1
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
2
|
Merdler-Rabinowicz R, Gorelik D, Park J, Meydan C, Foox J, Karmon M, Roth H, Cohen-Fultheim R, Shohat-ophir G, Eisenberg E, Ruppin E, Mason C, Levanon E. Elevated A-to-I RNA editing in COVID-19 infected individuals. NAR Genom Bioinform 2023; 5:lqad092. [PMID: 37859800 PMCID: PMC10583280 DOI: 10.1093/nargab/lqad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Given the current status of coronavirus disease 2019 (COVID-19) as a global pandemic, it is of high priority to gain a deeper understanding of the disease's development and how the virus impacts its host. Adenosine (A)-to-Inosine (I) RNA editing is a post-transcriptional modification, catalyzed by the ADAR family of enzymes, that can be considered part of the inherent cellular defense mechanism as it affects the innate immune response in a complex manner. It was previously reported that various viruses could interact with the host's ADAR enzymes, resulting in epigenetic changes both to the virus and the host. Here, we analyze RNA-seq of nasopharyngeal swab specimens as well as whole-blood samples of COVID-19 infected individuals and show a significant elevation in the global RNA editing activity in COVID-19 compared to healthy controls. We also detect specific coding sites that exhibit higher editing activity. We further show that the increment in editing activity during the disease is temporary and returns to baseline shortly after the symptomatic period. These significant epigenetic changes may contribute to the immune system response and affect adverse outcomes seen in post-viral cases.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - David Gorelik
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Karmon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Hillel S Roth
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Roni Cohen-Fultheim
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Galit Shohat-ophir
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Leslie and Susan Gonda Multidisciplinary Brain Research Center and The Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| |
Collapse
|
3
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
4
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Wu L, Wang D. The "Janus-like" RNA-editing machinery in innate antiviral immunity. CURRENT TRENDS IN IMMUNOLOGY 2022; 23:23-32. [PMID: 36398055 PMCID: PMC9668064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Our innate immune systems are evolved to provide the first line of immune defense against microbial infections. A key effector component is the adenosine deaminase acting on the RNA-1 (ADAR-1)/interferon (IFN) pathway of the innate cytoplasmic immunity that mounts rapid responses to many viral pathogens. As an RNA-editing enzyme, ADAR-1 targets viral RNA intermediates in the cytoplasmic compartment to interfere with the infection. However, ADAR-1 may also edit characteristic RNA structures of certain host genes, notably, the 5-hydroxytryptamine (serotonin) receptor 2C (5-HT2CR). Dysfunction of 5-HT2CR has been linked to the pathology of several human mental conditions, such as Schizophrenia, anxiety, bipolar disorder, major depression, and the mental illnesses of substance use disorders (SUD). Thus, the ADAR-1-mediated RNA editing may be either beneficial or harmful; these effects need to be tightly modulated to sustain innate antiviral immunity while restricting undesired off-target self-reactivity. In this communication, we discuss ideas and tools to identify the orphan drug candidates, including small molecules and biologics that may serve as effective modulators of the ADAR-1/IFN innate immunity and are thereby promising for use in treating or preventing SUD- and/or viral infection-associated mental illnesses.
Collapse
Affiliation(s)
- Lisa Wu
- Tumor Glycomics Laboratory, SRI International Biosciences, 333 Ravenswood Ave., Menlo Park, CA, USA
| | - Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences, 333 Ravenswood Ave., Menlo Park, CA, USA
| |
Collapse
|
6
|
Piontkivska H, Wales-McGrath B, Miyamoto M, Wayne ML. ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biol Evol 2021; 13:evab240. [PMID: 34694399 PMCID: PMC8586724 DOI: 10.1093/gbe/evab240] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine Deaminases that Act on RNA (ADARs) are RNA editing enzymes that play a dynamic and nuanced role in regulating transcriptome and proteome diversity. This editing can be highly selective, affecting a specific site within a transcript, or nonselective, resulting in hyperediting. ADAR editing is important for regulating neural functions and autoimmunity, and has a key role in the innate immune response to viral infections, where editing can have a range of pro- or antiviral effects and can contribute to viral evolution. Here we examine the role of ADAR editing across a broad range of viral groups. We propose that the effect of ADAR editing on viral replication, whether pro- or antiviral, is better viewed as an axis rather than a binary, and that the specific position of a given virus on this axis is highly dependent on virus- and host-specific factors, and can change over the course of infection. However, more research needs to be devoted to understanding these dynamic factors and how they affect virus-ADAR interactions and viral evolution. Another area that warrants significant attention is the effect of virus-ADAR interactions on host-ADAR interactions, particularly in light of the crucial role of ADAR in regulating neural functions. Answering these questions will be essential to developing our understanding of the relationship between ADAR editing and viral infection. In turn, this will further our understanding of the effects of viruses such as SARS-CoV-2, as well as many others, and thereby influence our approach to treating these deadly diseases.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, Ohio, USA
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Brain Health Research Institute, Kent State University, Ohio, USA
| | | | - Michael Miyamoto
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
IRE1-Mediated Unfolded Protein Response Promotes the Replication of Tick-Borne Flaviviruses in a Virus and Cell-Type Dependent Manner. Viruses 2021; 13:v13112164. [PMID: 34834970 PMCID: PMC8619205 DOI: 10.3390/v13112164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response.
