1
|
Kruglov AG, Nikiforova AB. The Switching of the Type of a ROS Signal from Mitochondria: The Role of Respiratory Substrates and Permeability Transition. Antioxidants (Basel) 2024; 13:1317. [PMID: 39594458 PMCID: PMC11591497 DOI: 10.3390/antiox13111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Flashes of superoxide anion (O2-) in mitochondria are generated spontaneously or during the opening of the permeability transition pore (mPTP) and a sudden change in the metabolic state of a cell. Under certain conditions, O2- can leave the mitochondrial matrix and perform signaling functions beyond mitochondria. In this work, we studied the kinetics of the release of O2- and H2O2 from isolated mitochondria upon mPTP opening and the modulation of the metabolic state of mitochondria by the substrates of respiration and oxidative phosphorylation. It was found that mPTP opening leads to suppression of H2O2 emission and activation of the O2- burst. When the induction of mPTP was blocked by its antagonists (cyclosporine A, ruthenium red, EGTA), the level of substrates of respiration and oxidative phosphorylation and the selective inhibitors of complexes I and V determined the type of reactive oxygen species (ROS) emitted by mitochondria. It was concluded that upon complete and partial reduction and complete oxidation of redox centers of the respiratory chain, mitochondria emit H2O2, O2-, and nothing, respectively. The results indicate that the mPTP- and substrate-dependent switching of the type of ROS leaving mitochondria may be the basis for O2-- and H2O2-selective redox signaling in a cell.
Collapse
Affiliation(s)
- Alexey G. Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Moscow Region, Russia;
| | | |
Collapse
|
2
|
Speijer D. How mitochondrial cristae illuminate the important role of oxygen during eukaryogenesis. Bioessays 2024; 46:e2300193. [PMID: 38449346 DOI: 10.1002/bies.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Inner membranes of mitochondria are extensively folded, forming cristae. The observed overall correlation between efficient eukaryotic ATP generation and the area of internal mitochondrial inner membranes both in unicellular organisms and metazoan tissues seems to explain why they evolved. However, the crucial use of molecular oxygen (O2) as final acceptor of the electron transport chain is still not sufficiently appreciated. O2 was an essential prerequisite for cristae development during early eukaryogenesis and could be the factor allowing cristae retention upon loss of mitochondrial ATP generation. Here I analyze illuminating bacterial and unicellular eukaryotic examples. I also discuss formative influences of intracellular O2 consumption on the evolution of the last eukaryotic common ancestor (LECA). These considerations bring about an explanation for the many genes coming from other organisms than the archaeon and bacterium merging at the start of eukaryogenesis.
Collapse
Affiliation(s)
- Dave Speijer
- Medical Biochemistry, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Roussel D, Janillon S, Teulier L, Pichaud N. Succinate oxidation rescues mitochondrial ATP synthesis at high temperature in Drosophila melanogaster. FEBS Lett 2023; 597:2221-2229. [PMID: 37463836 DOI: 10.1002/1873-3468.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Decreased NADH-induced and increased reduced FADH2 -induced respiration rates at high temperatures are associated with thermal tolerance in Drosophila. Here, we determined whether this change was associated with adjustments of adenosine triphosphate (ATP) production rate and coupling efficiency (ATP/O) in Drosophila melanogaster. We show that decreased pyruvate + malate oxidation at 35°C is associated with a collapse of ATP synthesis and a drop in ATP/O ratio. However, adding succinate triggered a full compensation of both oxygen consumption and ATP synthesis rates at this high temperature. Addition of glycerol-3-phosphate (G3P) led to a huge increase in respiration with no further advantage in terms of ATP production. We conclude that succinate is the only alternative substrate able to compensate both oxygen consumption and ATP production rates during oxidative phosphorylation at high temperature, which has important implications for thermal adaptation.
