1
|
Zhu XX, Wang YS, Li SJ, Peng RQ, Wen X, Peng H, Shi QS, Zhou G, Xie XB, Wang J. Rapid detection of mexX in Pseudomonas aeruginosa based on CRISPR-Cas13a coupled with recombinase polymerase amplification. Front Microbiol 2024; 15:1341179. [PMID: 38357344 PMCID: PMC10864651 DOI: 10.3389/fmicb.2024.1341179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The principal pathogen responsible for chronic urinary tract infections, immunocompromised hosts, and cystic fibrosis patients is Pseudomonas aeruginosa, which is difficult to eradicate. Due to the extensive use of antibiotics, multidrug-resistant P. aeruginosa has evolved, complicating clinical therapy. Therefore, a rapid and efficient approach for detecting P. aeruginosa strains and their resistance genes is necessary for early clinical diagnosis and appropriate treatment. This study combines recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats-association protein 13a (CRISPR-Cas13a) to establish a one-tube and two-step reaction systems for detecting the mexX gene in P. aeruginosa. The test times for one-tube and two-step RPA-Cas13a methods were 5 and 40 min (including a 30 min RPA amplification reaction), respectively. Both methods outperform Quantitative Real-time Polymerase Chain Reactions (qRT-PCR) and traditional PCR. The limit of detection (LoD) of P. aeruginosa genome in one-tube and two-step RPA-Cas13a is 10 aM and 1 aM, respectively. Meanwhile, the designed primers have a high specificity for P. aeruginosa mexX gene. These two methods were also verified with actual samples isolated from industrial settings and demonstrated great accuracy. Furthermore, the results of the two-step RPA-Cas13a assay could also be visualized using a commercial lateral flow dipstick with a LoD of 10 fM, which is a useful adjunt to the gold-standard qRT-PCR assay in field detection. Taken together, the procedure developed in this study using RPA and CRISPR-Cas13a provides a simple and fast way for detecting resistance genes.
Collapse
Affiliation(s)
- Xiao-Xuan Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ying-Si Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Su-Juan Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ru-Qun Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xia Wen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hong Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Bigini F, Lee SH, Sun YJ, Sun Y, Mahajan VB. Unleashing the potential of CRISPR multiplexing: Harnessing Cas12 and Cas13 for precise gene modulation in eye diseases. Vision Res 2023; 213:108317. [PMID: 37722240 PMCID: PMC10685911 DOI: 10.1016/j.visres.2023.108317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Gene therapy is a flourishing field with the potential to revolutionize the treatment of genetic diseases. The emergence of CRISPR-Cas9 has significantly advanced targeted and efficient genome editing. Although CRISPR-Cas9 has demonstrated promising potential applications in various genetic disorders, it faces limitations in simultaneously targeting multiple genes. Novel CRISPR systems, such as Cas12 and Cas13, have been developed to overcome these challenges, enabling multiplexing and providing unique advantages. Cas13, in particular, targets mRNA instead of genomic DNA, permitting precise gene expression control and mitigating off-target effects. This review investigates the potential of Cas12 and Cas13 in ocular gene therapy applications, such as suppression of inflammation and cell death. In addition, the capabilities of Cas12 and Cas13 are explored in addressing potential targets related with disease mechanisms such as aberrant isoforms, mitochondrial genes, cis-regulatory sequences, modifier genes, and long non-coding RNAs. Anatomical accessibility and relative immune privilege of the eye provide an ideal organ system for evaluating these novel techniques' efficacy and safety. By targeting multiple genes concurrently, CRISPR-Cas12 and Cas13 systems hold promise for treating a range of ocular disorders, including glaucoma, retinal dystrophies, and age-related macular degeneration. Nonetheless, additional refinement is required to ascertain the safety and efficacy of these approaches in ocular disease treatments. Thus, the development of Cas12 and Cas13 systems marks a significant advancement in gene therapy, offering the potential to devise effective treatments for ocular disorders.
