1
|
Cheskis S, Akerman A, Levy A. Deciphering bacterial protein functions with innovative computational methods. Trends Microbiol 2024:S0966-842X(24)00316-0. [PMID: 39736484 DOI: 10.1016/j.tim.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025]
Abstract
Bacteria colonize every niche on Earth and play key roles in many environmental and host-associated processes. The sequencing revolution revealed the remarkable bacterial genetic and proteomic diversity and the genomic content of cultured and uncultured bacteria. However, deciphering functions of novel proteins remains a high barrier, often preventing the deep understanding of microbial life and its interaction with the surrounding environment. In recent years, exciting new bioinformatic tools, many of which are based on machine learning, facilitate the challenging task of gene and protein function discovery in the era of big genomics data, leading to the generation of testable hypotheses for bacterial protein functions. The new tools allow prediction of protein structures and interactions and allow sensitive and efficient sequence- and structure-based searching and clustering. Here, we summarize some of these recent tools which revolutionize modern microbiology research, along with examples for their usage, emphasizing the user-friendly, web-based ones. Adoption of these capabilities by experimentalists and computational biologists could save resources and accelerate microbiology research.
Collapse
Affiliation(s)
- Shani Cheskis
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avital Akerman
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
2
|
Villain P, Basta T. Regulation of DNA Topology in Archaea: State of the Art and Perspectives. Mol Microbiol 2024. [PMID: 39709598 DOI: 10.1111/mmi.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024]
Abstract
DNA topology is a direct consequence of the double helical nature of DNA and is defined by how the two complementary DNA strands are intertwined. Virtually every reaction involving DNA is influenced by DNA topology or has topological effects. It is therefore of fundamental importance to understand how this phenomenon is controlled in living cells. DNA topoisomerases are the key actors dedicated to the regulation of DNA topology in cells from all domains of life. While significant progress has been made in the last two decades in understanding how these enzymes operate in vivo in Bacteria and Eukaryotes, studies in Archaea have been lagging behind. This review article aims to summarize what is currently known about DNA topology regulation by DNA topoisomerases in main archaeal model organisms. These model archaea exhibit markedly different lifestyles, genome organization and topoisomerase content, thus highlighting the diversity and the complexity of DNA topology regulation mechanisms and their evolution in this domain of life. The recent development of functional genomic assays supported by next-generation sequencing now allows to delve deeper into this timely and exciting, yet still understudied topic.
Collapse
Affiliation(s)
- Paul Villain
- Medical Research Council Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tamara Basta
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Alsowaida D, Larsen BD, Hachmer S, Azimi M, Arezza E, Brunette S, Tur S, Palii CG, Albraidy B, Sorensen CS, Brand M, Dilworth FJ, Megeney LA. Caspase-Activated DNase localizes to cancer causing translocation breakpoints during cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614809. [PMID: 39386486 PMCID: PMC11463586 DOI: 10.1101/2024.09.24.614809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Caspase activated DNase (CAD) induced DNA breaks promote cell differentiation and therapy-induced cancer cell resistance. CAD targeting activity is assumed to be unique to each condition, as differentiation and cancer genesis are divergent cell fates. Here, we made the surprising discovery that a subset of CAD-bound targets in differentiating muscle cells are the same genes involved in the genesis of cancer-causing translocations. In muscle cells, a prominent CAD-bound gene pair is Pax7 and Foxo1a, the mismatched reciprocal loci that give rise to alveolar rhabdomyosarcoma. We show that CAD-targeted breaks in the Pax7 gene are physiologic to reduce Pax7 expression, a prerequisite for muscle cell differentiation. A cohort of these CAD gene targets are also conserved in early differentiating T cells and include genes that spur leukemia/lymphoma translocations. Our results suggest the CAD targeting of translocation prone oncogenic genes is non-pathologic biology and aligns with initiation of cell fate transitions.
Collapse
Affiliation(s)
- Dalal Alsowaida
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Brian D. Larsen
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
| | - Sarah Hachmer
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mehri Azimi
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
| | - Eric Arezza
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
| | - Steve Brunette
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
| | - Steven Tur
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI
| | - Carmen G. Palii
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI
| | - Bassam Albraidy
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
| | - Claus S. Sorensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen Denmark
| | - Marjorie Brand
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI
| | - F. Jeffrey Dilworth
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lynn A. Megeney
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- The Department of Medicine, University of Ottawa, Ottawa, ON
| |
Collapse
|
4
|
Borde C, Bruno L, Espéli O. Untangling bacterial DNA topoisomerases functions. Biochem Soc Trans 2024; 52:2321-2331. [PMID: 39508659 DOI: 10.1042/bst20240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Topoisomerases are the main enzymes capable of resolving the topological constraints imposed by DNA transactions such as transcription or replication. All bacteria possess topoisomerases of different types. Although bacteria with circular replicons should encounter similar DNA topology issues, the distribution of topoisomerases varies from one bacterium to another, suggesting polymorphic functioning. Recently, several proteins restricting, enhancing or modifying the activity of topoisomerases were discovered, opening the way to a new area of understanding DNA topology management during the bacterial cell cycle. In this review, we discuss the distribution of topoisomerases across the bacterial phylum and current knowledge on the interplay among the different topoisomerases to maintain topological homeostasis.
Collapse
Affiliation(s)
- Céline Borde
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lisa Bruno
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Zhang H, Tian L, Ma Y, Xu J, Bai T, Wang Q, Liu X, Guo L. Not only the top: Type I topoisomerases function in multiple tissues and organs development in plants. J Adv Res 2024:S2090-1232(24)00588-5. [PMID: 39662729 DOI: 10.1016/j.jare.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND DNA topoisomerases (TOPs) are essential components in a diverse range of biological processes including DNA replication, transcription and genome integrity. Although the functions and mechanisms of TOPs, particularly type I TOP (TOP1s), have been extensively studied in bacteria, yeast and animals, researches on these proteins in plants have only recently commenced. AIM OF REVIEW In this review, the function and mechanism studies of TOP1s in plants and the structural biology of plant TOP1 are presented, providing readers with a comprehensive understanding of the current research status of this essential enzyme.The future research directions for exploring the working mechanism of plant TOP1s are also discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW Over the past decade, it has been discovered TOP1s play a vital role in multiphasic processes of plant development, such as maintaining meristem activity, gametogenesis, flowering time, gravitropic response and so on. Plant TOP1s affects gene transcription by modulating chromatin status, including chromatin accessibility, DNA/RNA structure, and nucleosome positioning. However, the function and mechanism of this vital enzyme is poorly summarized although it has been systematically summarized in other species. This review summarized the research progresses of plant TOP1s according to the diverse functions and working mechanism in different tissues.
Collapse
Affiliation(s)
- Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Lirong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Tianyu Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Qian Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| |
Collapse
|
6
|
Shen L, Diggs C, Ferdous S, Santos A, Wolf N, Terrebonne A, Carvajal LL, Zhong G, Ouellette SP, Tse-Dinh YC. The SWIB domain-containing DNA topoisomerase I of Chlamydia trachomatis mediates DNA relaxation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626651. [PMID: 39677648 PMCID: PMC11642884 DOI: 10.1101/2024.12.03.626651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The obligate intracellular bacterial pathogen, Chlamydia trachomatis (Ct), has a distinct DNA topoisomerase I (TopA) with a C-terminal domain (CTD) homologous to eukaryotic SWIB domains. Despite the lack of sequence similarity at the CTDs between C. trachomatis TopA (CtTopA) and Escherichia coli TopA (EcTopA), full-length CtTopA removed negative DNA supercoils in vitro and complemented the growth defect of an E. coli topA mutant. We demonstrated that CtTopA is less processive in DNA relaxation than EcTopA in dose-response and time course studies. An antibody generated against the SWIB domain of CtTopA specifically recognized CtTopA but not EcTopA or Mycobacterium tuberculosis TopA (MtTopA), consistent with the sequence differences in their CTDs. The endogenous CtTopA protein is expressed at a relatively high level during the middle and late developmental stages of C. trachomatis. Conditional knockdown of topA expression using CRISPRi in C. trachomatis resulted in not only a developmental defect but also in the downregulation of genes linked to nucleotide acquisition from the host cells. Because SWIB-containing proteins are not found in prokaryotes beyond Chlamydia spp., these results imply a significant function for the SWIB-containing CtTopA in facilitating the energy metabolism of C. trachomatis for its unique intracellular growth.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Caitlynn Diggs
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Shomita Ferdous
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Amanda Santos
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Neol Wolf
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Andrew Terrebonne
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Luis Lorenzo Carvajal
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Kim S, Guo MS. Temporospatial control of topoisomerases by essential cellular processes. Curr Opin Microbiol 2024; 82:102559. [PMID: 39520813 DOI: 10.1016/j.mib.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Topoisomerases are essential, ubiquitous enzymes that break and rejoin the DNA strand to control supercoiling. Because topoisomerases are DNA scissors, these enzymes are highly regulated to avoid excessive DNA cleavage, a vulnerability exploited by many antibiotics. Topoisomerase activity must be co-ordinated in time and space with transcription, replication, and cell division or else these processes stall, leading to genome loss. Recent work in Escherichia coli has revealed that topoisomerases do not act alone. Most topoisomerases interact with the essential process that they promote, a coupling that may stimulate topoisomerase activity precisely when and where cleavage is required. Surprisingly, in E. coli and most other bacteria, gyrase is not apparently regulated in this manner. We review how each E. coli topoisomerase is regulated, propose possible solutions to 'the gyrase problem', and conclude by highlighting how this regulation may present opportunities for antimicrobial development.
