1
|
Picard LP, Orazietti A, Tran DP, Tucs A, Hagimoto S, Qi Z, Huang SK, Tsuda K, Kitao A, Sljoka A, Prosser RS. Balancing G protein selectivity and efficacy in the adenosine A 2A receptor. Nat Chem Biol 2025; 21:71-79. [PMID: 39085516 DOI: 10.1038/s41589-024-01682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/23/2024] [Indexed: 08/02/2024]
Abstract
The adenosine A2A receptor (A2AR) engages several G proteins, notably Go and its cognate Gs protein. This coupling promiscuity is facilitated by a dynamic ensemble, revealed by 19F nuclear magnetic resonance imaging of A2AR and G protein. Two transmembrane helix 6 (TM6) activation states, formerly associated with partial and full agonism, accommodate the differing volumes of Gs and Go. While nucleotide depletion biases TM7 toward a fully active state in A2AR-Gs, A2AR-Go is characterized by a dynamic inactive/intermediate fraction. Molecular dynamics simulations reveal that the NPxxY motif, a highly conserved switch, establishes a unique configuration in the A2AR-Go complex, failing to stabilize the helix-8 interface with Gs, and adoption of the active state. The resulting TM7 dynamics hamper G protein coupling, suggesting kinetic gating may be responsible for reduced efficacy in the noncognate G protein complex. Thus, dual TM6 activation states enable greater diversity of coupling partners while TM7 dynamics dictate coupling efficacy.
Collapse
Affiliation(s)
- Louis-Philippe Picard
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada.
| | | | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Sari Hagimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Zhenzhou Qi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada
| | - Shuya Kate Huang
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Adnan Sljoka
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - R Scott Prosser
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacol Ther 2022; 237:108242. [DOI: 10.1016/j.pharmthera.2022.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022]
|
3
|
G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092658. [PMID: 35566006 PMCID: PMC9101874 DOI: 10.3390/molecules27092658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular binding partners such as G proteins and arrestins. Here, we review some basics of using nuclear magnetic resonance (NMR) spectroscopy in solution for the characterization of GPCR conformations and intermolecular interactions that relate to transmembrane signaling.
Collapse
|
4
|
IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol Rev 2022; 74:340-372. [PMID: 35302044 PMCID: PMC8973513 DOI: 10.1124/pharmrev.121.000445] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors (2011) contained a number of emerging developments with respect to this G protein-coupled receptor subfamily, including protein structure, protein oligomerization, protein diversity, and allosteric modulation by small molecules. Since then, a wealth of new data and results has been added, allowing us to explore novel concepts such as target binding kinetics and biased signaling of adenosine receptors, to examine a multitude of receptor structures and novel ligands, to gauge new pharmacology, and to evaluate clinical trials with adenosine receptor ligands. This review should therefore be considered a further update of our previous reports from 2001 and 2011. SIGNIFICANCE STATEMENT: Adenosine receptors (ARs) are of continuing interest for future treatment of chronic and acute disease conditions, including inflammatory diseases, neurodegenerative afflictions, and cancer. The design of AR agonists ("biased" or not) and antagonists is largely structure based now, thanks to the tremendous progress in AR structural biology. The A2A- and A2BAR appear to modulate the immune response in tumor biology. Many clinical trials for this indication are ongoing, whereas an A2AAR antagonist (istradefylline) has been approved as an anti-Parkinson agent.
Collapse
Affiliation(s)
- Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Kenneth A Jacobson
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Christa E Müller
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Bruce N Cronstein
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Rodrigo A Cunha
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| |
Collapse
|
5
|
Chandler B, Todd L, Smith SO. Magic angle spinning NMR of G protein-coupled receptors. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:25-43. [PMID: 35282868 PMCID: PMC10718405 DOI: 10.1016/j.pnmrs.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) have a simple seven transmembrane helix architecture which has evolved to recognize a diverse number of chemical signals. The more than 800 GPCRs encoded in the human genome function as receptors for vision, smell and taste, and mediate key physiological processes. Consequently, these receptors are a major target for pharmaceuticals. Protein crystallography and electron cryo-microscopy have provided high resolution structures of many GPCRs in both active and inactive conformations. However, these structures have not sparked a surge in rational drug design, in part because GPCRs are inherently dynamic and the structural changes induced by ligand or drug binding to stabilize inactive or active conformations are often subtle rearrangements in packing or hydrogen-bonding interactions. NMR spectroscopy provides a sensitive probe of local structure and dynamics at specific sites within these receptors as well as global changes in receptor structure and dynamics. These methods can also capture intermediate states and conformations with low populations that provide insights into the activation pathways. We review the use of solid-state magic angle spinning NMR to address the structure and activation mechanisms of GPCRs. The focus is on the large and diverse class A family of receptors. We highlight three specific class A GPCRs in order to illustrate how solid-state, as well as solution-state, NMR spectroscopy can answer questions in the field involving how different GPCR classes and subfamilies are activated by their associated ligands, and how small molecule drugs can modulate GPCR activation.