Collapse
Affiliation(s)
- Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Sonia Janillon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558 LBBE, Villeurbanne, France
| | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, New Brunswick, Canada
| |
Collapse
|
4
|
Singh G, George G, Raja SO, Kandaswamy P, Kumar M, Thutupalli S, Laxman S, Gulyani A. A molecular rotor FLIM probe reveals dynamic coupling between mitochondrial inner membrane fluidity and cellular respiration. Proc Natl Acad Sci U S A 2023; 120:e2213241120. [PMID: 37276406 PMCID: PMC10268597 DOI: 10.1073/pnas.2213241120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
The inner mitochondrial membrane (IMM), housing components of the electron transport chain (ETC), is the site for respiration. The ETC relies on mobile carriers; therefore, it has long been argued that the fluidity of the densely packed IMM can potentially influence ETC flux and cell physiology. However, it is unclear if cells temporally modulate IMM fluidity upon metabolic or other stimulation. Using a photostable, red-shifted, cell-permeable molecular-rotor, Mitorotor-1, we present a multiplexed approach for quantitatively mapping IMM fluidity in living cells. This reveals IMM fluidity to be linked to cellular-respiration and responsive to stimuli. Multiple approaches combining in vitro experiments and live-cell fluorescence (FLIM) lifetime imaging microscopy (FLIM) show Mitorotor-1 to robustly report IMM 'microviscosity'/fluidity through changes in molecular free volume. Interestingly, external osmotic stimuli cause controlled swelling/compaction of mitochondria, thereby revealing a graded Mitorotor-1 response to IMM microviscosity. Lateral diffusion measurements of IMM correlate with microviscosity reported via Mitorotor-1 FLIM-lifetime, showing convergence of independent approaches for measuring IMM local-order. Mitorotor-1 FLIM reveals mitochondrial heterogeneity in IMM fluidity; between-and-within cells and across single mitochondrion. Multiplexed FLIM lifetime imaging of Mitorotor-1 and NADH autofluorescence reveals that IMM fluidity positively correlates with respiration, across individual cells. Remarkably, we find that stimulating respiration, through nutrient deprivation or chemically, also leads to increase in IMM fluidity. These data suggest that modulating IMM fluidity supports enhanced respiratory flux. Our study presents a robust method for measuring IMM fluidity and suggests a dynamic regulatory paradigm of modulating IMM local order on changing metabolic demand.
Collapse
Affiliation(s)
- Gaurav Singh
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
| | - Geen George
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
| | - Sufi O. Raja
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046Hyderabad, India
| | - Ponnuvel Kandaswamy
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, 560065Bangalore, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, 560065Bangalore, India
- International Centre for Theoretical Sciences, Tata Institute for Fundamental Research, 560089 Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, 560065Bangalore, India
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046Hyderabad, India
| |
Collapse
|
5
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Weaver RJ, Rabinowitz S, Thueson K, Havird JC. Genomic Signatures of Mitonuclear Coevolution in Mammals. Mol Biol Evol 2022; 39:6775223. [PMID: 36288802 PMCID: PMC9641969 DOI: 10.1093/molbev/msac233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial (mt) and nuclear-encoded proteins are integrated in aerobic respiration, requiring co-functionality among gene products from fundamentally different genomes. Different evolutionary rates, inheritance mechanisms, and selection pressures set the stage for incompatibilities between interacting products of the two genomes. The mitonuclear coevolution hypothesis posits that incompatibilities may be avoided if evolution in one genome selects for complementary changes in interacting genes encoded by the other genome. Nuclear compensation, in which deleterious mtDNA changes are offset by compensatory nuclear changes, is often invoked as the primary mechanism for mitonuclear coevolution. Yet, direct evidence supporting nuclear compensation is rare. Here, we used data from 58 mammalian species representing eight orders to show strong correlations between evolutionary rates of mt and nuclear-encoded mt-targeted (N-mt) proteins, but not between mt and non-mt-targeted nuclear proteins, providing strong support for mitonuclear coevolution across mammals. N-mt genes with direct mt interactions also showed the strongest correlations. Although most N-mt genes had elevated dN/dS ratios compared to mt genes (as predicted under nuclear compensation), N-mt sites in close contact with mt proteins were not overrepresented for signs of positive selection compared to noncontact N-mt sites (contrary to predictions of nuclear compensation). Furthermore, temporal patterns of N-mt and mt amino acid substitutions did not support predictions of nuclear compensation, even in positively selected, functionally important residues with direct mitonuclear contacts. Overall, our results strongly support mitonuclear coevolution across ∼170 million years of mammalian evolution but fail to support nuclear compensation as the major mode of mitonuclear coevolution.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA.,Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA
