1
|
Verry AJF, Lubbe P, Mitchell KJ, Rawlence NJ. Thirty years of ancient DNA and the faunal biogeography of Aotearoa New Zealand: lessons and future directions. J R Soc N Z 2022; 54:75-97. [PMID: 39439471 PMCID: PMC11459812 DOI: 10.1080/03036758.2022.2093227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Thirty years ago, DNA sequences were obtained from an extinct Aotearoa New Zealand animal for the first time. Since then, ancient DNA research has provided many - often unexpected - insights into the origins of New Zealand's terrestrial and marine vertebrate fauna. Because recent human activities in New Zealand have caused the decline or extinction of many endemic plant, bird, reptile, and marine mammal species, ancient DNA has been instrumental in reconstructing their identities and origins. However, most ancient DNA studies focusing on New Zealand species have been restricted to vertebrates, with small sample sizes, and/or relatively few genetic markers. This has limited their power to infer fine-scale biogeographic patterns, including (pre)historic distributions and range-shifts driven by past climate and environmental change. Recently, 'next-generation' methodological and technological advances have broadened the range of hypotheses that can feasibly be tested with ancient DNA. These advances represent an exciting opportunity for further exploring New Zealand biogeography using ancient DNA, but their promise has not yet been fully realised. In this review, we summarise the last 30 years of ancient DNA research into New Zealand faunal biogeography and highlight key objectives, challenges, and possibilities for the next 30 years and beyond.
Collapse
Affiliation(s)
- Alexander J. F. Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Centre for Anthropobiology and Genomics of Toulouse, Faculté de Médecine Purpan, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Pascale Lubbe
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kieren J. Mitchell
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Abstract
Archaeological and paleontological records offer tremendous yet often untapped potential for examining long-term biodiversity trends and the impact of climate change and human activity on ecosystems. Yet, zooarchaeological and fossil remains suffer various limitations, including that they are often highly fragmented and morphologically unidentifiable, preventing them from being optimally leveraged for addressing fundamental research questions in archaeology, paleontology, and conservation paleobiology. Here, we explore the potential of palaeoproteomics—the study of ancient proteins—to serve as a critical tool for creating richer, more informative datasets about biodiversity change that can be leveraged to generate more realistic, constructive, and effective conservation and restoration strategies into the future.
Collapse
|
3
|
Mobilizing the past to shape a better Anthropocene. Nat Ecol Evol 2021; 5:273-284. [PMID: 33462488 DOI: 10.1038/s41559-020-01361-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/08/2020] [Indexed: 01/29/2023]
Abstract
As our planet emerges into a new epoch in which humans dominate the Earth system, it is imperative that societies initiate a new phase of responsible environmental stewardship. Here we argue that information from the past has a valuable role to play in enhancing the sustainability and resilience of our societies. We highlight the ways that past data can be mobilized for a variety of efforts, from supporting conservation to increasing agricultural sustainability and food security. At a practical level, solutions from the past often do not require fossil fuels, can be locally run and managed, and have been tested over the long term. Past failures reveal non-viable solutions and expose vulnerabilities. To more effectively leverage increasing knowledge about the past, we advocate greater cross-disciplinary collaboration, systematic engagement with stakeholders and policymakers, and approaches that bring together the best of the past with the cutting-edge technologies and solutions of tomorrow.
Collapse
|
4
|
King RA, Stockley B, Stevens JR. Small coastal streams-Critical reservoirs of genetic diversity for trout ( Salmo trutta L.) in the face of increasing anthropogenic stressors. Ecol Evol 2020; 10:5651-5669. [PMID: 32607181 PMCID: PMC7319166 DOI: 10.1002/ece3.6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/05/2022] Open
Abstract
We used microsatellite markers to investigate levels and structuring of genetic diversity in trout (Salmo trutta L.) sampled from 16 rivers along the south coast of Cornwall in southwest England. This region is characterized by many small coastal streams with a few larger catchments. At a regional level, genetic structuring of contemporary populations has been influenced by a combination of events, including the last Ice Age and also more recent human activities over the last millennium. All populations are shown to have gone through strong genetic bottlenecks, coinciding with increased exploitation of mineral resources within catchments, beginning during the Medieval period. At more local levels, contemporary human-induced habitat fragmentation, such as weir and culvert construction, has disproportionally affected trout populations in the smaller catchments within the study area. However, where small catchments are relatively unaffected by such activities, they can host trout populations with diversity levels comparable to those found in larger rivers in the region. We also predict significant future loses of diversity and heterozygosity in the trout populations inhabiting small, isolated catchments. Our study highlights how multiple factors, especially the activity of humans, have and continue to affect the levels and structuring of genetic diversity in trout over long timescales.