Collapse
Affiliation(s)
- Sora Kim
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Monica S Guo
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
8
|
Joyeux M. Transcribing RNA polymerases: Dynamics of twin supercoiled domains. Biophys J 2024; 123:3898-3910. [PMID: 39367604 PMCID: PMC11617637 DOI: 10.1016/j.bpj.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024] Open
Abstract
Gene transcription by an RNA polymerase (RNAP) enzyme requires that double-stranded DNA be locally and transiently opened, which results in an increase of DNA supercoiling downstream of the RNAP and a decrease of supercoiling upstream of it. When the DNA is initially torsionally relaxed and the RNAP experiences sufficiently large rotational drag, these variations lead to positively supercoiled plectonemes ahead of the RNAPs and negatively supercoiled ones behind it, a feature known as "twin supercoiled domain" (TSD). This work aims at deciphering into some more detail the torsional dynamics of circular DNA molecules being transcribed by RNAP enzymes. To this end, we performed Brownian dynamics simulations with a specially designed coarse-grained model. Depending on the superhelical density of the DNA molecule and the ratio of RNAP's twist injection rate and rotational relaxation speed, simulations reveal a rich panel of behaviors, which sometimes differ markedly from the crude TSD picture. In particular, for sufficiently slow rotational relaxation speed, positively supercoiled plectonemes never form ahead of an RNAP that transcribes a DNA molecule with physiological negative supercoiling. Rather, negatively supercoiled plectonemes form almost periodically at the upstream side of the RNAP and grow up to a certain length before detaching from the RNAP and destabilizing rapidly. The extent to which topological barriers hinder the dynamics of TSDs is also discussed.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, St Martin d'Hères, France.
| |
Collapse
|
9
|
Chadni SH, Young MA, Igorra P, Bhuiyan MAR, Kenyon V, Tse-Dinh YC. Small Molecule Inhibitors of Mycobacterium tuberculosis Topoisomerase I Identified by Machine Learning and In Vitro Assays. Int J Mol Sci 2024; 25:12265. [PMID: 39596331 PMCID: PMC11594364 DOI: 10.3390/ijms252212265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is a leading infectious cause of death globally. The treatment of patients becomes much more difficult for the increasingly common multi-drug resistant TB. Topoisomerase I is essential for the viability of M. tuberculosis and has been validated as a new target for the discovery of novel treatment against TB resistant to the currently available drugs. Virtual high-throughput screening based on machine learning was used in this study to identify small molecules that target the binding site of divalent ion near the catalytic tyrosine of M. tuberculosis topoisomerase I. From the virtual screening of more than 2 million commercially available compounds, 96 compounds were selected for testing in topoisomerase I relaxation activity assay. The top hit that has IC50 of 7 µM was further investigated. Commercially available analogs of the top hit were purchased and tested with the in vitro enzyme assay to gain further insights into the molecular scaffold required for topoisomerase inhibition. Results from this project demonstrated that novel small molecule inhibitors of bacterial topoisomerase I can be identified starting with the machine-learning-based virtual screening approach.
Collapse
Affiliation(s)
- Somaia Haque Chadni
- Biochemistry PhD Program, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | | | - Pedro Igorra
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (P.I.); (M.A.R.B.)
| | - Md Anisur Rahman Bhuiyan
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (P.I.); (M.A.R.B.)
| | - Victor Kenyon
- Atomwise Inc., San Francisco, CA 94103, USA; (M.A.Y.); (V.K.)
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
11
|
Sitarek P, Merecz-Sadowska A, Sikora J, Dudzic M, Wiertek-Płoszaj N, Picot L, Śliwiński T, Kowalczyk T. Flavonoids and their derivatives as DNA topoisomerase inhibitors with anti-cancer activity in various cell models: Exploring a novel mode of action. Pharmacol Res 2024; 209:107457. [PMID: 39389401 DOI: 10.1016/j.phrs.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Flavonoids, a diverse group of plant-derived secondary metabolites, have garnered significant attention for their potential anti-cancer properties. This review explores the role of flavonoids as inhibitors of DNA topoisomerases, key enzymes essential for DNA replication, transcription, and cell division. The article offers a comprehensive overview of flavonoid classification, biosynthesis, and their widespread natural occurrence. It further delves into the molecular mechanisms through which flavonoids exert their anti-cancer effects, emphasizing their interactions with topoisomerases. The review provides a thorough analysis of both in vitro and in vivo studies that highlight the topoisomerase inhibitory activities of various flavonoids and their derivatives. Key findings demonstrate that flavonoids can function as catalytic inhibitors, poisons, or DNA intercalators, affecting both type I and type II topoisomerases. The structure-activity relationships of flavonoids concerning their topoisomerase inhibitory potency are also examined. This review underscores the potential of flavonoids as promising lead compounds for the development of novel topoisomerase inhibitors, which could have important implications for cancer therapy. However, it also acknowledges the need for further research to fully understand the intricate interactions between flavonoids and topoisomerases within the cellular environment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland.
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, Lodz 90-214, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland
| | - Malwina Dudzic
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Natasza Wiertek-Płoszaj
- Students Research Group, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle 17042, France
| | - Tomasz Śliwiński
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| |
Collapse
|
12
|
Liu R, Sun J, Li LF, Cheng Y, Li M, Fu L, Li S, Peng G, Wang Y, Liu S, Qu X, Ran J, Li X, Pang E, Qiu HJ, Wang Y, Qi J, Wang H, Gao GF. Structural basis for difunctional mechanism of m-AMSA against African swine fever virus pP1192R. Nucleic Acids Res 2024; 52:11301-11316. [PMID: 39166497 PMCID: PMC11472052 DOI: 10.1093/nar/gkae703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
The African swine fever virus (ASFV) type II topoisomerase (Topo II), pP1192R, is the only known Topo II expressed by mammalian viruses and is essential for ASFV replication in the host cytoplasm. Herein, we report the structures of pP1192R in various enzymatic stages using both X-ray crystallography and single-particle cryo-electron microscopy. Our data structurally define the pP1192R-modulated DNA topology changes. By presenting the A2+-like metal ion at the pre-cleavage site, the pP1192R-DNA-m-AMSA complex structure provides support for the classical two-metal mechanism in Topo II-mediated DNA cleavage and a better explanation for nucleophile formation. The unique inhibitor selectivity of pP1192R and the difunctional mechanism of pP1192R inhibition by m-AMSA highlight the specificity of viral Topo II in the poison binding site. Altogether, this study provides the information applicable to the development of a pP1192R-targeting anti-ASFV strategy.