Collapse
Affiliation(s)
- Fabio Bigini
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Young Joo Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Yang Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Stanford Maternal & Child Health Research Institute, Palo Alto, CA 94304, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
3
|
Mayes CM, Santarpia JL. Pan-Coronavirus CRISPR-CasRx Effector System Significantly Reduces Viable Titer in HCoV-OC43, HCoV-229E, and SARS-CoV-2. CRISPR J 2023; 6:359-368. [PMID: 36912815 PMCID: PMC10457650 DOI: 10.1089/crispr.2022.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
CRISPR-based technology has become widely used as an antiviral strategy, including as a broad-spectrum human coronavirus (HCoV) therapeutic. In this work, we have designed a CRISPR-CasRx effector system with guide RNAs (gRNAs) that are cross-reactive among several HCoV species. We tested the efficacy of this pan-coronavirus effector system by evaluating the reduction in viral viability associated with different CRISPR targets in HCoV-OC43, HCoV-229E, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined that several CRISPR targets significantly reduce viral titer, despite the presence of single nucleotide polymorphisms in the gRNA when compared with a non-targeting, negative control gRNA. CRISPR targets reduced viral titer between 85% and >99% in HCoV-OC43, between 78% and >99% in HCoV-229E, and between 70% and 94% in SARS-CoV-2 when compared with an untreated virus control. These data establish a proof-of-concept for a pan-coronavirus CRISPR effector system that is capable of reducing viable virus in both Risk Group 2 and Risk Group 3 HCoV pathogens.
Collapse
Affiliation(s)
- Cathryn M. Mayes
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, New Mexico, USA; National Strategic Research Institute, Omaha, Nebraska, USA
| | - Joshua L. Santarpia
- University of Nebraska Medical Center, Omaha, Nebraska, USA; and National Strategic Research Institute, Omaha, Nebraska, USA
- Chemical & Biological Threat Detection & Countermeasure Development, National Strategic Research Institute, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Zhou F, Yu X, Gan R, Ren K, Chen C, Ren C, Cui M, Liu Y, Gao Y, Wang S, Yin M, Huang T, Huang Z, Zhang F. CRISPRimmunity: an interactive web server for CRISPR-associated Important Molecular events and Modulators Used in geNome edIting Tool identifYing. Nucleic Acids Res 2023:7175359. [PMID: 37216595 DOI: 10.1093/nar/gkad425] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
The CRISPR-Cas system is a highly adaptive and RNA-guided immune system found in bacteria and archaea, which has applications as a genome editing tool and is a valuable system for studying the co-evolutionary dynamics of bacteriophage interactions. Here introduces CRISPRimmunity, a new web server designed for Acr prediction, identification of novel class 2 CRISPR-Cas loci, and dissection of key CRISPR-associated molecular events. CRISPRimmunity is built on a suite of CRISPR-oriented databases providing a comprehensive co-evolutionary perspective of the CRISPR-Cas and anti-CRISPR systems. The platform achieved a high prediction accuracy of 0.997 for Acr prediction when tested on a dataset of 99 experimentally validated Acrs and 676 non-Acrs, outperforming other existing prediction tools. Some of the newly identified class 2 CRISPR-Cas loci using CRISPRimmunity have been experimentally validated for cleavage activity in vitro. CRISPRimmunity offers the catalogues of pre-identified CRISPR systems to browse and query, the collected resources or databases to download, a well-designed graphical interface, a detailed tutorial, multi-faceted information, and exportable results in machine-readable formats, making it easy to use and facilitating future experimental design and further data mining. The platform is available at http://www.microbiome-bigdata.com/CRISPRimmunity. Moreover, the source code for batch analysis are published on Github (https://github.com/HIT-ImmunologyLab/CRISPRimmunity).