Collapse
Affiliation(s)
- Bianca Chandler
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Lauren Todd
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
6
|
Nguyen KDQ, Vigers M, Sefah E, Seppälä S, Hoover JP, Schonenbach NS, Mertz B, O'Malley MA, Han S. Homo-oligomerization of the human adenosine A 2A receptor is driven by the intrinsically disordered C-terminus. eLife 2021; 10:e66662. [PMID: 34269678 PMCID: PMC8328514 DOI: 10.7554/elife.66662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have long been shown to exist as oligomers with functional properties distinct from those of the monomeric counterparts, but the driving factors of oligomerization remain relatively unexplored. Herein, we focus on the human adenosine A2A receptor (A2AR), a model GPCR that forms oligomers both in vitro and in vivo. Combining experimental and computational approaches, we discover that the intrinsically disordered C-terminus of A2AR drives receptor homo-oligomerization. The formation of A2AR oligomers declines progressively with the shortening of the C-terminus. Multiple interaction types are responsible for A2AR oligomerization, including disulfide linkages, hydrogen bonds, electrostatic interactions, and hydrophobic interactions. These interactions are enhanced by depletion interactions, giving rise to a tunable network of bonds that allow A2AR oligomers to adopt multiple interfaces. This study uncovers the disordered C-terminus as a prominent driving factor for the oligomerization of a GPCR, offering important insight into the effect of C-terminus modification on receptor oligomerization of A2AR and other GPCRs reconstituted in vitro for biophysical studies.
Collapse
Affiliation(s)
- Khanh Dinh Quoc Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Michael Vigers
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Eric Sefah
- C. Eugene Bennett Department of Chemistry, West Virginia UniversityMorgantownUnited States
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Jennifer Paige Hoover
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Nicole Star Schonenbach
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia UniversityMorgantownUnited States
| | - Michelle Ann O'Malley
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
7
|
Sljoka A. Probing Allosteric Mechanism with Long-Range Rigidity Transmission Across Protein Networks. Methods Mol Biol 2021; 2253:61-75. [PMID: 33315218 DOI: 10.1007/978-1-0716-1154-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Allosteric transmission refers to regulation of protein function at a distance. "Allostery" involves regulation and/or signal transduction induced by a perturbation event. Allostery, which has been coined the "second secret of life," is a fundamental property of most dynamics proteins. Most of critical questions surrounding allostery are largely unresolved. One of the key puzzles is to describe the physical mechanism of distant coupled conformational change. Another hot research area surrounding allostery is detection of allosteric pathways or regions (residues) in the protein that are the most critical for transmission of allosteric information. Using techniques inspired by mathematical rigidity theory and mechanical linkages, we have previously proposed a mechanistic model and description of allosteric transmission and an accompanying computational method, the Rigidity Transmission Allostery (RTA) algorithm. The RTA algorithm and method are designed to predict if mechanical perturbation of rigidity, for example, due to ligand binding, at one site of the protein can transmit and propagate across a protein structure and in turn cause a change in available conformational degrees of freedom and a change in conformation at a second distant site, equivalently resulting in allosteric transmission. The RTA algorithm is computationally very fast and can rapidly scan many unknown sites for allosteric transmission, identifying potential novel allosteric sites and quantify their allosteric effect. In this chapter we will discuss the rigidity-based mechanistic model of allosteric communication. As a case illustrative study, we will demonstrate RTA analysis on a G protein coupled receptor (GPCR) human adenosine A2A receptor. Our method gives important implications and a novel prospective for general mechanistic description of allosteric communication.
Collapse
Affiliation(s)
- Adnan Sljoka
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan.
- CREST, Japan Science and Technology Agency (JST), Tokyo, Japan.