Collapse
Affiliation(s)
- Ruili Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450046, China
- Beijing Life Science Academy, Beijing 102200, China
| | - Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province 030801, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Yingxian Cheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450046, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Guorui Peng
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Sheng Liu
- SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Ran
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, Liaoning Province 110030, China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province 030032, China
| | - Erqi Pang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province 030032, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin Province 150069, China
| | - Yanli Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Morgan IL, McKie SJ, Kim R, Seol Y, Xu J, Harami GM, Maxwell A, Neuman KC. Highly sensitive mapping of in vitro type II topoisomerase DNA cleavage sites with SHAN-seq. Nucleic Acids Res 2024; 52:9777-9787. [PMID: 39106172 PMCID: PMC11381365 DOI: 10.1093/nar/gkae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Type II topoisomerases (topos) are a ubiquitous and essential class of enzymes that form transient enzyme-bound double-stranded breaks on DNA called cleavage complexes. The location and frequency of these cleavage complexes on DNA is important for cellular function, genomic stability and a number of clinically important anticancer and antibacterial drugs, e.g. quinolones. We developed a simple high-accuracy end-sequencing (SHAN-seq) method to sensitively map type II topo cleavage complexes on DNA in vitro. Using SHAN-seq, we detected Escherichia coli gyrase and topoisomerase IV cleavage complexes at hundreds of sites on supercoiled pBR322 DNA, approximately one site every ten bp, with frequencies that varied by two-to-three orders of magnitude. These sites included previously identified sites and 20-50-fold more new sites. We show that the location and frequency of cleavage complexes at these sites are enzyme-specific and vary substantially in the presence of the quinolone, ciprofloxacin, but not with DNA supercoil chirality, i.e. negative versus positive supercoiling. SHAN-seq's exquisite sensitivity provides an unprecedented single-nucleotide resolution view of the distribution of gyrase and topoisomerase IV cleavage complexes on DNA. Moreover, the discovery that these enzymes can cleave DNA at orders of magnitude more sites than the relatively few previously known sites resolves the apparent paradox of how these enzymes resolve topological problems throughout the genome.
Collapse
Affiliation(s)
- Ian L Morgan
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon J McKie
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Rachel Kim
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeonee Seol
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Xu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics, University of California, Merced, CA 95343, USA
| | - Gabor M Harami
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Liu KT, Chen SF, Chan NL. Structural insights into the assembly of type IIA topoisomerase DNA cleavage-religation center. Nucleic Acids Res 2024; 52:9788-9802. [PMID: 39077950 PMCID: PMC11381327 DOI: 10.1093/nar/gkae657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
The ability to catalyze reversible DNA cleavage and religation is central to topoisomerases' role in regulating DNA topology. In type IIA topoisomerases (Top2), the formation of its DNA cleavage-religation center is driven by DNA-binding-induced structural rearrangements. These changes optimally position key catalytic modules, such as the active site tyrosine of the WHD domain and metal ion(s) chelated by the TOPRIM domain, around the scissile phosphodiester bond to perform reversible transesterification. To understand this assembly process in detail, we report the catalytic core structures of human Top2α and Top2β in an on-pathway conformational state. This state features an in trans formation of an interface between the Tower and opposing TOPRIM domain, revealing a groove for accommodating incoming G-segment DNA. Structural superimposition further unveils how subsequent DNA-binding-induced disengagement of the TOPRIM and Tower domains allows a firm grasp of the bound DNA for cleavage/religation. Notably, we identified a previously undocumented protein-DNA interaction, formed between an arginine-capped C-terminus of an α-helix in the TOPRIM domain and the DNA backbone, significantly contributing to Top2 function. This work uncovers a previously unrecognized role of the Tower domain, highlighting its involvement in anchoring and releasing the TOPRIM domain, thus priming Top2 for DNA binding and cleavage.
Collapse
Affiliation(s)
- Ko-Ting Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shin-Fu Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
15
|
Kutluer F, Özkan B, Yalçin E, Çavuşoğlu K. Direct and indirect toxicity mechanisms of the natural insecticide azadirachtin based on in-silico interactions with tubulin, topoisomerase and DNA. CHEMOSPHERE 2024; 364:143006. [PMID: 39098344 DOI: 10.1016/j.chemosphere.2024.143006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Natural pesticides, which attract attention with safe properties, pose a threat to many non-target organisms, so their toxic effects should be studied extensively. In this study, the toxic effects of Azadirachtin, a natural insecticide derived from Azadirachta indica, were investigated by in-vivo and in-silico methods. In-vivo toxic effects were determined using the Allium test and bulbs were treated with 5 mg/L (0.5x EC50), 10 mg/L (EC50), and 20 mg/L (2xEC50) Azadirachtin. In the groups treated with Azadirachtin, there was a decline in germination-related parameters and accordingly growth was delayed. This regression may be related to oxidative stress in the plant, and the increase in malondialdehyde and proline levels in Azadirachtin-applied groups confirms oxidative stress. Azadirachtin toxicity increased dose-dependently and the most significant toxic effect was observed in the group administered 20 mg/L Azadirachtin. In this group, the mitotic index decreased by 43.4% and sticky chromosomes, vagrant chromosomes and fragments were detected at rates of 83.1 ± 4.01, 72.7 ± 3.46 and 65.1 ± 3.51, respectively. By comet analysis, it was determined that Azadirachtin caused DNA fragmentation, and tail DNA, which was 0.10 ± 0.32% in the control group, increased to 34.5 ± 1.35% in the Azadirachtin -treated groups. These cytotoxic and genotoxic effects of Azadirachtin may be due to direct interaction with macromolecules as well as induced oxidative stress. Azadirachtin has been found to interact in-silico with alpha-tubulin, beta-tubulin, topoisomerase I and II, and various DNA sequences. Possible deteriorations in macromolecular structure and functions as a result of these interactions may cause cytotoxic and genotoxic effects. These results suggest that natural insecticides may also be unreliable for non-target organisms, and the toxic effects of compounds presented as "natural" should also be investigated.
Collapse
Affiliation(s)
- Fatih Kutluer
- Department of Herbal and Animal Production, Kırıkkale Vocational School, Kırıkkale University, Kırıkkale, Turkiye.
| | - Burak Özkan
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkiye.
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkiye.
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkiye.
| |
Collapse
|
16
|
Elesawi IE, Hashem AM, Yao L, Maher M, Hassanin AA, Abd El-Moneim D, Safhi FA, Al Aboud NM, Alshamrani SM, Shehata WF, Chunli C. The role of DNA topoisomerase 1α (AtTOP1α) in regulating arabidopsis meiotic recombination and chromosome segregation. PeerJ 2024; 12:e17864. [PMID: 39221285 PMCID: PMC11365474 DOI: 10.7717/peerj.17864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Meiosis is a critical process in sexual reproduction, and errors during this cell division can significantly impact fertility. Successful meiosis relies on the coordinated action of numerous genes involved in DNA replication, strand breaks, and subsequent rejoining. DNA topoisomerase enzymes play a vital role by regulating DNA topology, alleviating tension during replication and transcription. To elucidate the specific function of DNA topoisomerase 1α ( A t T O P 1 α ) in male reproductive development of Arabidopsis thaliana, we investigated meiotic cell division in Arabidopsis flower buds. Combining cytological and biochemical techniques, we aimed to reveal the novel contribution of A t T O P 1 α to meiosis. Our results demonstrate that the absence of A t T O P 1 α leads to aberrant chromatin behavior during meiotic division. Specifically, the top1α1 mutant displayed altered heterochromatin distribution and clustered centromere signals at early meiotic stages. Additionally, this mutant exhibited disruptions in the distribution of 45s rDNA signals and a reduced frequency of chiasma formation during metaphase I, a crucial stage for genetic exchange. Furthermore, the atm-2×top1α1 double mutant displayed even more severe meiotic defects, including incomplete synapsis, DNA fragmentation, and the presence of polyads. These observations collectively suggest that A t T O P 1 α plays a critical role in ensuring accurate meiotic progression, promoting homologous chromosome crossover formation, and potentially functioning in a shared DNA repair pathway with ATAXIA TELANGIECTASIA MUTATED (ATM) in Arabidopsis microspore mother cells.