Collapse
Affiliation(s)
- Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaorong Yu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Rui Gan
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102200, China
| | - Kuan Ren
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Chuangeng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Meng Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yuchen Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yiyang Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Shouyu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mingyu Yin
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
5
|
Sartaj Sohrab S, Aly El-Kafrawy S, Mirza Z, Hassan AM, Alsaqaf F, Ibraheem Azhar E. Delivery of siRNAs against MERS-CoV in Vero and HEK-293 cells: A comparative evaluation of transfection reagents. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102540. [PMID: 36624781 PMCID: PMC9814285 DOI: 10.1016/j.jksus.2023.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 05/28/2023]
Abstract
Background A new coronavirus was identified in Jeddah, Saudi Arabia in 2012 and designated as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). To date, this virus has been reported in 27 countries. The virus transmission to humans has already been reported from camels. Currently, there is no vaccine or antiviral therapy available against this virus. Methods The siRNAs were in silico predicted, designed, and chemically synthesized by using the MERS-CoV-orf1ab region as a target. The antiviral activity was experimentally evaluated by delivering the siRNAs with Lipofectamine™ 2000 and JetPRIMER as transfection reagents in both Vero cell and HEK-293-T cell lines at two different concentrations (10.0 nM and 5.0 nM). The Ct value of quantitative Real-Time PCR (qRT-PCR) was used to calculate and determine the reduction of viral RNA level in both cell supernatant and cell lysate isolated from both cell lines. Results The sequence alignment resulted in the selection of highly conserved regions. The orf1ab region was used to predict and design the siRNAs and a total of twenty-one siRNAs were finally selected from four hundred and twenty-six siRNAs generated by online software. Inhibition of viral replication and significant reduction of viral RNA was observed against selected siRNAs in both cell lines at both concentrations. Based on the Ct value, the siRNAs # 11, 12, 18, and 20 were observed to be the best performing in both cell lines at both concentrations. Conclusion Based on the results and data analysis, it is concluded that the use of two different transfection reagents was significantly effective. But the Lipofectamine™ 2000 was found to be a better transfection reagent than the JetPRIMER for the delivery of siRNAs in both cell lines.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif Aly El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zeenat Mirza
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Paul A, Chakraborty N, Sarkar A, Acharya K, Ranjan A, Chauhan A, Srivastava S, Singh AK, Rai AK, Mubeen I, Prasad R. Ethnopharmacological Potential of Phytochemicals and Phytogenic Products against Human RNA Viral Diseases as Preventive Therapeutics. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1977602. [PMID: 36860811 PMCID: PMC9970710 DOI: 10.1155/2023/1977602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
RNA viruses have been the most destructive due to their transmissibility and lack of control measures. Developments of vaccines for RNA viruses are very tough or almost impossible as viruses are highly mutable. For the last few decades, most of the epidemic and pandemic viral diseases have wreaked huge devastation with innumerable fatalities. To combat this threat to mankind, plant-derived novel antiviral products may contribute as reliable alternatives. They are assumed to be nontoxic, less hazardous, and safe compounds that have been in uses in the beginning of human civilization. In this growing COVID-19 pandemic, the present review amalgamates and depicts the role of various plant products in curing viral diseases in humans.
Collapse
Affiliation(s)
- Anamika Paul
- Department of Botany, Scottish Church College, Kolkata 700006, India
| | | | - Anik Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, U.P., India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| |
Collapse
|
7
|
Nambiar S, Mohan M, Rosin Jose A. Voltammetric Sensors: A Versatile Tool in COVID‐19 Diagnosis and Prognosis. ChemistrySelect 2023. [DOI: 10.1002/slct.202204506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Souparnika Nambiar
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| | - Malavika Mohan
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| | - Ammu Rosin Jose
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| |
Collapse
|
8
|
Kolasinliler G, Aagre MM, Akkale C, Kaya HB. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
9
|
Kumaran A, Jude Serpes N, Gupta T, James A, Sharma A, Kumar D, Nagraik R, Kumar V, Pandey S. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. BIOSENSORS 2023; 13:202. [PMID: 36831968 PMCID: PMC9953454 DOI: 10.3390/bios13020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 05/25/2023]
Abstract
With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for large-scale screening and to be used in remote locations in cases of outbreaks and pandemics. CRISPR-based biosensors comprise a promising new approach to nucleic acid detection, which uses Cas effector proteins (Cas9, Cas12, and Cas13) as extremely specialized identification components that may be used in conjunction with a variety of readout approaches (such as fluorescence, colorimetry, potentiometry, lateral flow assay, etc.) for onsite analysis. In this review, we cover some technical aspects of integrating the CRISPR Cas system with traditional biosensing readout methods and amplification technologies such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) and continue to elaborate on the prospects of the developed biosensor in the detection of some major viral and bacterial diseases. Within the scope of this article, we also discuss the recent COVID pandemic and the numerous CRISPR biosensors that have undergone development since its advent. Finally, we discuss some challenges and future prospects of CRISPR Cas systems in point-of-care testing.