| | | | - Kiley Thueson
- Department of Integrative Biology, University of Texas, Austin, TX
| | - Justin C Havird
- Department of Integrative Biology, University of Texas, Austin, TX
| |
Collapse
|
7
|
Apoptosis induction in human prostate cancer cells related to the fatty acid metabolism by wogonin-mediated regulation of the AKT-SREBP1-FASN signaling network. Food Chem Toxicol 2022; 169:113450. [DOI: 10.1016/j.fct.2022.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
8
|
cAMP/PKA Signaling Modulates Mitochondrial Supercomplex Organization. Int J Mol Sci 2022; 23:ijms23179655. [PMID: 36077053 PMCID: PMC9455794 DOI: 10.3390/ijms23179655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The oxidative phosphorylation (OXPHOS) system couples the transfer of electrons to oxygen with pumping of protons across the inner mitochondrial membrane, ensuring the ATP production. Evidence suggests that respiratory chain complexes may also assemble into supramolecular structures, called supercomplexes (SCs). The SCs appear to increase the efficiency/capacity of OXPHOS and reduce the reactive oxygen species (ROS) production, especially that which is produced by complex I. Studies suggest a mutual regulation between complex I and SCs, while SCs organization is important for complex I assembly/stability, complex I is involved in the supercomplex formation. Complex I is a pacemaker of the OXPHOS system, and it has been shown that the PKA-dependent phosphorylation of some of its subunits increases the activity of the complex, reducing the ROS production. In this work, using in ex vivo and in vitro models, we show that the activation of cAMP/PKA cascade resulted in an increase in SCs formation associated with an enhanced capacity of electron flux and ATP production rate. This is also associated with the phosphorylation of the NDUFS4 subunit of complex I. This aspect highlights the key role of complex I in cellular energy production.
Collapse
|
9
|
Speijer D. Molecular characteristics of the multi-functional FAO enzyme ACAD9 illustrate the importance of FADH 2 /NADH ratios for mitochondrial ROS formation. Bioessays 2022; 44:e2200056. [PMID: 35708204 DOI: 10.1002/bies.202200056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022]
Abstract
A decade ago I postulated that ROS formation in mitochondria was influenced by different FADH2 /NADH (F/N) ratios of catabolic substrates. Thus, fatty acid oxidation (FAO) would give higher ROS formation than glucose oxidation. Both the emergence of peroxisomes and neurons not using FAO, could be explained thus. ROS formation in NADH:ubiquinone oxidoreductase (Complex I) comes about by reverse electron transport (RET) due to high QH2 levels, and scarcity of its electron-acceptor (Q) during FAO. The then new, unexpected, finding of an FAO enzyme, ACAD9, being involved in complex I biogenesis, hinted at connections in line with the hypothesis. Recent findings about ACAD9's role in regulation of respiration fit with predictions the model makes: cementing connections between ROS production and F/N ratios. I describe how ACAD9 might be central to reversing the oxidative damage in complex I resulting from FAO. This seems to involve two distinct, but intimately connected, ACAD9 characteristics: (i) its upregulation of complex I biogenesis, and (ii) releasing FADH2 , with possible conversion into FMN, the crucial prosthetic group of complex I.
Collapse
Affiliation(s)
- Dave Speijer
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Recurrent erosion of COA1/MITRAC15 exemplifies conditional gene dispensability in oxidative phosphorylation. Sci Rep 2021; 11:24437. [PMID: 34952909 PMCID: PMC8709867 DOI: 10.1038/s41598-021-04077-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle fibers rely upon either oxidative phosphorylation or the glycolytic pathway with much less reliance on oxidative phosphorylation to achieve muscular contractions that power mechanical movements. Species with energy-intensive adaptive traits that require sudden bursts of energy have a greater dependency on glycolytic fibers. Glycolytic fibers have decreased reliance on OXPHOS and lower mitochondrial content compared to oxidative fibers. Hence, we hypothesized that gene loss might have occurred within the OXPHOS pathway in lineages that largely depend on glycolytic fibers. The protein encoded by the COA1/MITRAC15 gene with conserved orthologs found in budding yeast to humans promotes mitochondrial translation. We show that gene disrupting mutations have accumulated within the COA1 gene in the cheetah, several species of galliform birds, and rodents. The genomic region containing COA1 is a well-established evolutionary breakpoint region in mammals. Careful inspection of genome assemblies of closely related species of rodents and marsupials suggests two independent COA1 gene loss events co-occurring with chromosomal rearrangements. Besides recurrent gene loss events, we document changes in COA1 exon structure in primates and felids. The detailed evolutionary history presented in this study reveals the intricate link between skeletal muscle fiber composition and the occasional dispensability of the chaperone-like role of the COA1 gene.