Collapse
Affiliation(s)
- Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Hashem
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Li Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mohamed Maher
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental and Agricultural Sciences, Arish University, El-Arish, El-Arish, Egypt
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nora M. Al Aboud
- Department of Biology Faculty of Science, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Salha Mesfer Alshamrani
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Wael F. Shehata
- College of Agriculture and Food Sciences, Department of Agricultural Biotechnology, King Faisal University, Al-Ahsa, Al-Ahsa, Saudi Arabia
- College of Environmental Agricultural Science, Plant Production Department, Arish University, Arish, North Sinai, Egypt
| | - Chen Chunli
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Mamun Y, Tse-Dinh YC, Chapagain P. Insights into the DNA and RNA Interactions of Human Topoisomerase III Beta Using Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:6062-6071. [PMID: 39024468 PMCID: PMC11323020 DOI: 10.1021/acs.jcim.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Human topoisomerase III beta (hTOP3B) is the only topoisomerase in the human cell that can act on both DNA and RNA substrates. Recent findings have emphasized the physiological importance of hTOP3B and consolidated it as a valuable drug target for antiviral and anticancer therapeutics. Although type IA topoisomerases of different organisms have been studied over the years, the step-by-step interaction of hTOP3B and nucleic acid substrates is still not well understood. Due to the lack of hTOP3B-RNA structures as well as DNA/RNA covalent complexes, computational investigations have been limited. In our study, we utilized molecular dynamics (MD) simulations to study the interactions between hTOP3B and nucleic acids to get a closer look into the residues that play a role in binding DNA or RNA and facilitate catalysis, along with the differences and similarities when hTOP3B interacts with DNA compared to RNA. For this, we generated multiple models of hTOP3B complexed with DNA and RNA sequences using the hTOP3B crystal structure and 8-mer single-stranded DNA and RNA sequences. These models include both covalent and noncovalent complexes, which are then subjected to MD simulations and analyzed. Our findings highlight the complexes' stability, sequence preference, and interactions of the binding pocket residues with different nucleotides. Our work demonstrates that hTOP3B forms stable complexes with both DNA and RNA and provides a better understanding of the enzyme's interaction with different nucleic acid substrate sequences.
Collapse
Affiliation(s)
- Yasir Mamun
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| |
Collapse
|
18
|
Collins J, Basarab GS, Chibale K, Osheroff N. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. ACS Infect Dis 2024; 10:3071-3082. [PMID: 39082980 PMCID: PMC11320581 DOI: 10.1021/acsinfecdis.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Gregory S. Basarab
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Holistic
Drug Discovery and Development (H3D) Centre, and South African Medical
Research Council Drug Discovery and Development Research Unit, Department
of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
19
|
Zidar N, Emanuel Cotman A, Sinnige W, Benek O, Barančokova M, Zega A, Peterlin Mašič L, Tomašič T, Ilaš J, Henderson SR, Mundy JEA, Maxwell A, Stevenson CEM, Lawson DM, Jan Sterk G, Tosso R, Gutierrez L, Enriz RD, Kikelj D. Exploring the interaction of N-(benzothiazol-2-yl)pyrrolamide DNA gyrase inhibitors with the GyrB ATP-binding site lipophilic floor: A medicinal chemistry and QTAIM study. Bioorg Med Chem 2024; 109:117798. [PMID: 38906068 DOI: 10.1016/j.bmc.2024.117798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
N-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E. coli GyrB24 (ATPase subdomain) was solved, revealing the binding mode of this type of inhibitor to the ATP-binding pocket of the E. coli GyrB subunit. The key binding interactions were identified and their contribution to binding was rationalised by quantum theory of atoms in molecules (QTAIM) analysis. Our study shows that the benzyl or phenethyl substituents bound to the benzothiazole core interact with the lipophilic floor of the active site, which consists mainly of residues Gly101, Gly102, Lys103 and Ser108. Compounds with substituents at position 3 of the benzothiazole core were up to two orders of magnitude more effective than compounds with substituents at the carboxamide nitrogen. In addition, the 6-oxalylamino compounds were more potent inhibitors of E. coli DNA gyrase than the corresponding 6-acetamido analogues.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Wessel Sinnige
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Vrije Universiteit Amsterdam, Medicinal Chemistry Division, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Ondrej Benek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Michaela Barančokova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Sara R Henderson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julia E A Mundy
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anthony Maxwell
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clare E M Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David M Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Geert Jan Sterk
- Vrije Universiteit Amsterdam, Medicinal Chemistry Division, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Rodrigo Tosso
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Lucas Gutierrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, 5700 San Luis, Argentina.
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Olaya I, Burgess SM, Rog O. Formation and resolution of meiotic chromosome entanglements and interlocks. J Cell Sci 2024; 137:jcs262004. [PMID: 38985540 PMCID: PMC11267460 DOI: 10.1242/jcs.262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.
Collapse
Affiliation(s)
- Iván Olaya
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Zhang H, Sun Y, Saha S, Saha LK, Pongor LS, Dhall A, Pommier Y. Genome-wide Mapping of Topoisomerase Binding Sites Suggests Topoisomerase 3α (TOP3A) as a Reader of Transcription-Replication Conflicts (TRC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599352. [PMID: 38948815 PMCID: PMC11212928 DOI: 10.1101/2024.06.17.599352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Both transcription and replication can take place simultaneously on the same DNA template, potentially leading to transcription-replication conflicts (TRCs) and topological problems. Here we asked which topoisomerase(s) is/are the best candidate(s) for sensing TRC. Genome-wide topoisomerase binding sites were mapped in parallel for all the nuclear topoisomerases (TOP1, TOP2A, TOP2B, TOP3A and TOP3B). To increase the signal to noise ratio (SNR), we used ectopic expression of those topoisomerases in H293 cells followed by a modified CUT&Tag method. Although each topoisomerase showed distinct binding patterns, all topoisomerase binding signals positively correlated with gene transcription. TOP3A binding signals were suppressed by DNA replication inhibition. This was also observed but to a lesser extent for TOP2A and TOP2B. Hence, we propose the involvement of TOP3A in sensing both head-on TRCs (HO-TRCs) and co-directional TRCs (CD-TRCs). In which case, the TOP3A signals appear concentrated within the promoters and first 20 kb regions of the 5' -end of genes, suggesting the prevalence of TRCs and the recruitment of TOP3A in the 5'-regions of transcribed and replicated genes.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yilun Sun
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sourav Saha
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Liton Kumar Saha
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lorinc S Pongor
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anjali Dhall
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Imran M, Haider A, Shahzadi A, Mustajab M, Ul-Hamid A, Ullah H, Khan S, Abd-Rabboh HSM, Ikram M. Silver and carbon nitride-doped nickel selenide for effective dye decolorization and bactericidal activity: in silico docking study. RSC Adv 2024; 14:20004-20019. [PMID: 38911830 PMCID: PMC11191054 DOI: 10.1039/d4ra01437e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
In this study, nickel selenide (NiSe), Ag/C3N4-NiSe, and C3N4/Ag-NiSe nanowires (NWs) were synthesized via coprecipitation. The prepared NWs were employed for the degradation of the rhodamine B (RhB) dye in the absence of light using sodium borohydride (NaBH4), bactericidal activity against pathogenic Staphylococcus aureus (S. aureus) and in silico docking study to investigate the d-alanine ligase (DDl) and deoxyribonucleic acid (DNA) gyrase of S. aureus. NWs demonstrate a catalytic degradation efficiency of 69.58% toward RhB in a basic medium. The percentage efficacy of the synthesized materials was evaluated as 19.12-42.62% at low and 36.61-49.72% at high concentrations against pathogenic S. aureus. Molecular docking results suggest that both C3N4/Ag-doped NiSe and Ag/C3N4-doped NiSe possess inhibitory activities toward DDl and DNA gyrase of S. aureus, which coincides with the in vitro bactericidal activity. Based on the research outcomes, the synthesized NWs show potential as an effective agent for water purification and resistance to microbial contaminants.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Government College University Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Punjab Pakistan
| | - Anum Shahzadi
- Department of Pharmacy, COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Muhammad Mustajab
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Hameed Ullah
- Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Institute of Physics, UFRGS 91509-900 Porto Alegre Rio Grande do Sul Brazil
| | - Sherdil Khan
- Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Institute of Physics, UFRGS 91509-900 Porto Alegre Rio Grande do Sul Brazil
| | - Hisham S M Abd-Rabboh
- Chemistry Department, College of Science, King Khalid University P. O. Box 9004 Abha 62223 Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| |
Collapse
|
23
|
Sheikh SY, Hassan F, Shukla D, Bala S, Faruqui T, Akhter Y, Khan AR, Nasibullah M. A review on potential therapeutic targets for the treatment of leishmaniasis. Parasitol Int 2024; 100:102863. [PMID: 38272301 DOI: 10.1016/j.parint.2024.102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Leishmania, a protozoan parasite, is responsible for the occurrence of leishmaniasis, a disease that is prevalent in tropical regions. Visceral Leishmaniasis (VL), also known as kala-azar in Asian countries, is one of the most significant forms of VL, along with Cutaneous Leishmaniasis (CL) and Mucocutaneous Leishmaniasis (ML). Management of this condition typically entails the use of chemotherapy as the sole therapeutic option. The current treatments for leishmaniasis present several drawbacks, including a multitude of side effects, prolonged treatment duration, disparate efficacy across different regions, and the emergence of resistance. To address this urgent need, it is imperative to identify alternative treatments that are both safer and more effective. The identification of appropriate pharmacological targets in conjunction with biological pathways constitutes the initial stage of drug discovery. In this review, we have addressed the key metabolic pathways that represent potential pharmacological targets as well as prominent treatment options for leishmaniasis.