Collapse
Affiliation(s)
- Akash Kumaran
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nathan Jude Serpes
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Tisha Gupta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Vaneet Kumar
- Department of Natural Science, CT University, Ludhiana 142024, Punjab, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
10
|
Computational Design and Experimental Evaluation of MERS-CoV siRNAs in Selected Cell Lines. Diagnostics (Basel) 2023; 13:diagnostics13010151. [PMID: 36611443 PMCID: PMC9818142 DOI: 10.3390/diagnostics13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a well-known coronavirus first identified in a hospitalized patient in the Kingdom of Saudi Arabia. MERS-CoV is a serious pathogen affecting both human and camel health globally, with camels being known carriers of viruses that spread to humans. In this work, MERS-CoV genomic sequences were retrieved and analyzed by multiple sequence alignment to design and predict siRNAs with online software. The siRNAs were designed from the orf1ab region of the virus genome because of its high sequence conservation and vital role in virus replication. The designed siRNAs were used for experimental evaluation in selected cell lines: Vero cells, HEK-293-T, and Huh-7. Virus inhibition was assessed according to the cycle threshold value during a quantitative real-time polymerase chain reaction. Out of 462 potential siRNAs, we filtered out 21 based on specific selection criteria without off-target effect. The selected siRNAs did not show any cellular toxicity in the tested cell lines at various concentrations. Based on our results, it was obvious that the combined use of siRNAs exhibited a reduction in MERS-CoV replication in the Vero, HEK-293-T, and Huh-7 cell lines, with the highest efficacy displayed in the Vero cells.
Collapse
|
11
|
Verma MK, Roychowdhury S, Sahu BD, Mishra A, Sethi KK. CRISPR-based point-of-care diagnostics incorporating Cas9, Cas12, and Cas13 enzymes advanced for SARS-CoV-2 detection. J Biochem Mol Toxicol 2022; 36:e23113. [PMID: 35642647 PMCID: PMC9347549 DOI: 10.1002/jbt.23113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
An outbreak of the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first came to light in December 2019, which has unfolded rapidly and turned out to be a global pandemic. Early prognosis of viral contamination involves speedy intervention, disorder control, and good-sized management of the spread of disease. Reverse transcription-polymerase chain reaction, considered the gold standard test for detecting nucleic acids and pathogen diagnosis, provides high sensitivity and specificity. However, reliance on high-priced equipped kits, associated reagents, and skilled personnel slow down sickness detection. Lately, the improvement of clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated protein)-based diagnostic systems has reshaped molecular diagnosis due to their low cost, simplicity, speed, efficiency, high sensitivity, specificity, and versatility, which is vital for accomplishing point-of-care diagnostics. We reviewed and summarized CRISPR-Cas-based point-of-care diagnostic strategies and research in these paintings while highlighting their characteristics and challenges for identifying SARS-CoV-2.
Collapse
Affiliation(s)
- Monika K. Verma
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| | - Sanjana Roychowdhury
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| | - Bidya Dhar Sahu
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| | - Awanish Mishra
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| | - Kalyan K. Sethi
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| |
Collapse
|
12
|
Lou J, Wang B, Li J, Ni P, Jin Y, Chen S, Xi Y, Zhang R, Duan G. The CRISPR-Cas system as a tool for diagnosing and treating infectious diseases. Mol Biol Rep 2022; 49:11301-11311. [PMID: 35857175 PMCID: PMC9297709 DOI: 10.1007/s11033-022-07752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 10/26/2022]
Abstract
Emerging and relapsing infectious diseases pose a huge health threat to human health and a new challenge to global public health. Rapid, sensitive and simple diagnostic tools are keys to successful management of infectious patients and containment of disease transmission. In recent years, international research on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-related proteins (Cas) has revolutionized our understanding of biology. The CRISPR-Cas system has the advantages of high specificity, high sensitivity, simple, rapid, low cost, and has begun to be used for molecular diagnosis and treatment of infectious diseases. In this paper, we described the biological principles, application fields and prospects of CRISPR-Cas system in the molecular diagnosis and treatment of infectious diseases, and compared it with existing molecular diagnosis methods, the advantages and disadvantages were summarized.
