlemann MC, Bang C, Höppner M, Rehman A, Kaleta C, Schmitt-Kopplin P, Dempfle A, Weidinger S, Ellinghaus E, Krauss-Etschmann S, Schmidt-Arras D, Aden K, Schulte D, Ellinghaus D, Schreiber S, Tholey A, Rupp J, Laudes M, Baines JF, Rosenstiel P, Franke A. Microbiomarkers in inflammatory bowel diseases: caveats come with caviar. Gut 2017; 66:1734-1738. [PMID: 28733278 PMCID: PMC5595102 DOI: 10.1136/gutjnl-2016-313678] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christoph Kaleta
- Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Phillippe Schmitt-Kopplin
- Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Susanne Krauss-Etschmann
- Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany,Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dominik Schulte
- Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany,Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Tholey
- Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lubeck, Lubeck, Germany
| | - Matthias Laudes
- Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - John F Baines
- Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany,Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plon, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
43
|
Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2017. [DOI: 10.1038/nrmicro.2017.58] [Citation(s) in RCA: 460] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Araújo JR, Tomas J, Brenner C, Sansonetti PJ. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie 2017; 141:97-106. [PMID: 28571979 DOI: 10.1016/j.biochi.2017.05.019] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/27/2017] [Indexed: 02/07/2023]
Abstract
The modulation of the intestinal microbiota by high-fat diet (HFD) has a major impact on both immunological and metabolic functions of the host. Taking this into consideration, the aim of this contribution is to review the impact of HFD on microbiota profile and small intestinal physiology before and after the onset of obesity and its metabolic complications. Evidence from animal studies suggest that before the onset of obesity and its metabolic complications, HFD induces intestinal dysbiosis - encompassing changes in composition balance and massive redistribution with bacteria occupying intervillous spaces and crypts - associated with early physiopathological changes, predominantly in the ileum, such as low-grade inflammation, decreased antimicrobial peptides expression, impaired mucus production, secretion and layer's thickness, and decreased expression of tight junction proteins. With time, major inflammatory signals (e.g. toll-like receptor-4 dependent) become activated, thereby stimulating proinflammatory cytokines secretion in the small intestine. This inflammatory state might subsequently exacerbate disruption of the mucus layer barrier and increase epithelial permeability of the small intestine, thereby creating an environment that facilitates the passage of bacterial components (e.g. lipopolysaccharide, peptidoglycan and flagellin) and metabolites from the intestinal lumen (e.g. secondary bile acids) to the circulation and peripheral tissues (i.e. leaky gut), eventually promoting the development of systemic inflammation, obesity, adiposity, insulin resistance and glucose intolerance preceding hyperglycemia. Although the mechanisms are still not completely understood, prebiotics, probiotics, polyphenols, peroxisome proliferator-activated receptor-γ agonists (such as rosiglitazone) and exercise have been shown to reverse HFD-induced intestinal phenotype and to attenuate the severity of obesity and its associated metabolic complications.
Collapse
Affiliation(s)
- João Ricardo Araújo
- Institut Pasteur, INSERM U1202, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Julie Tomas
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Christiane Brenner
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75015 Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, INSERM U1202, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France; Collège de France, Chaire de Microbiologie et Maladies Infectieuses, 75005 Paris, France.
| |
Collapse
|
45
|
A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 2017; 128:44-55. [PMID: 28288348 DOI: 10.1016/j.biomaterials.2017.03.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 02/06/2023]
Abstract
The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function.
Collapse
|
46
|
Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017; 595:489-503. [PMID: 27641441 PMCID: PMC5233671 DOI: 10.1113/jp273106] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022] Open
Abstract
There is a growing realisation that the gut-brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age-related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long-term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics.
Collapse
Affiliation(s)
- Timothy G. Dinan
- APC Microbiome InstituteUniversity College CorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkIreland
| | - John F. Cryan
- APC Microbiome InstituteUniversity College CorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkIreland
| |
Collapse
|
47
|
Lourenço M, Ramiro RS, Güleresi D, Barroso-Batista J, Xavier KB, Gordo I, Sousa A. A Mutational Hotspot and Strong Selection Contribute to the Order of Mutations Selected for during Escherichia coli Adaptation to the Gut. PLoS Genet 2016; 12:e1006420. [PMID: 27812114 PMCID: PMC5094792 DOI: 10.1371/journal.pgen.1006420] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
The relative role of drift versus selection underlying the evolution of bacterial species within the gut microbiota remains poorly understood. The large sizes of bacterial populations in this environment suggest that even adaptive mutations with weak effects, thought to be the most frequently occurring, could substantially contribute to a rapid pace of evolutionary change in the gut. We followed the emergence of intra-species diversity in a commensal Escherichia coli strain that previously acquired an adaptive mutation with strong effect during one week of colonization of the mouse gut. Following this first step, which consisted of inactivating a metabolic operon, one third of the subsequent adaptive mutations were found to have a selective effect as high as the first. Nevertheless, the order of the adaptive steps was strongly affected by a mutational hotspot with an exceptionally high mutation rate of 10-5. The pattern of polymorphism emerging in the populations evolving within different hosts was characterized by periodic selection, which reduced diversity, but also frequency-dependent selection, actively maintaining genetic diversity. Furthermore, the continuous emergence of similar phenotypes due to distinct mutations, known as clonal interference, was pervasive. Evolutionary change within the gut is therefore highly repeatable within and across hosts, with adaptive mutations of selection coefficients as strong as 12% accumulating without strong constraints on genetic background. In vivo competitive assays showed that one of the second steps (focA) exhibited positive epistasis with the first, while another (dcuB) exhibited negative epistasis. The data shows that strong effect adaptive mutations continuously recur in gut commensal bacterial species.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|