Collapse
Affiliation(s)
- R. Andrew King
- Department of BiosciencesCollege of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | | | - Jamie R. Stevens
- Department of BiosciencesCollege of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| |
Collapse
|
5
|
Kemp ME, Mychajliw AM, Wadman J, Goldberg A. 7000 years of turnover: historical contingency and human niche construction shape the Caribbean's Anthropocene biota. Proc Biol Sci 2020; 287:20200447. [PMID: 32429803 PMCID: PMC7287370 DOI: 10.1098/rspb.2020.0447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human-mediated movement of species across biogeographic boundaries-whether intentional or accidental-is dramatically reshaping the modern world. Yet humans have been reshaping ecosystems and translocating species for millennia, and acknowledging the deeper roots of these phenomena is important for contextualizing present-day biodiversity loss, ecosystem functioning and management needs. Here, we present the first database of terrestrial vertebrate species introductions spanning the entire anthropogenic history of a system: the Caribbean. We employ this approximately 7000-year dataset to assess the roles of historical contingency and priority effects in shaping present-day community structure and conservation outcomes, finding that serial human colonization events contributed to habitat modifications and species extinctions that shaped the trajectories of subsequent species introductions by other human groups. We contextualized spatial and temporal patterns of species introductions within cultural practices and population histories of Indigenous, colonial and modern human societies, and show that the taxonomic and biogeographic diversity of introduced species reflects diversifying reasons for species introductions through time. Recognition of the complex social and economic structures across the 7000-year human history of the Caribbean provides the necessary context for interpreting the formation of an Anthropocene biota.
Collapse
Affiliation(s)
- Melissa E Kemp
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alexis M Mychajliw
- La Brea Tar Pits and Museum, 5801 Wilshire Blvd, Los Angeles, CA 90036, USA.,Institute of Low Temperature Science, Hokkaido University, Kita-19 Nishi-8 Kita-ku, Sapporo 060-0819, Japan.,Laboratories of Molecular Anthropology and Microbiome Research, 101 David L. Boren Blvd, Norman, OK 73019, USA
| | - Jenna Wadman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Fenderson LE, Kovach AI, Llamas B. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Mol Ecol 2019; 29:218-246. [DOI: 10.1111/mec.15315] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/22/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Lindsey E. Fenderson
- Australian Centre for Ancient DNA School of Biological Sciences Environment Institute University of Adelaide Adelaide South Australia Australia
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Adrienne I. Kovach
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Bastien Llamas
- Australian Centre for Ancient DNA School of Biological Sciences Environment Institute University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
7
|
Cole TL, Ksepka DT, Mitchell KJ, Tennyson AJD, Thomas DB, Pan H, Zhang G, Rawlence NJ, Wood JR, Bover P, Bouzat JL, Cooper A, Fiddaman SR, Hart T, Miller G, Ryan PG, Shepherd LD, Wilmshurst JM, Waters JM. Mitogenomes Uncover Extinct Penguin Taxa and Reveal Island Formation as a Key Driver of Speciation. Mol Biol Evol 2019; 36:784-797. [PMID: 30722030 DOI: 10.1093/molbev/msz017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The emergence of islands has been linked to spectacular radiations of diverse organisms. Although penguins spend much of their lives at sea, they rely on land for nesting, and a high proportion of extant species are endemic to geologically young islands. Islands may thus have been crucial to the evolutionary diversification of penguins. We test this hypothesis using a fossil-calibrated phylogeny of mitochondrial genomes (mitogenomes) from all extant and recently extinct penguin taxa. Our temporal analysis demonstrates that numerous recent island-endemic penguin taxa diverged following the formation of their islands during the Plio-Pleistocene, including the Galápagos (Galápagos Islands), northern rockhopper (Gough Island), erect-crested (Antipodes Islands), Snares crested (Snares) and royal (Macquarie Island) penguins. Our analysis also reveals two new recently extinct island-endemic penguin taxa from New Zealand's Chatham Islands: Eudyptes warhami sp. nov. and a dwarf subspecies of the yellow-eyed penguin, Megadyptes antipodes richdalei ssp. nov. Eudyptes warhami diverged from the Antipodes Islands erect-crested penguin between 1.1 and 2.5 Ma, shortly after the emergence of the Chatham Islands (∼3 Ma). This new finding of recently evolved taxa on this young archipelago provides further evidence that the radiation of penguins over the last 5 Ma has been linked to island emergence. Mitogenomic analyses of all penguin species, and the discovery of two new extinct penguin taxa, highlight the importance of island formation in the diversification of penguins, as well as the extent to which anthropogenic extinctions have affected island-endemic taxa across the Southern Hemisphere's isolated archipelagos.