Collapse
Affiliation(s)
- Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China. .,International School of Public Health and One Health, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Hawsawi YM, Shams A, Theyab A, Siddiqui J, Barnawee M, Abdali WA, Marghalani NA, Alshelali NH, Al-Sayed R, Alzahrani O, Alqahtani A, Alsulaiman AM. The State-of-the-Art of Gene Editing and its Application to Viral Infections and Diseases Including COVID-19. Front Cell Infect Microbiol 2022; 12:869889. [PMID: 35782122 PMCID: PMC9241565 DOI: 10.3389/fcimb.2022.869889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gene therapy delivers a promising hope to cure many diseases and defects. The discovery of gene-editing technology fueled the world with valuable tools that have been employed in various domains of science, medicine, and biotechnology. Multiple means of gene editing have been established, including CRISPR/Cas, ZFNs, and TALENs. These strategies are believed to help understand the biological mechanisms of disease progression. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been designated the causative virus for coronavirus disease 2019 (COVID-19) that emerged at the end of 2019. This viral infection is a highly pathogenic and transmissible disease that caused a public health pandemic. As gene editing tools have shown great success in multiple scientific and medical areas, they could eventually contribute to discovering novel therapeutic and diagnostic strategies to battle the COVID-19 pandemic disease. This review aims to briefly highlight the history and some of the recent advancements of gene editing technologies. After that, we will describe various biological features of the CRISPR-Cas9 system and its diverse implications in treating different infectious diseases, both viral and non-viral. Finally, we will present current and future advancements in combating COVID-19 with a potential contribution of the CRISPR system as an antiviral modality in this battle.
Collapse
Affiliation(s)
- Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Mecca, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Jumana Siddiqui
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mawada Barnawee
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Wed A. Abdali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada A. Marghalani
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada H. Alshelali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Rawan Al-Sayed
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alanoud Alqahtani
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
14
|
CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal Chim Acta 2022; 1205:339749. [PMID: 35414398 PMCID: PMC8939626 DOI: 10.1016/j.aca.2022.339749] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic has brought to light the need for fast and sensitive detection methods to prevent the spread of pathogens. The scientific community is making a great effort to design new molecular detection methods suitable for fast point-of-care applications. In this regard, a variety of approaches have been developed or optimized, including isothermal amplification of viral nucleic acids, CRISPR-mediated target recognition, and read-out systems based on nanomaterials. Herein, we present CASCADE (CRISPR/CAS-based Colorimetric nucleic Acid DEtection), a sensing system for fast and specific naked-eye detection of SARS-CoV-2 RNA. In this approach, viral RNA is recognized by the LwaCas13a CRISPR protein, which activates its collateral RNase activity. Upon target recognition, Cas13a cleaves ssRNA oligonucleotides conjugated to gold nanoparticles (AuNPs), thus inducing their colloidal aggregation, which can be easily visualized. After an exhaustive optimization of functionalized AuNPs, CASCADE can detect picomolar concentrations of SARS-CoV-2 RNA. This sensitivity is further increased to low femtomolar (3 fM) and even attomolar (40 aM) ranges when CASCADE is coupled to RPA or NASBA isothermal nucleic acid amplification, respectively. We finally demonstrate that CASCADE succeeds in detecting SARS-CoV-2 in clinical samples from nasopharyngeal swabs. In conclusion, CASCADE is a fast and versatile RNA biosensor that can be coupled to different isothermal nucleic acid amplification methods for naked-eye diagnosis of infectious diseases.