Collapse
|
11
|
Cogliati S, Cabrera-Alarcón JL, Enriquez JA. Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 2021; 49:2655-2668. [PMID: 34747989 PMCID: PMC8786287 DOI: 10.1042/bst20210460] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are one of the most exhaustively investigated organelles in the cell and most attention has been paid to the components of the mitochondrial electron transport chain (ETC) in the last 100 years. The ETC collects electrons from NADH or FADH2 and transfers them through a series of electron carriers within multiprotein respiratory complexes (complex I to IV) to oxygen, therefore generating an electrochemical gradient that can be used by the F1-F0-ATP synthase (also named complex V) in the mitochondrial inner membrane to synthesize ATP. The organization and function of the ETC is a continuous source of surprises. One of the latest is the discovery that the respiratory complexes can assemble to form a variety of larger structures called super-complexes (SCs). This opened an unexpected level of complexity in this well-known and fundamental biological process. This review will focus on the current evidence for the formation of different SCs and will explore how they modulate the ETC organization according to the metabolic state. Since the field is rapidly growing, we also comment on the experimental techniques used to describe these SC and hope that this overview may inspire new technologies that will help to advance the field.
Collapse
Affiliation(s)
- Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | | | - Jose Antonio Enriquez
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
12
|
Effect of Novel Antipsychotics on Energy Metabolism - In Vitro Study in Pig Brain Mitochondria. Mol Neurobiol 2021; 58:5548-5563. [PMID: 34365585 DOI: 10.1007/s12035-021-02498-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
The identification and quantification of mitochondrial effects of novel antipsychotics (brexpiprazole, cariprazine, loxapine, and lurasidone) were studied in vitro in pig brain mitochondria. Selected parameters of mitochondrial metabolism, electron transport chain (ETC) complexes, citrate synthase (CS), malate dehydrogenase (MDH), monoamine oxidase (MAO), mitochondrial respiration, and total ATP and reactive oxygen species (ROS) production were evaluated and associated with possible adverse effects of drugs. All tested antipsychotics decreased the ETC activities (except for complex IV, which increased in activity after brexpiprazole and loxapine addition). Both complex I- and complex II-linked respiration were dose-dependently inhibited, and significant correlations were found between complex I-linked respiration and both complex I activity (positive correlation) and complex IV activity (negative correlation). All drugs significantly decreased mitochondrial ATP production at higher concentrations. Hydrogen peroxide production was significantly increased at 10 µM brexpiprazole and lurasidone and at 100 µM cariprazine and loxapine. All antipsychotics acted as partial inhibitors of MAO-A, brexpiprazole and loxapine partially inhibited MAO-B. Based on our results, novel antipsychotics probably lacked oxygen uncoupling properties. The mitochondrial effects of novel antipsychotics might contribute on their adverse effects, which are mostly related to decreased ATP production and increased ROS production, while MAO-A inhibition might contribute to their antidepressant effect, and brexpiprazole- and loxapine-induced MAO-B inhibition might likely promote neuroplasticity and neuroprotection. The assessment of drug-induced mitochondrial dysfunctions is important in development of new drugs as well as in the understanding of molecular mechanism of adverse or side drug effects.