- RIKEN, Center for Advanced Intelligence Project, Tokyo, Japan.
| |
Collapse
|
8
|
Insights into adenosine A2A receptor activation through cooperative modulation of agonist and allosteric lipid interactions. PLoS Comput Biol 2020; 16:e1007818. [PMID: 32298258 PMCID: PMC7188303 DOI: 10.1371/journal.pcbi.1007818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/28/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The activation process of G protein-coupled receptors (GPCRs) has been extensively studied, both experimentally and computationally. In particular, Molecular Dynamics (MD) simulations have proven useful in exploring GPCR conformational space. The typical behaviour of class A GPCRs, when subjected to unbiased MD simulations from their crystallized inactive state, is to fluctuate between inactive and intermediate(s) conformations, even with bound agonist. Fully active conformation(s) are rarely stabilized unless a G protein is also bound. Despite several crystal structures of the adenosine A2a receptor (A2aR) having been resolved in complex with co-crystallized agonists and Gs protein, its agonist-mediated activation process is still not completely understood. In order to thoroughly examine the conformational landscape of A2aR activation, we performed unbiased microsecond-length MD simulations in quadruplicate, starting from the inactive conformation either in apo or with bound agonists: endogenous adenosine or synthetic NECA, embedded in two homogeneous phospholipid membranes: 1,2-dioleoyl-sn-glycerol-3-phosphoglycerol (DOPG) or 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC). In DOPC with bound adenosine or NECA, we observe transition to an intermediate receptor conformation consistent with the known adenosine-bound crystal state. In apo state in DOPG, two different intermediate conformations are obtained. One is similar to that observed with bound adenosine in DOPC, while the other is closer to the active state but not yet fully active. Exclusively, in DOPG with bound adenosine or NECA, we reproducibly identify receptor conformations with fully active features, which are able to dock Gs protein. These different receptor conformations can be attributed to the action/absence of agonist and phospholipid-mediated allosteric effects on the intracellular side of the receptor.
Collapse
|
9
|
Abstract
Ligand-receptor interactions, which are ubiquitous in physiology, are described by theoretical models of receptor pharmacology. Structural evidence for graded efficacy receptor conformations predicted by receptor theory has been limited but is critical to fully validate theoretical models. We applied quantitative structure-function approaches to characterize the effects of structurally similar and structurally diverse agonists on the conformational ensemble of nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). For all ligands, agonist functional efficacy is correlated to a shift in the conformational ensemble equilibrium from a ground state toward an active state, which is detected by NMR spectroscopy but not observed in crystal structures. For the structurally similar ligands, ligand potency and affinity are also correlated to efficacy and conformation, indicating ligand residence times among related analogs may influence receptor conformation and function. Our results derived from quantitative graded activity-conformation correlations provide experimental evidence and a platform with which to extend and test theoretical models of receptor pharmacology to more accurately describe and predict ligand-dependent receptor activity.
Collapse
|
10
|
NMR investigation of protein-ligand interactions for G-protein coupled receptors. Future Med Chem 2019; 11:1811-1825. [PMID: 31287732 DOI: 10.4155/fmc-2018-0312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this review, we report NMR studies of ligand-GPCR interactions, including both ligand-observed and protein-observed NMR experiments. Published studies exemplify how NMR can be used as a powerful tool to design novel GPCR ligands and investigate the ligand-induced conformational changes of GPCRs. The strength of NMR also lies in its capability to explore the diverse signaling pathways and probe the allosteric modulation of these highly dynamic receptors. By offering unique opportunities for the identification, structural and functional characterization of GPCR ligands, NMR will likely play a major role for the generation of novel molecules both as new tools for the understanding of the GPCR function and as therapeutic compounds for a large diversity of pathologies.
Collapse
|
11
|
Mahmod Al-Qattan MN, Mordi MN. Molecular Basis of Modulating Adenosine Receptors Activities. Curr Pharm Des 2019; 25:817-831. [DOI: 10.2174/1381612825666190304122624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
Abstract
Modulating cellular processes through extracellular chemical stimuli is medicinally an attractive approach to control disease conditions. GPCRs are the most important group of transmembranal receptors that produce different patterns of activations using intracellular mediators (such as G-proteins and Beta-arrestins). Adenosine receptors (ARs) belong to GPCR class and are divided into A1AR, A2AAR, A2BAR and A3AR. ARs control different physiological activities thus considered valuable target to control neural, heart, inflammatory and other metabolic disorders. Targeting ARs using small molecules essentially works by binding orthosteric and/or allosteric sites of the receptors. Although targeting orthosteric site is considered typical to modulate receptor activity, allosteric sites provide better subtype selectivity, saturable modulation of activity and variable activation patterns. Each receptor exists in dynamical equilibrium between conformational ensembles. The equilibrium is affected by receptor interaction with other molecules. Changing the population of conformational ensembles of the receptor is the method by which orthosteric, allosteric and other cellular components control receptor signaling. Herein, the interactions of ARs with orthosteric, allosteric ligands as well as intracellular mediators are described. A quinary interaction model for the receptor is proposed and energy wells for major conformational ensembles are retrieved.
