1
|
Ranamukhaarachchi SK, Walker A, Tang MH, Leineweber WD, Lam S, Rappel WJ, Fraley SI. Global versus local matrix remodeling drives rotational versus invasive collective migration of epithelial cells. Dev Cell 2024:S1534-5807(24)00721-4. [PMID: 39706188 DOI: 10.1016/j.devcel.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
The coordinated movement of cell collectives is essential for normal epithelial tissue development, maintenance, and cancer progression. Here, we report on a minimal 3D extracellular matrix (ECM) system wherein both invasive collective migration (ICM) and rotational collective migration (RCM) arise spontaneously from individually seeded epithelial cells of mammary and hepatic origin, regardless of whether they express adherens junctions, and lead to ductal-like and acinar-like structures, respectively. Quantitative microscopy and cellular Potts modeling reveal that initial differences in cell protrusion dynamics and matrix-remodeling localization generate RCM and ICM behavior in confining 3D ECM. Matrix-remodeling activity by matrix metalloproteinases (MMPs) is localized to the base of protrusions in cells that initiate ICM, whereas RCM does not require MMPs and is associated with ITGβ1-mediated remodeling localized globally around the cell body. Further analysis in vitro and in vivo supports the concept that distinct matrix-remodeling strategies encode collective migration behaviors and tissue structure.
Collapse
Affiliation(s)
| | - Alyssa Walker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Man-Ho Tang
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - William D Leineweber
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia Lam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Blasco Pedreros M, Salas N, Dos Santos Melo T, Miranda-Magalhães A, Almeida-Lima T, Pereira-Neves A, de Miguel N. Role of a novel uropod-like cell membrane protrusion in the pathogenesis of the parasite Trichomonas vaginalis. J Cell Sci 2024; 137:jcs262210. [PMID: 39129707 DOI: 10.1242/jcs.262210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Trichomonas vaginalis causes trichomoniasis, the most common non-viral sexually transmitted disease worldwide. As an extracellular parasite, adhesion to host cells is essential for the development of infection. During attachment, the parasite changes its tear ovoid shape to a flat ameboid form, expanding the contact surface and migrating through tissues. Here, we have identified a novel structure formed at the posterior pole of adherent parasite strains, resembling the previously described uropod, which appears to play a pivotal role as an anchor during the attachment process. Moreover, our research demonstrates that the overexpression of the tetraspanin T. vaginalis TSP5 protein (TvTSP5), which is localized on the cell surface of the parasite, notably enhances the formation of this posterior anchor structure in adherent strains. Finally, we demonstrate that parasites that overexpress TvTSP5 possess an increased ability to adhere to host cells, enhanced aggregation and reduced migration on agar plates. Overall, these findings unveil novel proteins and structures involved in the intricate mechanisms of T. vaginalis interactions with host cells.
Collapse
Affiliation(s)
- Manuela Blasco Pedreros
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| | - Nehuen Salas
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| | - Tuanne Dos Santos Melo
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Abigail Miranda-Magalhães
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Thainá Almeida-Lima
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| |
Collapse
|
3
|
Bischoff MC, Norton JE, Peifer M. Plexin/Semaphorin Antagonism Orchestrates Collective Cell Migration, Gap Closure and Organ sculpting by Contact-Mesenchymalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617649. [PMID: 39416156 PMCID: PMC11482903 DOI: 10.1101/2024.10.10.617649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cell behavior emerges from the intracellular distribution of properties like protrusion, contractility and adhesion. Thus, characteristic emergent rules of collective migration can arise from cell-cell contacts locally tweaking architecture - orchestrating self-regulation during development, wound healing, and cancer progression. The new Drosophila testis-nascent-myotube-system allows dissection of contact-dependent migration in vivo at high resolution. Here, we describe a process driving gap-closure during migration: Contact-mesenchymalization via the axon guidance factor Plexin A. This is crucial for testis myotubes to migrate as a continuous sheet, allowing normal sculpting-morphogenesis. Cells must stay filopodial and dynamically ECM-tethered near cell-cell contacts to spread while collectively moving. Our data suggest Semaphorin 1B acts as a Plexin A antagonist, fine-tuning activation. Our data reveal a contact-dependent mechanism to maintain sheet-integrity during migration, driving organ-morphogenesis using a highly conserved pathway. This is relevant for understanding mesenchymal organ-sculpting and gap-closure in migratory contexts like angiogenesis.