Collapse
Affiliation(s)
- Sabahat Yasmeen Sheikh
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Firoj Hassan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Deepanjali Shukla
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Shashi Bala
- Department of Chemistry, Lucknow University, Lucknow 226026, India
| | - Tabrez Faruqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India.
| |
Collapse
|
24
|
Herlah B, Pavlin M, Perdih A. Molecular choreography: Unveiling the dynamic landscape of type IIA DNA topoisomerases before T-segment passage through all-atom simulations. Int J Biol Macromol 2024; 269:131991. [PMID: 38714283 DOI: 10.1016/j.ijbiomac.2024.131991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Type IIA DNA topoisomerases are molecular nanomachines responsible for controlling topological states of DNA molecules. Here, we explore the dynamic landscape of yeast topoisomerase IIA during key stages of its catalytic cycle, focusing in particular on the events preceding the passage of the T-segment. To this end, we generated six configurations of fully catalytic yeast topo IIA, strategically inserted a T-segment into the N-gate in relevant configurations, and performed all-atom simulations. The essential motion of topo IIA protein dimer was characterized by rotational gyrating-like movement together with sliding motion within the DNA-gate. Both appear to be inherent properties of the enzyme and an inbuilt feature that allows passage of the T-segment through the cleaved G-segment. Coupled dynamics of the N-gate and DNA-gate residues may be particularly important for controlled and smooth passage of the T-segment and consequently the prevention of DNA double-strand breaks. QTK loop residue Lys367, which interacts with ATP and ADP molecules, is involved in regulating the size and stability of the N-gate. The unveiled features of the simulated configurations provide insights into the catalytic cycle of type IIA topoisomerases and elucidate the molecular choreography governing their ability to modulate the topological states of DNA topology.
Collapse
Affiliation(s)
- Barbara Herlah
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Matic Pavlin
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Endsley CE, Moore KA, Townsley TD, Durston KK, Deweese JE. Bioinformatic Analysis of Topoisomerase IIα Reveals Interdomain Interdependencies and Critical C-Terminal Domain Residues. Int J Mol Sci 2024; 25:5674. [PMID: 38891861 PMCID: PMC11172036 DOI: 10.3390/ijms25115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
DNA Topoisomerase IIα (Top2A) is a nuclear enzyme that is a cancer drug target, and there is interest in identifying novel sites on the enzyme to inhibit cancer cells more selectively and to reduce off-target toxicity. The C-terminal domain (CTD) is one potential target, but it is an intrinsically disordered domain, which prevents structural analysis. Therefore, we set out to analyze the sequence of Top2A from 105 species using bioinformatic analysis, including the PSICalc algorithm, Shannon entropy analysis, and other approaches. Our results demonstrate that large (10th-order) interdependent clusters are found including non-proximal positions across the major domains of Top2A. Further, CTD-specific clusters of the third, fourth, and fifth order, including positions that had been previously analyzed via mutation and biochemical assays, were identified. Some of these clusters coincided with positions that, when mutated, either increased or decreased relaxation activity. Finally, sites of low Shannon entropy (i.e., low variation in amino acids at a given site) were identified and mapped as key positions in the CTD. Included in the low-entropy sites are phosphorylation sites and charged positions. Together, these results help to build a clearer picture of the critical positions in the CTD and provide potential sites/regions for further analysis.
Collapse
Affiliation(s)
- Clark E. Endsley
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Kori A. Moore
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | | | - Kirk K. Durston
- Department of Research and Publications, Digital Strategies, Langley, BC V2Y 1N5, Canada
| | - Joseph E. Deweese
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
26
|
Morgan IL, McKie SJ, Kim R, Seol Y, Xu J, Harami G, Maxwell A, Neuman KC. Highly sensitive mapping of in vitro type II topoisomerase DNA cleavage sites with SHAN-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594727. [PMID: 38798569 PMCID: PMC11118536 DOI: 10.1101/2024.05.17.594727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Type II topoisomerases (topos) are a ubiquitous and essential class of enzymes that form transient enzyme-bound double-stranded breaks on DNA called cleavage complexes. The location and frequency of these cleavage complexes on DNA is important for cellular function, genomic stability, and a number of clinically important anticancer and antibacterial drugs, e.g., quinolones. We developed a simple high-accuracy end-sequencing (SHAN-seq) method to sensitively map type II topo cleavage complexes on DNA in vitro. Using SHAN-seq, we detected Escherichia coli gyrase and topoisomerase IV cleavage complexes at hundreds of sites on supercoiled pBR322 DNA, approximately one site every ten bp, with frequencies that varied by two-to-three orders of magnitude. These sites included previously identified sites and 20-50 fold more new sites. We show that the location and frequency of cleavage complexes at these sites are enzyme-specific and vary substantially in the presence of the quinolone, ciprofloxacin, but not with DNA supercoil chirality, i.e., negative vs. positive supercoiling. SHAN-seq's exquisite sensitivity provides an unprecedented single-nucleotide resolution view of the distribution of gyrase and topoisomerase IV cleavage complexes on DNA. Moreover, the discovery that these enzymes can cleave DNA at orders of magnitude more sites than the relatively few previously known sites resolves the apparent paradox of how these enzymes resolve topological problems throughout the genome.
Collapse
Affiliation(s)
- Ian L Morgan
- biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon J McKie
- biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Rachel Kim
- biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeonee Seol
- biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Xu
- biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics, University of California, Merced, CA 95343
| | - Gabor Harami
- biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Maxwell
- department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Keir C Neuman
- biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Collins J, Oviatt AA, Chan PF, Osheroff N. Target-Mediated Fluoroquinolone Resistance in Neisseria gonorrhoeae: Actions of Ciprofloxacin against Gyrase and Topoisomerase IV. ACS Infect Dis 2024; 10:1351-1360. [PMID: 38606464 PMCID: PMC11015056 DOI: 10.1021/acsinfecdis.4c00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
28
|
Oviatt A, Gibson EG, Huang J, Mattern K, Neuman KC, Chan PF, Osheroff N. Interactions between Gepotidacin and Escherichia coli Gyrase and Topoisomerase IV: Genetic and Biochemical Evidence for Well-Balanced Dual-Targeting. ACS Infect Dis 2024; 10:1137-1151. [PMID: 38606465 PMCID: PMC11015057 DOI: 10.1021/acsinfecdis.3c00346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.
Collapse
Affiliation(s)
- Alexandria
A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Elizabeth G. Gibson
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jianzhong Huang
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Karen Mattern
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Keir C. Neuman
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
- VA
Tennessee
Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
29
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
30
|
Tan K, Tse-Dinh YC. Variation of Structure and Cellular Functions of Type IA Topoisomerases across the Tree of Life. Cells 2024; 13:553. [PMID: 38534397 DOI: 10.3390/cells13060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Topoisomerases regulate the topological state of cellular genomes to prevent impediments to vital cellular processes, including replication and transcription from suboptimal supercoiling of double-stranded DNA, and to untangle topological barriers generated as replication or recombination intermediates. The subfamily of type IA topoisomerases are the only topoisomerases that can alter the interlinking of both DNA and RNA. In this article, we provide a review of the mechanisms by which four highly conserved N-terminal protein domains fold into a toroidal structure, enabling cleavage and religation of a single strand of DNA or RNA. We also explore how these conserved domains can be combined with numerous non-conserved protein sequences located in the C-terminal domains to form a diverse range of type IA topoisomerases in Archaea, Bacteria, and Eukarya. There is at least one type IA topoisomerase present in nearly every free-living organism. The variation in C-terminal domain sequences and interacting partners such as helicases enable type IA topoisomerases to conduct important cellular functions that require the passage of nucleic acids through the break of a single-strand DNA or RNA that is held by the conserved N-terminal toroidal domains. In addition, this review will exam a range of human genetic disorders that have been linked to the malfunction of type IA topoisomerase.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
31
|
Chang CWM, Wang SC, Wang CH, Pang AH, Yang CH, Chang YK, Wu WJ, Tsai MD. A unified view on enzyme catalysis by cryo-EM study of a DNA topoisomerase. Commun Chem 2024; 7:45. [PMID: 38418525 PMCID: PMC10901890 DOI: 10.1038/s42004-024-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The theories for substrate recognition in enzyme catalysis have evolved from lock-key to induced fit, then conformational selection, and conformational selection followed by induced fit. However, the prevalence and consensus of these theories require further examination. Here we use cryogenic electron microscopy and African swine fever virus type 2 topoisomerase (AsfvTop2) to demonstrate substrate binding theories in a joint and ordered manner: catalytic selection by the enzyme, conformational selection by the substrates, then induced fit. The apo-AsfvTop2 pre-exists in six conformers that comply with the two-gate mechanism directing DNA passage and release in the Top2 catalytic cycle. The structures of AsfvTop2-DNA-inhibitor complexes show that substantial induced-fit changes occur locally from the closed apo-conformer that however is too far-fetched for the open apo-conformer. Furthermore, the ATPase domain of AsfvTop2 in the MgAMP-PNP-bound crystal structures coexist in reduced and oxidized forms involving a disulfide bond, which can regulate the AsfvTop2 function.