Collapse
|
13
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
14
|
Morris O, Jasper H. Reactive Oxygen Species in intestinal stem cell metabolism, fate and function. Free Radic Biol Med 2021; 166:140-146. [PMID: 33600942 DOI: 10.1016/j.freeradbiomed.2021.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Long dismissed as merely harmful respiratory by-products, Reactive Oxygen Species (ROS) have emerged as critical intracellular messengers during cell growth and differentiation. ROS's signaling roles are particularly prominent within the intestine, whose high regenerative capacity is maintained by Intestinal Stem Cells (ISCs). In this review, we outline roles for ROS in ISCs as revealed by studies using Drosophila and mouse model systems. We focus particularly on recent studies highlighting how ROS ties to metabolic adaptations, which ensure energy supply matches demand during ISC activation and differentiation. We describe how declines in these adaptive mechanisms, through aging or pathology, promote reciprocal changes in ISC metabolism and ROS signaling. These changes ultimately contribute to aberrant ISC function, a loss of tissue homeostasis, and a shortened lifespan.
Collapse
Affiliation(s)
- Otto Morris
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA.
| |
Collapse
|
15
|
Bioenergetic Profiling of the Differentiating Human MDS Myeloid Lineage with Low and High Bone Marrow Blast Counts. Cancers (Basel) 2020; 12:cancers12123520. [PMID: 33255926 PMCID: PMC7759906 DOI: 10.3390/cancers12123520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Myelodysplastic syndromes (MDS) encompass a very heterogeneous group of clonal hematopoietic stem cell differentiation disorders with malignant potential, an elusive pathobiology, and a poor prognosis. Given that the bioenergetic profile of the hematopoietic precursors is central to their effective differentiation, we investigated the metabolic status of a human differentiating MDS bone marrow-derived myeloid lineage. Our findings suggest that a perturbed metabolism underlies the syndrome’s pathogenesis and also determines the disease severity. We also propose that these bioenergetic alterations are essentially featured in and indeed drive the process of leukemic transformation. Our data not only offer novel insight into the elusive MDS pathophysiology, but also change our viewpoint on MDS-related acute myeloid leukemia biology. Abstract Myelodysplastic syndromes (MDS) encompass a very heterogeneous group of clonal hematopoietic stem cell differentiation disorders with malignant potential and an elusive pathobiology. Given the central role of metabolism in effective differentiation, we performed an untargeted metabolomic analysis of differentiating myeloid lineage cells from MDS bone marrow aspirates that exhibited <5% (G1) or ≥5% (G2) blasts, in order to delineate its role in MDS severity and malignant potential. Bone marrow aspirates were collected from 14 previously untreated MDS patients (G1, n = 10 and G2, n = 4) and age matched controls (n = 5). Following myeloid lineage cell isolation, untargeted mass spectrometry-based metabolomics analysis was performed. Data were processed and analyzed using Metabokit. Enrichment analysis was performed using Metaboanalyst v4 employing pathway-associated metabolite sets. We established a bioenergetic profile coordinated by the Warburg phenomenon in both groups, but with a massively different outcome that mainly depended upon its group mitochondrial function and redox state. G1 cells are overwhelmed by glycolytic intermediate accumulation due to failing mitochondria, while the functional electron transport chain and improved redox in G2 compensate for Warburg disruption. Both metabolomes reveal the production and abundance of epigenetic modifiers. G1 and G2 metabolomes differ and eventually determine the MDS clinical phenotype, as well as the potential for malignant transformation.