Collapse
Affiliation(s)
| | - Mohd Nizam Mordi
- Centre For Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| |
Collapse
|
12
|
You M, Pan Y, Liu Y, Chen Y, Wu Y, Si J, Wang K, Hu F. Royal Jelly Alleviates Cognitive Deficits and β-Amyloid Accumulation in APP/PS1 Mouse Model Via Activation of the cAMP/PKA/CREB/BDNF Pathway and Inhibition of Neuronal Apoptosis. Front Aging Neurosci 2019; 10:428. [PMID: 30687079 PMCID: PMC6338040 DOI: 10.3389/fnagi.2018.00428] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/11/2018] [Indexed: 12/06/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized clinically by progressive cognitive decline and pathologically by the accumulation of amyloid-β (Aβ) in the brain. Royal jelly (RJ), a secretion of honeybee hypopharyngeal and mandibular glands, has previously been shown to have anti-aging and neuromodulatory activities. In this study, we discovered that 3 months of RJ treatment substantially ameliorated behavioral deficits of APP/PS1 mice in the Morris Water Maze (MWM) test and step-down passive avoidance test. Our data also showed that RJ significantly diminished amyloid plaque pathology in APP/PS1 mice. Furthermore, RJ alleviated c-Jun N-terminal kinase (JNK) phosphorylation-induced neuronal apoptosis by suppressing oxidative stress. Importantly, hippocampal cyclic adenosine monophosphate (cAMP), p-PKA, p-CREB and BDNF levels were significantly increased in the APP/PS1 mice after RJ treatment, indicating that the cAMP/PKA/CREB/BDNF pathway might be related to the ameliorative effect of RJ on cognitive decline. Collectively, these results provide a scientific basis for using RJ as a functional food for targeting AD pathology.
Collapse
Affiliation(s)
- Mengmeng You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongming Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yichen Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yifan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Juanjuan Si
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Ravula T, Hardin NZ, Di Mauro GM, Ramamoorthy A. Styrene maleic acid derivates to enhance the applications of bio-inspired polymer based lipid-nanodiscs. Eur Polym J 2018; 108:597-602. [PMID: 31105326 PMCID: PMC6516473 DOI: 10.1016/j.eurpolymj.2018.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Membrane mimetics are essential to study the structure, dynamics and function of membrane-associated proteins by biophysical and biochemical approaches. Among various membrane mimetics that have been developed and demonstrated for studies on membrane proteins, lipid nanodiscs are the latest developments in the field and are increasingly used for various applications. While lipid-nanodiscs can be formed using an amphipathic membrane scaffold protein (MSP), peptide, or synthetic polymer, the synthetic polymer based nanodiscs exhibit unique advantages because of the ability to functionalize them for various applications. In addition to the use of synthetic polymers to extract membrane proteins directly from the cell membranes, recent advances in the development of polymers used for nanodiscs formation are attracting new attention to the field of nanodiscs technology. Here we review the developments of novel polymer modifications that overcome the current limitations and enhance the applications of polymer based nanodiscs to a wider variety of biophysical techniques used to study membrane proteins. A summary of the functionalization of poly(Styrene-co-Maleic Acid), SMA, polymers developed by our research and their advantages are also covered in this review article.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Nathaniel. Z Hardin
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Giacomo M. Di Mauro
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
14
|
Carpenter B, Lebon G. Human Adenosine A 2A Receptor: Molecular Mechanism of Ligand Binding and Activation. Front Pharmacol 2017; 8:898. [PMID: 29311917 PMCID: PMC5736361 DOI: 10.3389/fphar.2017.00898] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/24/2017] [Indexed: 11/29/2022] Open
Abstract
Adenosine receptors (ARs) comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs). ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR), making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.
Collapse
Affiliation(s)
- Byron Carpenter
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Guillaume Lebon
- Institut de Génomique Fonctionnelle, Neuroscience Department, UMR CNRS 5203, INSERM U1191, Université de Montpellier, Montpellier, France
| |
Collapse
|