Collapse
Affiliation(s)
- Chiung-Wen Mary Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Shun-Chang Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Allan H Pang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
32
|
Dar A, Godara P, Prusty D, Bashir M. Plasmodium falciparum topoisomerases: Emerging targets for anti-malarial therapy. Eur J Med Chem 2024; 265:116056. [PMID: 38171145 DOI: 10.1016/j.ejmech.2023.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Different metabolic pathways like DNA replication, transcription, and recombination generate topological constrains in the genome. These topological constraints are resolved by essential molecular machines known as topoisomerases. To bring changes in DNA topology, the topoisomerases create a single or double-stranded nick in the template DNA, hold the nicked ends to let the tangled DNA pass through, and finally re-ligate the breaks. The DNA nicking and re-ligation activities as well as ATPase activities (when present) in topoisomerases are subjected to inhibition by several anticancer and antibacterial drugs, thus establishing these enzymes as successful targets in anticancer and antibacterial therapies. The anti-topoisomerase drugs interfere with the functioning of these enzymes and result in the accumulation of DNA tangles or lethal genomic breaks, thereby promoting host cell (or organism) death. The potential of topoisomerases in the human malarial parasite, Plasmodium falciparum in antimalarial drug development has received little attention so far. Interestingly, the parasite genome encodes orthologs of topoisomerases found in eukaryotes, prokaryotes, and archaea, thus, providing an enormous opportunity for investigating these enzymes for antimalarial therapeutics. This review focuses on the features of Plasmodium falciparum topoisomerases (PfTopos) with respect to their closer counterparts in other organisms. We will discuss overall advances and basic challenges with topoisomerase research in Plasmodium falciparum and our attempts to understand the interaction of PfTopos with classical and new-generation topoisomerase inhibitors using in silico molecular docking approach. The recent episodes of parasite resistance against artemisinin, the only effective antimalarial drug at present, further highlight the significance of investigating new drug targets including topoisomerases in antimalarial therapeutics.
Collapse
Affiliation(s)
- Ashraf Dar
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India.
| | - Priya Godara
- Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Masarat Bashir
- COTS, Sheri-Kashmir University of Agricultural Sciences and Technology, Mirgund, Srinagar, India
| |
Collapse
|
33
|
Salomatina OV, Kornienko TE, Zakharenko AL, Komarova NI, Achara C, Reynisson J, Salakhutdinov NF, Lavrik OI, Volcho KP. New Dual Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 and 2 Based on Deoxycholic Acid: Design, Synthesis, Cytotoxicity, and Molecular Modeling. Molecules 2024; 29:581. [PMID: 38338326 PMCID: PMC10856758 DOI: 10.3390/molecules29030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.
Collapse
Affiliation(s)
- Oksana V. Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Tatyana E. Kornienko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Nina I. Komarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Chigozie Achara
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (C.A.); (J.R.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (C.A.); (J.R.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| |
Collapse
|
34
|
Gilbert BR, Luthey-Schulten Z. Replicating Chromosomes in Whole-Cell Models of Bacteria. Methods Mol Biol 2024; 2819:625-653. [PMID: 39028527 DOI: 10.1007/978-1-0716-3930-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication of genetic material. In a recent study, we presented a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics. This approach was used to investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell cycle. To achieve cell-scale chromosome structures that are realistic, we modeled the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. Additionally, the polymer interacts with ribosomes distributed according to cryo-electron tomograms of Syn3A. The polymer model was further augmented by computational models of loop extrusion by structural maintenance of chromosomes (SMC) protein complexes and topoisomerase action, and the modeling and analysis of multi-fork replication states.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- NSF Science and Technology Center for Quantitative Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
35
|
Abstract
Magnetic tweezers are a single-molecule force and torque spectroscopy technique that enable the mechanical interrogation in vitro of biomolecules, such as nucleic acids and proteins. They use a magnetic field originating from either permanent magnets or electromagnets to attract a magnetic particle, thus stretching the tethering biomolecule. They nicely complement other force spectroscopy techniques such as optical tweezers and atomic force microscopy (AFM) as they operate as a very stable force clamp, enabling long-duration experiments over a very broad range of forces spanning from 10 fN to 1 nN, with 1-10 milliseconds time and sub-nanometer spatial resolution. Their simplicity, robustness, and versatility have made magnetic tweezers a key technique within the field of single-molecule biophysics, being broadly applied to study the mechanical properties of, e.g., nucleic acids, genome processing molecular motors, protein folding, and nucleoprotein filaments. Furthermore, magnetic tweezers allow for high-throughput single-molecule measurements by tracking hundreds of biomolecules simultaneously both in real-time and at high spatiotemporal resolution. Magnetic tweezers naturally combine with surface-based fluorescence spectroscopy techniques, such as total internal reflection fluorescence microscopy, enabling correlative fluorescence and force/torque spectroscopy on biomolecules. This chapter presents an introduction to magnetic tweezers including a description of the hardware, the theory behind force calibration, its spatiotemporal resolution, combining it with other techniques, and a (non-exhaustive) overview of biological applications.
Collapse
Affiliation(s)
- David Dulin
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
36
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
37
|
Chatzinikolaou G, Stratigi K, Siametis A, Goulielmaki E, Akalestou-Clocher A, Tsamardinos I, Topalis P, Austin C, Bouwman BA, Crosetto N, Altmüller J, Garinis GA. XPF interacts with TOP2B for R-loop processing and DNA looping on actively transcribed genes. SCIENCE ADVANCES 2023; 9:eadi2095. [PMID: 37939182 PMCID: PMC10631727 DOI: 10.1126/sciadv.adi2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Co-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response. Abrogation of TOP2B leads to the diminished recruitment of XPF, CTCF, and the cohesin subunits to promoters of actively transcribed genes and R-loops and the concurrent impairment of CTCF-mediated DNA looping. Together, our findings disclose an essential role for XPF with TOP2B and the CTCF/cohesin complex in R-loop processing for transcription activation with important ramifications for DNA repair-deficient syndromes associated with transcription-associated DNA damage.