Collapse
|
8
|
Abstract
C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
9
|
Plonski NM, Johnson E, Frederick M, Mercer H, Fraizer G, Meindl R, Casadesus G, Piontkivska H. Automated Isoform Diversity Detector (AIDD): a pipeline for investigating transcriptome diversity of RNA-seq data. BMC Bioinformatics 2020; 21:578. [PMID: 33375933 PMCID: PMC7772930 DOI: 10.1186/s12859-020-03888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
Background As the number of RNA-seq datasets that become available to explore transcriptome diversity increases, so does the need for easy-to-use comprehensive computational workflows. Many available tools facilitate analyses of one of the two major mechanisms of transcriptome diversity, namely, differential expression of isoforms due to alternative splicing, while the second major mechanism—RNA editing due to post-transcriptional changes of individual nucleotides—remains under-appreciated. Both these mechanisms play an essential role in physiological and diseases processes, including cancer and neurological disorders. However, elucidation of RNA editing events at transcriptome-wide level requires increasingly complex computational tools, in turn resulting in a steep entrance barrier for labs who are interested in high-throughput variant calling applications on a large scale but lack the manpower and/or computational expertise. Results Here we present an easy-to-use, fully automated, computational pipeline (Automated Isoform Diversity Detector, AIDD) that contains open source tools for various tasks needed to map transcriptome diversity, including RNA editing events. To facilitate reproducibility and avoid system dependencies, the pipeline is contained within a pre-configured VirtualBox environment. The analytical tasks and format conversions are accomplished via a set of automated scripts that enable the user to go from a set of raw data, such as fastq files, to publication-ready results and figures in one step. A publicly available dataset of Zika virus-infected neural progenitor cells is used to illustrate AIDD’s capabilities. Conclusions AIDD pipeline offers a user-friendly interface for comprehensive and reproducible RNA-seq analyses. Among unique features of AIDD are its ability to infer RNA editing patterns, including ADAR editing, and inclusion of Guttman scale patterns for time series analysis of such editing landscapes. AIDD-based results show importance of diversity of ADAR isoforms, key RNA editing enzymes linked with the innate immune system and viral infections. These findings offer insights into the potential role of ADAR editing dysregulation in the disease mechanisms, including those of congenital Zika syndrome. Because of its automated all-inclusive features, AIDD pipeline enables even a novice user to easily explore common mechanisms of transcriptome diversity, including RNA editing landscapes.
Collapse
Affiliation(s)
- Noel-Marie Plonski
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA
| | - Emily Johnson
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA
| | - Madeline Frederick
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA
| | - Heather Mercer
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,University of Mount Union, 1972 Clark Ave, Alliance, OH, 44601, USA
| | - Gail Fraizer
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA
| | - Richard Meindl
- School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA.,Department of Anthropology, Kent State University, Kent, OH, 44242, USA
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA.,Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.,Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA. .,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA. .,Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
10
|
Mathis S, Soulages A, Le Masson G, Vallat JM. Epidemics and outbreaks of peripheral nervous system disorders: I. infectious and immune-mediated causes. J Neurol 2020; 268:879-890. [PMID: 32914207 PMCID: PMC7483039 DOI: 10.1007/s00415-020-10215-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022]
Abstract
The history of mankind is marked by numerous epidemics, some of which involved diseases of the peripheral nervous system, either infectious or otherwise. We describe here the three main infectious causes of epidemics that affect the peripheral nervous system: leprosy, poliomyelitis and diphtheria. We then discuss the main epidemics of immune-mediated origin.
Collapse
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux (Pellegrin University Hospital), Place Amélie Raba-Léon, 33076, Bordeaux, France.
| | - Antoine Soulages
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux (Pellegrin University Hospital), Place Amélie Raba-Léon, 33076, Bordeaux, France
| | - Gwendal Le Masson
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux (Pellegrin University Hospital), Place Amélie Raba-Léon, 33076, Bordeaux, France.,University of Bordeaux, U1215, 33000, Bordeaux, France.,INSERM, Neurocentre Magendie, 'Physiopathologie de La Plasticité Neuronale', U1215, 33000, Bordeaux, France
| | - Jean-Michel Vallat
- Department of Neurology, National Reference Center for 'Rare Peripheral Neuropathies', University Hospital, 2 Avenue Martin Luther King, 87042, Limoges, France
| |
Collapse
|
11
|
Mohite D, Omole JA, Bhatti KS, Kaleru T, Khan S. The Association of Anti-Ganglioside Antibodies in the Pathogenesis and Development of Zika-Associated Guillain-Barré Syndrome. Cureus 2020; 12:e8983. [PMID: 32775065 PMCID: PMC7402431 DOI: 10.7759/cureus.8983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) has created major outbreaks all over the Americas and has caused severe neurological complications. The main neurological complications linked to ZIKV are Guillain-Barré syndrome (GBS), encephalitis, myelitis, and microcephaly. We thoroughly searched for published literature on PubMed and found evidence supporting the relationship between ZIKV and GBS. Through April 1, 2020, 429 publications were available on PubMed using the words “Zika associated GBS.” Among these, only four results linked anti-ganglioside antibodies to Zika-associated GBS. So, we expanded our search to other platforms like PubMed Central® (PMC), Google Scholar, and Cochrane, after which we shortlisted 28 studies. These studies include review articles, observational studies, case series, and case reports. The information collected from these articles were mainly based on the outbreaks in Latin America and the results that these patients showed in the course of the disease. It took a lag time of 7-10 days for the patients to develop Zika-associated GBS. We used all the evidence regarding the epidemiology, clinical manifestations, neurological complications, and diagnostic criteria that supported the findings of anti-ganglioside antibodies to ZIKV-associated GBS. Patients were detected with the presence of these antibodies in their urine through the enzyme-linked immunosorbent assay (ELISA) test. But the mechanism by which the ZIKV causes other complications like myelitis and encephalitis is still unknown and yet to be explored to develop treatment and management strategies.
Collapse
Affiliation(s)
- Divya Mohite
- Neurology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Janet A Omole
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Karandeep S Bhatti
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Thanmai Kaleru
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
12
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|