Collapse
Affiliation(s)
- Maik C. Bischoff
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jenevieve E. Norton
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
4
|
Bischoff MC, Norton JE, Munguia EA, Gurley NJ, Clark SE, Korankye R, Gyabaah EA, Encarnacion T, Serody CJ, Jones CD, Peifer M. A large reverse-genetic screen identifies numerous regulators of testis nascent myotube collective cell migration and collective organ sculpting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617659. [PMID: 39416171 PMCID: PMC11483038 DOI: 10.1101/2024.10.10.617659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Collective cell migration is critical for morphogenesis, homeostasis, and wound healing. During development migrating mesenchymal cells form tissues that shape some of the body's organs. We have developed a powerful model for examining this, exploring how Drosophila testis nascent myotubes migrate onto the testis during pupal development, forming the muscles that ensheath it and also creating its characteristic spiral shape. To define genes that regulate this process, we have carried out RNAseq to define the genes expressed in myotubes during migration. Using this dataset, we curated a list of 131 ligands, receptors and cytoskeletal regulators, including all Rho-family GTPase GAPs and GEFs, as candidates. We then used the GAL4/UAS system to express 279 shRNAs targeting these genes, using the muscle specific driver dMef2>GAL4, and examined the adult testis. We identified 29 genes with diverse roles in testis morphogenesis. Some have phenotypes consistent with defects in collective cell migration, while others alter testis shape in different ways, revealing some of the underlying logic of testis morphogenesis. We followed up one of these genes in more detail-that encoding the Rho-family GEF dPix. dPix knockdown leads to a drastic reduction in migration and a substantial loss of muscle coverage. Our data suggest different isoforms of dPix play distinct roles in this process, reveal a role for its protein partner Git. We also explore whether cdc42 activity regulation or cell adhesion are among the dPix mechanisms of action. Together, our RNAseq dataset and genetic analysis will provide an important resource for the community to explore cell migration and organ morphogenesis.
Collapse
Affiliation(s)
- Maik C. Bischoff
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jenevieve E. Norton
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Erika A. Munguia
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Sarah E. Clark
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Rebecca Korankye
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Emmanuel Addai Gyabaah
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Taino Encarnacion
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Christopher J. Serody
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
5
|
Jerka D, Bonowicz K, Piekarska K, Gokyer S, Derici US, Hindy OA, Altunay BB, Yazgan I, Steinbrink K, Kleszczyński K, Yilgor P, Gagat M. Unraveling Endothelial Cell Migration: Insights into Fundamental Forces, Inflammation, Biomaterial Applications, and Tissue Regeneration Strategies. ACS APPLIED BIO MATERIALS 2024; 7:2054-2069. [PMID: 38520346 PMCID: PMC11022177 DOI: 10.1021/acsabm.3c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cell migration is vital for many fundamental biological processes and human pathologies throughout our life. Dynamic molecular changes in the tissue microenvironment determine modifications of cell movement, which can be reflected either individually or collectively. Endothelial cell (EC) migratory adaptation occurs during several events and phenomena, such as endothelial injury, vasculogenesis, and angiogenesis, under both normal and highly inflammatory conditions. Several advantageous processes can be supported by biomaterials. Endothelial cells are used in combination with various types of biomaterials to design scaffolds promoting the formation of mature blood vessels within tissue engineered structures. Appropriate selection, in terms of scaffolding properties, can promote desirable cell behavior to varying degrees. An increasing amount of research could lead to the creation of the perfect biomaterial for regenerative medicine applications. In this review, we summarize the state of knowledge regarding the possible systems by which inflammation may influence endothelial cell migration. We also describe the fundamental forces governing cell motility with a specific focus on ECs. Additionally, we discuss the biomaterials used for EC culture, which serve to enhance the proliferative, proangiogenic, and promigratory potential of cells. Moreover, we introduce the mechanisms of cell movement and highlight the significance of understanding these mechanisms in the context of designing scaffolds that promote tissue regeneration.