Collapse
Affiliation(s)
- Theresa L Cole
- Department of Zoology, University of Otago, Dunedin, New Zealand.,Manaaki Whenua Landcare Research, Lincoln, Canterbury, New Zealand
| | | | - Kieren J Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Daniel B Thomas
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Hailin Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jamie R Wood
- Manaaki Whenua Landcare Research, Lincoln, Canterbury, New Zealand
| | - Pere Bover
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,ARAID Foundation, IUCA-Grupo Aragosaurus, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan L Bouzat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gary Miller
- Division of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Peter G Ryan
- DST-NRF Centre of Excellence, FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Lara D Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Janet M Wilmshurst
- Manaaki Whenua Landcare Research, Lincoln, Canterbury, New Zealand.,School of Environment, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
8
|
Rawlence NJ, Scofield RP, McGlone MS, Knapp M. History Repeats: Large Scale Synchronous Biological Turnover in Avifauna From the Plio-Pleistocene and Late Holocene of New Zealand. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Affiliation(s)
- Graham P. Wallis
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Mitogenomic evidence of close relationships between New Zealand's extinct giant raptors and small-sized Australian sister-taxa. Mol Phylogenet Evol 2019; 134:122-128. [PMID: 30753886 DOI: 10.1016/j.ympev.2019.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/22/2019] [Accepted: 01/31/2019] [Indexed: 01/21/2023]
Abstract
Prior to human arrival in the 13th century, two large birds of prey were the top predators in New Zealand. In the absence of non-volant mammals, the extinct Haast's eagle (Hieraaetus moorei), the largest eagle in the world, and the extinct Eyles' harrier (Circus teauteensis) the largest harrier in the world, had filled ecological niches that are on other landmasses occupied by animals such as large cats or canines. The evolutionary and biogeographic history of these island giants has long been a mystery. Here we reconstruct the origin and evolution of New Zealand's giant raptors using complete mitochondrial genome data. We show that both Eyles' harrier and Haast's eagle diverged from much smaller, open land adapted Australasian relatives in the late Pliocene to early Pleistocene. These events coincided with the development of open habitat in the previously densely forested islands of New Zealand. Our study provides evidence of rapid evolution of island gigantism in New Zealand's extinct birds of prey. Early Pleistocene climate and environmental changes were likely to have triggered the establishment of Australian raptors into New Zealand. Our results shed light on the evolution of two of the most impressive cases of island gigantism in the world.
Collapse
|
11
|
Rawlence NJ, Tennyson AJD, Cole TL, Verry AJF, Scofield RP. Evidence for breeding of Megadyptes penguins in the North Island at the time of human arrival. NEW ZEALAND JOURNAL OF ZOOLOGY 2018. [DOI: 10.1080/03014223.2018.1523202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Theresa L. Cole
- Long Term Ecology Laboratory, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Alexander J. F. Verry
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
12
|
Dufresnes C, Miquel C, Remollino N, Biollaz F, Salamin N, Taberlet P, Fumagalli L. Howling from the past: historical phylogeography and diversity losses in European grey wolves. Proc Biol Sci 2018; 285:rspb.2018.1148. [PMID: 30068681 DOI: 10.1098/rspb.2018.1148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
Genetic bottlenecks resulting from human-induced population declines make alarming symbols for the irreversible loss of our natural legacy worldwide. The grey wolf (Canis lupus) is an iconic example of extreme declines driven by anthropogenic factors. Here, we assessed the genetic signatures of 150 years of wolf persecution throughout the Western Palaearctic by high-throughput mitochondrial DNA sequencing of historical specimens in an unprecedented spatio-temporal framework. Despite Late Pleistocene bottlenecks, we show that historical genetic variation had remained high throughout Europe until the last several hundred years. In Western Europe, where wolves nearly got fully exterminated, diversity dramatically collapsed at the turn of the twentieth century and recolonization from few homogeneous relict populations induced drastic shifts of genetic composition. By contrast, little genetic displacement and steady levels of diversity were maintained in Eastern European regions, where human persecution had lesser effects on wolf demography. By comparing prehistoric, historic and modern patterns of genetic diversity, our study hence traces the timeframe and the active human role in the decline of the grey wolf, an emblematic yet controversial animal which symbolizes the complex relationship between human societies and nature conservation.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Conservation Biology, Department of Ecology and Evolution University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.,Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Christian Miquel
- Laboratoire d'Écologie Alpine (LECA), UMR5553, BP53, 38041 Grenoble, Cedex 9, France
| | - Nadège Remollino
- Laboratory for Conservation Biology, Department of Ecology and Evolution University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - François Biollaz
- Laboratory for Conservation Biology, Department of Ecology and Evolution University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.,Route Pra de Louetse 32, 1968 Mase, Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.,Department of Computational Biology University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Pierre Taberlet