Collapse
|
16
|
Yang Y, Li S, Qu Y, Wang X, An W, Li Z, Han Z, Qin L. Nitrate partially inhibits lipopolysaccharide-induced inflammation by maintaining mitochondrial function. J Int Med Res 2020; 48:300060520902605. [PMID: 32043404 PMCID: PMC7111041 DOI: 10.1177/0300060520902605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective Nitrate has been reported to protect cells via the nitrate-nitrite-nitric oxide (NO) pathway. Most studies tend to use nitrite to investigate the mechanisms of this pathway. However, the latest studies have confirmed that mammals can directly degrade nitrate via xanthine oxidoreductase (XOR). The hypothesis is that nitrate could play a protective role in inflammatory responses independent of bacterial nitrate reductases. Methods Mouse RAW264.7 macrophages were pre-incubated with sodium nitrate (10, 100, and 500 µM) for 2 hours, and then treated with lipopolysaccharide (LPS) for 2 hours to induce inflammation. The Quantikine Immunoassay was used to measure interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations in the supernatant. The fluorescence intensity ratio of red/green from JC-1 was used to assay mitochondrial membrane potential. The fluorescence intensity of MitoSOX Red was used to indicate the generation of mitochondrial reactive oxygen species. Results Nitrate partially reduced IL-6 and TNF-α secretion via reducing NF-κB signaling in LPS-induced macrophages. Nitrate also reduced the generation of mitochondrial reactive oxygen species by regulating mitochondrial function. These effects depended on XOR-derived NO but were independent of inducible nitric oxide synthase-derived NO. Conclusion Nitrate regulates mitochondrial function via XOR-derived NO to partially inhibit LPS-induced inflammation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Shaoqing Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xue Wang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wei An
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhilin Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Ming Y, Ma QH, Han XL, Li HY. Molecular hydrogen improves type 2 diabetes through inhibiting oxidative stress. Exp Ther Med 2020; 20:359-366. [PMID: 32537002 PMCID: PMC7291681 DOI: 10.3892/etm.2020.8708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the potential therapeutic effects of molecular hydrogen on type 2 diabetes mellitus (T2DM) in rats. Following maintenance on a high-fat diet for 4 weeks, a T2DM model was established using an injection of 30 mg/kg streptozotocin via the caudal vein into Sprague-Dawley rats. On day 0 and Day 80, the blood samples were obtained from each rat for the measurement of biochemical indicators including blood lipids, fasting blood glucose, hepatic glycogen, fasting serum insulin, insulin sensitivity index, insulin resistance index, serum superoxide dismutase (SOD) and serum malondialdehyde (MDA) using an automatic biochemical analyzer. The kidneys and pancreas tissues were harvested for HE staining and Western blot assay of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated (p)-p65, p65, p-IκB and IκB. The results showed that in rats with T2DM, molecular hydrogen treatment decreased fasting blood glucose levels, increased hepatic glycogen synthesis and improved insulin sensitivity. Treatment with molecular hydrogen also increased the production of SOD whilst decreasing the production of MDA. In addition, molecular hydrogen alleviated the pathological changes exhibited by pancreatic islets and kidney during T2DM. Mechanistically, molecular hydrogen decreased TLR4 and MyD88 expression levels whilst also decreasing p65 and NF-κB inhibitor phosphorylation. In conclusion, molecular hydrogen exerted therapeutic effects against T2DM by improving hyperglycemia and inhibiting oxidative stress through mechanisms that are associated with the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yi Ming
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qi-Hang Ma
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xin-Li Han
- Department of Encephalopathy, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261000, P.R. China
| | - Hong-Yan Li
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
18
|
Zhang S, Yang MJ, Peng B, Peng XX, Li H. Reduced ROS-mediated antibiotic resistance and its reverting by glucose in Vibrio alginolyticus. Environ Microbiol 2020; 22:4367-4380. [PMID: 32441046 DOI: 10.1111/1462-2920.15085] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023]
Abstract
Antibiotic-resistant Vibrio alginolyticus poses a big challenge to human health and food safety. It is urgently needed to understand the mechanisms underlying antibiotic resistance to develop effective approaches for the control. Here we explored the metabolic difference between gentamicin-resistant V. alginolyticus (VA-RGEN ) and gentamicin-sensitive V. alginolyticus (VA-S), and found that the reactive oxygen species (ROS) generation was altered. Compared with VA-S, the ROS content in VA-RGEN was reduced due to the decreased generation and increased breakdown of ROS. The decreased production of ROS was attributed to the decreased central carbon metabolism, which is associated with the resistance to gentamicin. As such a mechanism, we exogenously administrated VA-RGEN with the glucose that activated the central carbon metabolism and promoted the generation of ROS, but decreased the breakdown of ROS in VA-RGEN . The gentamicin-mediated killing was increased with the elevation of the ROS level by a synergistic effect between gentamicin and exogenous glucose. The synergistic effect was inhibited by thiourea, a scavenger of ROS. These results reveal a reduced ROS-mediated antibiotic resistance mechanism and its reversal by exogenous glucose.