Collapse
Affiliation(s)
- Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Tsamardinos
- Computer Science Department of University of Crete, Heraklion, Crete, Greece
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Caroline Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Britta A. M. Bouwman
- Division of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Science for Life Laboratory, Stockholm 17177, Sweden
| | - Nicola Crosetto
- Division of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Science for Life Laboratory, Stockholm 17177, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 22157 Milan, Italy
| | - Janine Altmüller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117 Berlin, Germany
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
38
|
Salem MG, Abu El-Ata SA, Elsayed EH, Mali SN, Alshwyeh HA, Almaimani G, Almaimani RA, Almasmoum HA, Altwaijry N, Al-Olayan E, Saied EM, Youssef MF. Novel 2-substituted-quinoxaline analogs with potential antiproliferative activity against breast cancer: insights into cell cycle arrest, topoisomerase II, and EGFR activity. RSC Adv 2023; 13:33080-33095. [PMID: 37954422 PMCID: PMC10633821 DOI: 10.1039/d3ra06189b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Breast cancer is a global health concern, with increasing disease burden and disparities in access to healthcare. Late diagnosis and limited treatment options in underserved areas contribute to poor outcomes. In response to this challenge, we developed a novel family of 2-substituted-quinoxaline analogues, combining coumarin and quinoxaline scaffolds known for their anticancer properties. Through a versatile synthetic approach, we designed, synthesized, and characterized a set of 2-substituted quinoxaline derivatives. The antiproliferative activity of the synthesized compounds was assessed toward the MCF-7 breast cancer cells. Our investigations showed that the synthesized compounds exhibit considerable antiproliferative activity toward MCF-7 cells. Notably, compound 3b, among examined compounds, displayed a superior inhibitory effect (IC50 = 1.85 ± 0.11 μM) toward the growth of MCF-7 cells compared to the conventional anticancer drug staurosporine (IC50 = 6.77 ± 0.41 μM) and showed minimal impact on normal cells (MCF-10A cell lines, IC50 = 33.7 ± 2.04 μM). Mechanistic studies revealed that compound 3b induced cell cycle arrest at the G1 transition and triggered apoptosis in MCF-7 cells, as evidenced by increasing the percentage of cells arrested in the G2/M and pre-G1 phases utilizing flow cytometric analysis and Annexin V-FITC/PI analysis. Moreover, compound 3b was found to substantially suppress topoisomerase enzyme activity in MCF-7 cells. Molecular modeling studies further supported the potential of compound 3b as a therapeutic candidate by demonstrating significant binding affinity to the active sites of both topoisomerase II and EGFR proteins. Taken together, the presented 2-substituted-quinoxaline analogues, especially compound 3b, show promise as potential candidates for the development of effective anti-breast cancer drugs.
Collapse
Affiliation(s)
- Manar G Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Sara A Abu El-Ata
- Department of Chemistry, Faculty of Science, Port Said University Port Said Egypt
| | - Elsherbiny H Elsayed
- Department of Chemistry, Faculty of Science, Port Said University Port Said Egypt
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Ranchi 835215 India
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University PO Box 1982 Dammam 31441 Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Hussain A Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, Princess Nourah Bint Abdulrahman University PO Box 84428 Riyadh 11671 Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University Riyadh Saudi Arabia
| | - Essa M Saied
- Department of Chemistry (Biochemistry Division), Faculty of Science, Suez Canal University Ismailia 41522 Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Mohamed F Youssef
- Department of Chemistry (Organic Chemistry Division), Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
39
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
40
|
Zhao Y, Kuang W, An Q, Li J, Wang Y, Deng Z. Cryo-EM structures of African swine fever virus topoisomerase. mBio 2023; 14:e0122823. [PMID: 37610250 PMCID: PMC10653817 DOI: 10.1128/mbio.01228-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) is a highly contagious virus that causes lethal hemorrhagic diseases known as African swine fever (ASF) with a case fatality rate of 100%. There is an urgent need to develop anti-ASFV drugs. We determine the first high-resolution structures of viral topoisomerase ASFV P1192R in both the closed and open C-gate forms. P1192R shows a similar overall architecture with eukaryotic and prokaryotic type II topoisomerases, which have been successful targets of many antimicrobials and anticancer drugs, with the most similarity to yeast topo II. P1192R also exhibits differences in the details of active site configuration, which are important to enzyme activity. These two structures offer useful structural information for antiviral drug design and provide structural evidence to support that eukaryotic type IIA topoisomerase likely originated from horizontal gene transfer from the virus.
Collapse
Affiliation(s)
- Yan Zhao
- Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Kuang
- Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiyin An
- Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyue Li
- Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yong Wang
- Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zengqin Deng
- Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
41
|
Junier I, Ghobadpour E, Espeli O, Everaers R. DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling. Front Microbiol 2023; 14:1192831. [PMID: 37965550 PMCID: PMC10642903 DOI: 10.3389/fmicb.2023.1192831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
DNA supercoiling is central to many fundamental processes of living organisms. Its average level along the chromosome and over time reflects the dynamic equilibrium of opposite activities of topoisomerases, which are required to relax mechanical stresses that are inevitably produced during DNA replication and gene transcription. Supercoiling affects all scales of the spatio-temporal organization of bacterial DNA, from the base pair to the large scale chromosome conformation. Highlighted in vitro and in vivo in the 1960s and 1970s, respectively, the first physical models were proposed concomitantly in order to predict the deformation properties of the double helix. About fifteen years later, polymer physics models demonstrated on larger scales the plectonemic nature and the tree-like organization of supercoiled DNA. Since then, many works have tried to establish a better understanding of the multiple structuring and physiological properties of bacterial DNA in thermodynamic equilibrium and far from equilibrium. The purpose of this essay is to address upcoming challenges by thoroughly exploring the relevance, predictive capacity, and limitations of current physical models, with a specific focus on structural properties beyond the scale of the double helix. We discuss more particularly the problem of DNA conformations, the interplay between DNA supercoiling with gene transcription and DNA replication, its role on nucleoid formation and, finally, the problem of scaling up models. Our primary objective is to foster increased collaboration between physicists and biologists. To achieve this, we have reduced the respective jargon to a minimum and we provide some explanatory background material for the two communities.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
| | - Elham Ghobadpour
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| | - Olivier Espeli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ralf Everaers
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| |
Collapse
|
42
|
Yakkala PA, Penumallu NR, Shafi S, Kamal A. Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharmaceuticals (Basel) 2023; 16:1456. [PMID: 37895927 PMCID: PMC10609717 DOI: 10.3390/ph16101456] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Topoisomerases are very important enzymes that regulate DNA topology and are vital for biological actions like DNA replication, transcription, and repair. The emergence and spread of cancer has been intimately associated with topoisomerase dysregulation. Topoisomerase inhibitors have consequently become potential anti-cancer medications because of their ability to obstruct the normal function of these enzymes, which leads to DNA damage and subsequently causes cell death. This review emphasizes the importance of topoisomerase inhibitors as marketed, clinical and preclinical anti-cancer medications. In the present review, various types of topoisomerase inhibitors and their mechanisms of action have been discussed. Topoisomerase I inhibitors, which include irinotecan and topotecan, are agents that interact with the DNA-topoisomerase I complex and avert resealing of the DNA. The accretion of DNA breaks leads to the inhibition of DNA replication and cell death. On the other hand, topoisomerase II inhibitors like etoposide and teniposide, function by cleaving the DNA-topoisomerase II complex thereby effectively impeding the release of double-strand DNA breaks. Moreover, the recent advances in exploring the therapeutic efficacy, toxicity, and MDR (multidrug resistance) issues of new topoisomerase inhibitors have been reviewed in the present review.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Naveen Reddy Penumallu
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India;
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, Hyderabad 500078, India
- Telangana State Council of Science & Technology, Environment, Forests, Science & Technology Department, Hyderabad 500004, India
| |
Collapse
|
43
|
Boulas I, Bruno L, Rimsky S, Espeli O, Junier I, Rivoire O. Assessing in vivo the impact of gene context on transcription through DNA supercoiling. Nucleic Acids Res 2023; 51:9509-9521. [PMID: 37667073 PMCID: PMC10570042 DOI: 10.1093/nar/gkad688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
Gene context can have significant impact on gene expression but is currently not integrated in quantitative models of gene regulation despite known biophysical principles and quantitative in vitro measurements. Conceptually, the simplest gene context consists of a single gene framed by two topological barriers, known as the twin transcriptional-loop model, which illustrates the interplay between transcription and DNA supercoiling. In vivo, DNA supercoiling is additionally modulated by topoisomerases, whose modus operandi remains to be quantified. Here, we bridge the gap between theory and in vivo properties by realizing in Escherichia coli the twin transcriptional-loop model and by measuring how gene expression varies with promoters and distances to the topological barriers. We find that gene expression depends on the distance to the upstream barrier but not to the downstream barrier, with a promoter-dependent intensity. We rationalize these findings with a first-principle biophysical model of DNA transcription. Our results are explained if TopoI and gyrase both act specifically, respectively upstream and downstream of the gene, with antagonistic effects of TopoI, which can repress initiation while facilitating elongation. Altogether, our work sets the foundations for a systematic and quantitative description of the impact of gene context on gene regulation.