Collapse
|
15
|
Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Sadri Nahand J, Piroozmand A, Jajarmi V, Mirzaei H. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 2022; 148:112743. [PMID: 35228065 PMCID: PMC8872819 DOI: 10.1016/j.biopha.2022.112743] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Kargar Jahromi
- Central Research Laboratory, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19395-4818, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,Corresponding author at: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Chen B, Li Y, Xu F, Yang X. Powerful CRISPR-Based Biosensing Techniques and Their Integration With Microfluidic Platforms. Front Bioeng Biotechnol 2022; 10:851712. [PMID: 35284406 PMCID: PMC8905290 DOI: 10.3389/fbioe.2022.851712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
In the fight against the worldwide pandemic coronavirus disease 2019 (COVID-19), simple, rapid, and sensitive tools for nucleic acid detection are in urgent need. PCR has been a classic method for nucleic acid detection with high sensitivity and specificity. However, this method still has essential limitations due to the dependence on thermal cycling, which requires costly equipment, professional technicians, and long turnover times. Currently, clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors have been developed as powerful tools for nucleic acid detection. Moreover, the CRISPR method can be performed at physiological temperature, meaning that it is easy to assemble into point-of-care devices. Microfluidic chips hold promises to integrate sample processing and analysis on a chip, reducing the consumption of sample and reagent and increasing the detection throughput. This review provides an overview of recent advances in the development of CRISPR-based biosensing techniques and their perfect combination with microfluidic platforms. New opportunities and challenges for the improvement of specificity and efficiency signal amplification are outlined. Furthermore, their various applications in healthcare, animal husbandry, agriculture, and forestry are discussed.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Xu, ; Xiaonan Yang,
| | - Xiaonan Yang
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Xu, ; Xiaonan Yang,
| |
Collapse
|
17
|
Gonzalez-Avila LU, Vega-López JM, Pelcastre-Rodríguez LI, Cabrero-Martínez OA, Hernández-Cortez C, Castro-Escarpulli G. The Challenge of CRISPR-Cas Toward Bioethics. Front Microbiol 2021; 12:657981. [PMID: 34122373 PMCID: PMC8195329 DOI: 10.3389/fmicb.2021.657981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Since determining the structure of the DNA double helix, the study of genes and genomes has revolutionized contemporary science; with the decoding of the human genome, new findings have been achieved, including the ability that humans have developed to modify genetic sequences in vitro. The discovery of gene modification mechanisms, such as the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats) and Cas (CRISPR associated). Derived from the latest discoveries in genetics, the idea that science has no limits has exploded. However, improvements in genetic engineering allowed access to new possibilities to save lives or generate new treatment options for diseases that are not treatable by using genes and their modification in the genome. With this greater knowledge, the immediate question is who governs the limits of genetic science? The first answer would be the intervention of a legislative branch, with adequate scientific advice, from which the logical answer, bioethics, should result. This term was introduced for the first time by Van Rensselaer Potter, who in 1970 combined the Greek words bios and ethos, Bio-Ethik, which determined the study of the morality of human behavior in science. The approach to this term was introduced to avoid the natural tension that results from the scientific technical development and the ethics of limits. Therefore, associating the use of biotechnology through the CRISPR-Cas system and the regulation through bioethics, aims to monitor the use of techniques and technology, with benefits for humanity, without altering fundamental rights, acting with moral and ethical principles.
Collapse
Affiliation(s)
- Luis Uriel Gonzalez-Avila
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Juan Manuel Vega-López
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Leda Ivonne Pelcastre-Rodríguez
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Omar Alejandro Cabrero-Martínez
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
18
|
Escalona‐Noguero C, López‐Valls M, Sot B. CRISPR/Cas technology as a promising weapon to combat viral infections. Bioessays 2021; 43:e2000315. [PMID: 33569817 PMCID: PMC7995209 DOI: 10.1002/bies.202000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA- and RNA-targeting nucleases that constitute dual weapons against viruses. They allow both the manipulation of viral and host genomes for therapeutic purposes and the detection of viral nucleic acids in "Point of Care" sensor devices. Here, we thoroughly review recent advances in the use of the CRISPR/Cas system for the treatment and diagnosis of viral deleterious infections such as HIV or SARS-CoV-2, examining their strengths and limitations. We describe the main points to consider when designing CRISPR antiviral strategies and the scientific efforts to develop more sensitive CRISPR-based viral detectors. Finally, we discuss future prospects to improve both applications. Also see the video abstract here: https://www.youtube.com/watch?v=C0z1dLpJWl4.
Collapse
Affiliation(s)
| | | | - Begoña Sot
- Fundación IMDEA‐NanocienciaMadridSpain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)MadridSpain
| |
Collapse
|