Collapse
Affiliation(s)
- Dominika Jerka
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Faculty
of Medicine, Collegium Medicum, Mazovian
Academy in Płock, 09-402 Płock, Poland
| | - Klaudia Piekarska
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Seyda Gokyer
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Utku Serhat Derici
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Osama Ali Hindy
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Baris Burak Altunay
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Işıl Yazgan
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Kerstin Steinbrink
- Department
of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department
of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Pinar Yilgor
- Department
of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
| | - Maciej Gagat
- Department
of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Faculty
of Medicine, Collegium Medicum, Mazovian
Academy in Płock, 09-402 Płock, Poland
| |
Collapse
|
6
|
Guo Z, Bergeron KF, Mounier C. Oleate Promotes Triple-Negative Breast Cancer Cell Migration by Enhancing Filopodia Formation through a PLD/Cdc42-Dependent Pathway. Int J Mol Sci 2024; 25:3956. [PMID: 38612766 PMCID: PMC11012533 DOI: 10.3390/ijms25073956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| |
Collapse
|
7
|
Wang M, Zhu M, Zhao Z, Li X, Zhang J. A Novel and Versatile Microfluidic Device for Cell Assays under Radio Frequency Exposure. BIOSENSORS 2023; 13:763. [PMID: 37622849 PMCID: PMC10452282 DOI: 10.3390/bios13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023]
Abstract
Wound healing is a complex process composed of different stages, which involves extensive communication between the different cellular factors of the extracellular matrix (ECM). The radio frequency electromagnetic field (RF-EMF) has been used to accelerate the wound-healing process and it has been found to enhance cell alignment and mobility. The conventional methods for cell mobility analysis in an electromagnetic field generated by a radiation source are not advisable due to the low-precision, nonuniform distribution of the field, low efficiency of the analysis in batch and the lack of system integration for autonomous on-body operation. Here, a novel and versatile electromagnetic exposure system integrated with a microfluidic chip was fabricated to explore the EMF-induced response. A gradient electromagnetic field in a two-dimensional plane has been successfully established in the microchambers placed along the field line. In this work, by deploying our radiation experiments in vitro, we validated the on-chip monitoring of cell response to exposure. This electromagnetic field was simulated and human amniotic epithelial cells (HAECs) were cultured in different microchambers for continuous exposure to the electromagnetic field excited by a monopole RF antenna (1.8 GHz). New protrusions were generated and an obvious increase in filopodia with the increased field intensity was investigated. Meanwhile, the variation in intracellular Ca2+ concentration under the electromagnetic field was examined. The inhibitory effect of the Ca2+ circulation was further inspected to reveal the potential downstream signaling pathway in the RF-EMF-related bioassay, suggesting that cytoskeletal dynamics of cells under exposure are highly associated with the EGF receptor (EGFR)-cytoskeleton downstream signaling pathway. Finally, the field-induced cell elongation and alignment parallel to the field direction were observed. Additionally, the subsequent recovery (field withdrawal) and re-establishment (field re-exposure) were explored. These results indicated that this reliable and versatile exposure system for bioassay could achieve precise and high-throughput detection of the RF-EMF-induced cytoskeletal reorganization in vitro and evaluate the possible health risk from RF-EMF exposure.
Collapse
Affiliation(s)
| | | | | | - Xin Li
- Shanghai Key Laboratory of Magnetic Resonance, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Bischoff MC, Bogdan S. Dissecting Collective Cell Behavior in Migrating Testis Myotubes in Drosophila. Methods Mol Biol 2023; 2608:117-129. [PMID: 36653705 DOI: 10.1007/978-1-0716-2887-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Collective cell migration has a key role in tissue morphogenesis, wound healing, tissue regeneration, and cancer invasion. In recent years, different animal models have been established to analyze how chemical and mechanical stimuli shape the behavior of single cells into tissues and organs. At present, there are still only a few model systems that allow to genetically dissect underlying molecular mechanisms driving cell motility during tissue morphogenesis at high resolution in real time. Here, we provide a detailed protocol and toolbox for ex vivo culturing of Drosophila testes for 4D live imaging of myotube collective migration, which allows to genetically address a wide range of developmental and cell biological questions regarding modes of filopodia-based protrusion/locomotion, cell-cell adhesion, cytoskeletal modes of collective decision-making, and collective closure processes. Additionally, this protocol has been successfully used in combination with laser-induced single-cell ablation and pharmacological treatments, but it can also be used with confocal microscopy after tissue fixation.
Collapse
Affiliation(s)
- Maik C Bischoff
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Sven Bogdan
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
10
|
Vyshnava SS, Kanderi DK, Dowlathabad MR. Confocal laser scanning microscopy study of intercellular events in filopodia using 3-mercaptopropoinc acid capped CdSe/ZnS quantum dots. Micron 2022; 153:103200. [PMID: 34973488 DOI: 10.1016/j.micron.2021.103200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
Physico-chemical mobility of cells in three dimensions is dependent on the development of filipodia, which is the fundamental instinct for survival and other cellular functions in live cells. Specifically, our present research paper describes the synthesis of 3-Mercaptopropoinc acid (MPA) capped CdSe/ZnS quantum dots (QDs), which are biocompatible and utilized for cellular bioimaging applications. Using the pancreatic cell lines BXCP3 cells, we successfully demonstrated the applicability of MPA-capped QDs for intercellular filopodia imaging. Employing these QDs, we examined the dynamics of filopodia formation in real-time along the Z-axis by using confocal laser microscopy.
Collapse
Affiliation(s)
| | - Dileep Kumar Kanderi
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuram, A.P, India.
| | | |
Collapse
|