Collapse
Affiliation(s)
- Ihab Boulas
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lisa Bruno
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Sylvie Rimsky
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivier Espeli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ivan Junier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Olivier Rivoire
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Gulliver, ESPCI, CNRS, Université PSL, Paris, France
| |
Collapse
|
44
|
Cowell IG, Casement JW, Austin CA. To Break or Not to Break: The Role of TOP2B in Transcription. Int J Mol Sci 2023; 24:14806. [PMID: 37834253 PMCID: PMC10573011 DOI: 10.3390/ijms241914806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Transcription and its regulation pose challenges related to DNA torsion and supercoiling of the DNA template. RNA polymerase tracking the helical groove of the DNA introduces positive helical torsion and supercoiling upstream and negative torsion and supercoiling behind its direction of travel. This can inhibit transcriptional elongation and other processes essential to transcription. In addition, chromatin remodeling associated with gene activation can generate or be hindered by excess DNA torsional stress in gene regulatory regions. These topological challenges are solved by DNA topoisomerases via a strand-passage reaction which involves transiently breaking and re-joining of one (type I topoisomerases) or both (type II topoisomerases) strands of the phosphodiester backbone. This review will focus on one of the two mammalian type II DNA topoisomerase enzymes, DNA topoisomerase II beta (TOP2B), that have been implicated in correct execution of developmental transcriptional programs and in signal-induced transcription, including transcriptional activation by nuclear hormone ligands. Surprisingly, several lines of evidence indicate that TOP2B-mediated protein-free DNA double-strand breaks are involved in signal-induced transcription. We discuss the possible significance and origins of these DSBs along with a network of protein interaction data supporting a variety of roles for TOP2B in transcriptional regulation.
Collapse
Affiliation(s)
- Ian G. Cowell
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John W. Casement
- Bioinformatics Support Unit, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline A. Austin
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
45
|
Mu H, Sun Y, Yuan B, Wang Y. Betulinic acid in the treatment of breast cancer: Application and mechanism progress. Fitoterapia 2023; 169:105617. [PMID: 37479118 DOI: 10.1016/j.fitote.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound, which can be obtained by separation, chemical synthesis and biotransformation. BA has excellent biological activities, especially its role in the treatment of breast cancer deserves attention. Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway. In addition, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects. This article reviews the application and possible mechanism of BA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Huijuan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yuli Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
46
|
Wang M, Liang L, Wang R, Jia S, Xu C, Wang Y, Luo M, Lin Q, Yang M, Zhou H, Liu D, Qing C. Narciclasine, a novel topoisomerase I inhibitor, exhibited potent anti-cancer activity against cancer cells. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:27. [PMID: 37640882 PMCID: PMC10462586 DOI: 10.1007/s13659-023-00392-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
DNA topoisomerases are essential nuclear enzymes in correcting topological DNA errors and maintaining DNA integrity. Topoisomerase inhibitors are a significant class of cancer chemotherapeutics with a definite curative effect. Natural products are a rich source of lead compounds for drug discovery, including anti-tumor drugs. In this study, we found that narciclasine (NCS), an amaryllidaceae alkaloid, is a novel inhibitor of topoisomerase I (topo I). Our data demonstrated that NCS inhibited topo I activity and reversed its unwinding effect on p-HOT DNA substrate. However, it had no obvious effect on topo II activity. The molecular mechanism of NCS inhibited topo I showed that NCS did not stabilize topo-DNA covalent complexes in cells, indicating that NCS is not a topo I poison. A blind docking result showed that NCS could bind to topo I, suggesting that NCS might be a topo I suppressor. Additionally, NCS exhibited a potent anti-proliferation effect in various cancer cells. NCS arrested the cell cycle at G2/M phase and induced cell apoptosis. Our study reveals the antitumor mechanisms of NCS and provides a good foundation for the development of anti-cancer drugs based on topo I inhibition.
Collapse
Affiliation(s)
- Meichen Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China
- Yunnan Infectious Disease Hospital, 28 km at Shi'an Road, Taiping Town, Anning, Kunming, 650301, Yunnan, China
| | - Leilei Liang
- Cell Biology and Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, China
| | - Rong Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Shutao Jia
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Chang Xu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Yuting Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Min Luo
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Qiqi Lin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Hongyu Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China.
| | - Dandan Liu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China.
| | - Chen Qing
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, 650500, Yunnan, People's Republic of China.
| |
Collapse
|
47
|
Deweese JE, Osheroff N. No Time to Relax and Unwind: Exploration of Topoisomerases and a Growing Field of Study. Int J Mol Sci 2023; 24:13080. [PMID: 37685888 PMCID: PMC10487853 DOI: 10.3390/ijms241713080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
With the topoisomerase field in its sixth decade [...].
Collapse
Affiliation(s)
- Joseph E. Deweese
- Department of Biological, Physical, and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
48
|
Lewicky JD, Martel AL, Gupta MR, Roy R, Rodriguez GM, Vanderhyden BC, Le HT. Conventional DNA-Damaging Cancer Therapies and Emerging cGAS-STING Activation: A Review and Perspectives Regarding Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4127. [PMID: 37627155 PMCID: PMC10453198 DOI: 10.3390/cancers15164127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many traditional cancer treatments such as radiation and chemotherapy are known to induce cellular DNA damage as part of their cytotoxic activity. The cGAS-STING signaling axis, a key member of the DNA damage response that acts as a sensor of foreign or aberrant cytosolic DNA, is helping to rationalize the DNA-damaging activity of these treatments and their emerging immunostimulatory capacity. Moreover, cGAS-STING, which is attracting considerable attention for its ability to promote antitumor immune responses, may fundamentally be able to address many of the barriers limiting the success of cancer immunotherapy strategies, including the immunosuppressive tumor microenvironment. Herein, we review the traditional cancer therapies that have been linked with cGAS-STING activation, highlighting their targets with respect to their role and function in the DNA damage response. As part of the review, an emerging "chemoimmunotherapy" concept whereby DNA-damaging agents are used for the indirect activation of STING is discussed as an alternative to the direct molecular agonism strategies that are in development, but have yet to achieve clinical approval. The potential of this approach to address some of the inherent and emerging limitations of cGAS-STING signaling in cancer immunotherapy is also discussed. Ultimately, it is becoming clear that in order to successfully employ the immunotherapeutic potential of the cGAS-STING axis, a balance between its contrasting antitumor and protumor/inflammatory activities will need to be achieved.
Collapse
Affiliation(s)
- Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
| | - Mukul Raj Gupta
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (M.R.G.); (R.R.)
| | - Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6, Canada; (G.M.R.); (B.C.V.)
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada; (J.D.L.); (A.L.M.)
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
49
|
Grzelczyk J, Pérez-Sánchez H, Carmena-Bargueño M, Oracz J, Budryn G. Effects of In Vitro Digestion of Polyphenols from Coffee on Binding Parameters to Human Topoisomerase II α. Molecules 2023; 28:5996. [PMID: 37630250 PMCID: PMC10457778 DOI: 10.3390/molecules28165996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Type II topoisomerase (TOPII) is an enzyme that influences the topology of DNA. DNA breaks generated by TOPII may result in mutagenic or cytotoxic changes in cancer cells. In this study, we characterized interactions of TOPIIα with coffee extracts and individual chlorogenic acids (CHAs) from the extracts by performing isothermal titration calorimetry (ITC) and molecular docking (MD) simulations. The study showed that the highest affinity to TOPIIα was found in green coffee (ΔG = -38.23 kJ/mol) and monochlorogenic acids fraction of coffee extracts (ΔG = -35.80 kJ/mol), resulting from the high content of polyphenols, such as CHAs, which can bind to the enzyme in the active site. Coffee extracts and their fractions maintained a high affinity for TOPIIα after simulated digestion in the presence of probiotic bacteria. It can be concluded that coffee may be a potential TOPIIα inhibitor considered as a functional food for cancer prevention.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain; (H.P.-S.); (M.C.-B.)
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain; (H.P.-S.); (M.C.-B.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland;
| |
Collapse
|
50
|
Gilbert BR, Thornburg ZR, Brier TA, Stevens JA, Grünewald F, Stone JE, Marrink SJ, Luthey-Schulten Z. Dynamics of chromosome organization in a minimal bacterial cell. Front Cell Dev Biol 2023; 11:1214962. [PMID: 37621774 PMCID: PMC10445541 DOI: 10.3389/fcell.2023.1214962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate in silico chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.
Collapse
Affiliation(s)
- Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jan A. Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Fabian Grünewald
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - John E. Stone
- NVIDIA Corporation, Santa Clara, CA, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NSF Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|