Collapse
Affiliation(s)
- Song Zhang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
19
|
Speijer D. Debating Eukaryogenesis—Part 1: Does Eukaryogenesis Presuppose Symbiosis Before Uptake? Bioessays 2020; 42:e1900157. [DOI: 10.1002/bies.201900157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, AmsterdamUMCUniversity of Amsterdam Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| |
Collapse
|
20
|
ĽUPTÁK M, HROUDOVÁ J. Important Role of Mitochondria and the Effect of Mood Stabilizers on Mitochondrial Function. Physiol Res 2019; 68:S3-S15. [DOI: 10.33549/physiolres.934324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria primarily serve as source of cellular energy through the Krebs cycle and β-oxidation to generate substrates for oxidative phosphorylation. Redox reactions are used to transfer electrons through a gradient to their final acceptor, oxygen, and to pump hydrogen protons into the intermembrane space. Then, ATP synthase uses the electrochemical gradient to generate adenosine triphosphate (ATP). During these processes, reactive oxygen species (ROS) are generated. ROS are highly reactive molecules with important physiological functions in cellular signaling. Mitochondria play a crucial role in intracellular calcium homeostasis and serve as transient calcium stores. High levels of both, ROS and free cytosolic calcium, can damage mitochondrial and cellular structures and trigger apoptosis. Impaired mitochondrial function has been described in many psychiatric diseases, including mood disorders, in terms of lowered mitochondrial membrane potential, suppressed ATP formation, imbalanced Ca2+ levels and increased ROS levels. In vitro models have indicated that mood stabilizers affect mitochondrial respiratory chain complexes, ROS production, ATP formation, Ca2+ buffering and the antioxidant system. Most studies support the hypothesis that mitochondrial dysfunction is a primary feature of mood disorders. The precise mechanism of action of mood stabilizers remains unknown, but new mitochondrial targets have been proposed for use as mood stabilizers and mitochondrial biomarkers in the evaluation of therapy effectiveness.
Collapse
Affiliation(s)
- M. ĽUPTÁK
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | |
Collapse
|
21
|
Scott KY, Matthew R, Woolcock J, Silva M, Lemieux H. Adjustments in the control of mitochondrial respiratory capacity to tolerate temperature fluctuations. ACTA ACUST UNITED AC 2019; 222:jeb.207951. [PMID: 31439652 DOI: 10.1242/jeb.207951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
As the world's climate changes, life faces an evolving thermal environment. Mitochondrial oxidative phosphorylation (OXPHOS) is critical to ensure sufficient cellular energy production, and it is strongly influenced by temperature. The thermally induced changes to the regulation of specific steps within the OXPHOS process are poorly understood. In our study, we used the eurythermal species of planarian Dugesia tigrina to study the thermal sensitivity of the OXPHOS process at 10, 15, 20, 25 and 30°C. We conducted cold acclimation experiments where we measured the adjustment of specific steps in OXPHOS at two assay temperatures (10 and 20°C) following 4 weeks of acclimation under normal (22°C) or low (5°C) temperature conditions. At the low temperature, the contribution of the NADH pathway to the maximal OXPHOS capacity, in a combined pathway (NADH and succinate), was reduced. There was partial compensation by an increased contribution of the succinate pathway. As the temperature decreased, OXPHOS became more limited by the capacity of the phosphorylation system. Acclimation to the low temperature resulted in positive adjustments of the NADH pathway capacity due, at least in part, to an increase in complex I activity. The acclimation also resulted in a better match between OXPHOS and phosphorylation system capacities. Both of these adjustments following acclimation were specific to the low assay temperature. We conclude that there is substantial plasticity in the mitochondrial OXPHOS process following thermal acclimation in D. tigrina, and this probably contributes to the wide thermal range of the species.
Collapse
Affiliation(s)
- Katrina Y Scott
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9
| | - Jennifer Woolcock
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9
| | - Maise Silva
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9.,Faculdade de Tecnologia e Ciências, Salvador, Bahia, 41741-590, Brazil
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9 .,Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| |
Collapse
|
22
|
Schönfeld P. Can All Major Ros Forming Sites of the Respiratory Chain Be Activated by High FADH 2 /NADH Ratios? Bioessays 2018; 41:e1800225. [PMID: 30525212 DOI: 10.1002/bies.201800225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|