- Laboratoire d'Écologie Alpine (LECA), UMR5553, BP53, 38041 Grenoble, Cedex 9, France
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Rawlence NJ, Kardamaki A, Easton LJ, Tennyson AJD, Scofield RP, Waters JM. Native or not? Ancient DNA rejects persistence of New Zealand's endemic black swan: A reply to Montano et al. Evol Appl 2018. [DOI: 10.1111/eva.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory; Department of Zoology; University of Otago; Dunedin New Zealand
| | - Afroditi Kardamaki
- Otago Palaeogenetics Laboratory; Department of Zoology; University of Otago; Dunedin New Zealand
| | - Luke J. Easton
- Otago Palaeogenetics Laboratory; Department of Zoology; University of Otago; Dunedin New Zealand
| | | | | | - Jonathan M. Waters
- Otago Palaeogenetics Laboratory; Department of Zoology; University of Otago; Dunedin New Zealand
| |
Collapse
|
14
|
Cole TL, Wood JR. The ancient DNA revolution: the latest era in unearthing New Zealand’s faunal history. NEW ZEALAND JOURNAL OF ZOOLOGY 2017. [DOI: 10.1080/03014223.2017.1376690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Theresa L. Cole
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Long Term Ecology Lab, Landcare Research, Lincoln, New Zealand
| | - Jamie R. Wood
- Long Term Ecology Lab, Landcare Research, Lincoln, New Zealand
| |
Collapse
|
15
|
Rawlence NJ, Kardamaki A, Easton LJ, Tennyson AJD, Scofield RP, Waters JM. Ancient DNA and morphometric analysis reveal extinction and replacement of New Zealand's unique black swans. Proc Biol Sci 2017; 284:20170876. [PMID: 28747476 PMCID: PMC5543223 DOI: 10.1098/rspb.2017.0876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/20/2017] [Indexed: 11/12/2022] Open
Abstract
Prehistoric human impacts on megafaunal populations have dramatically reshaped ecosystems worldwide. However, the effects of human exploitation on smaller species, such as anatids (ducks, geese, and swans) are less clear. In this study we apply ancient DNA and osteological approaches to reassess the history of Australasia's iconic black swans (Cygnus atratus) including the palaeo-behaviour of prehistoric populations. Our study shows that at the time of human colonization, New Zealand housed a genetically, morphologically, and potentially ecologically distinct swan lineage (C. sumnerensis, Poūwa), divergent from modern (Australian) C. atratus Morphological analyses indicate C. sumnerensis exhibited classic signs of the 'island rule' effect, being larger, and likely flight-reduced compared to C. atratus Our research reveals sudden extinction and replacement events within this anatid species complex, coinciding with recent human colonization of New Zealand. This research highlights the role of anthropogenic processes in rapidly reshaping island ecosystems and raises new questions for avian conservation, ecosystem re-wilding, and de-extinction.
Collapse
Affiliation(s)
- Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
- Canterbury Museum, Christchurch, New Zealand
| | - Afroditi Kardamaki
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Luke J Easton
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | - Jonathan M Waters
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Mattern T, Meyer S, Ellenberg U, Houston DM, Darby JT, Young M, van Heezik Y, Seddon PJ. Quantifying climate change impacts emphasises the importance of managing regional threats in the endangered Yellow-eyed penguin. PeerJ 2017; 5:e3272. [PMID: 28533952 PMCID: PMC5436559 DOI: 10.7717/peerj.3272] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/28/2017] [Indexed: 11/20/2022] Open
Abstract
Climate change is a global issue with effects that are difficult to manage at a regional scale. Yet more often than not climate factors are just some of multiple stressors affecting species on a population level. Non-climatic factors—especially those of anthropogenic origins—may play equally important roles with regard to impacts on species and are often more feasible to address. Here we assess the influence of climate change on population trends of the endangered Yellow-eyed penguin (Megadyptes antipodes) over the last 30 years, using a Bayesian model. Sea surface temperature (SST) proved to be the dominating factor influencing survival of both adult birds and fledglings. Increasing SST since the mid-1990s was accompanied by a reduction in survival rates and population decline. The population model showed that 33% of the variation in population numbers could be explained by SST alone, significantly increasing pressure on the penguin population. Consequently, the population becomes less resilient to non-climate related impacts, such as fisheries interactions, habitat degradation and human disturbance. However, the extent of the contribution of these factors to declining population trends is extremely difficult to assess principally due to the absence of quantifiable data, creating a discussion bias towards climate variables, and effectively distracting from non-climate factors that can be managed on a regional scale to ensure the viability of the population.
Collapse
Affiliation(s)
- Thomas Mattern
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Stefan Meyer
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Ursula Ellenberg
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Australia
| | - David M Houston
- Science and Policy Group, Department of Conservation, Auckland, New Zealand
| | | | - Melanie Young
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Philip J Seddon
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Grosser S, Abdelkrim J, Wing J, Robertson BC, Gemmell NJ. Strong isolation by distance argues for separate population management of endangered blue duck (Hymenolaimus malacorhynchos). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0908-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|