1
|
Wang D, Chen L, Gao Y, Song C, Ouyang Z, Li C, Mignani S, Majoral JP, Shi X, Shen M. Impact of molecular rigidity on the gene delivery efficiency of core-shell tecto dendrimers. J Mater Chem B 2021; 9:6149-6154. [PMID: 34328166 DOI: 10.1039/d1tb01328a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the construction of two types of core-shell tecto dendrimers (CSTDs) with different core rigidities to illustrate the impact of molecular rigidity on their gene delivery efficiency. Our study reveals that CSTDs designed with rigid cores enable promoted gene delivery, providing many possibilities for a wide range of gene delivery-associated biomedical applications.
Collapse
Affiliation(s)
- Dayuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zittersteijn HA, Gonçalves MA, Hoeben RC. A primer to gene therapy: Progress, prospects, and problems. J Inherit Metab Dis 2021; 44:54-71. [PMID: 32510617 PMCID: PMC7891367 DOI: 10.1002/jimd.12270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Genetic therapies based on gene addition have witnessed a variety of clinical successes and the first therapeutic products have been approved for clinical use. Moreover, innovative gene editing techniques are starting to offer new opportunities in which the mutations that underlie genetic diseases can be directly corrected in afflicted somatic cells. The toolboxes underpinning these DNA modifying technologies are expanding with great pace. Concerning the ongoing efforts for their implementation, viral vector-based gene delivery systems have acquired center-stage, providing new hopes for patients with inherited and acquired disorders. Specifically, the application of genetic therapies using viral vectors for the treatment of inborn metabolic disorders is growing and clinical applications are starting to appear. While the field has matured from the technology perspective and has yielded efficacious products, it is the perception of many stakeholders that from the regulatory side further developments are urgently needed. In this review, we summarize the features of state-of-the-art viral vector systems and the corresponding gene-centered therapies they seek to deliver. Moreover, a brief summary is also given on emerging gene editing approaches built on CRISPR-Cas9 nucleases and, more recently, nickases, including base editors and prime editors. Finally, we will point at some regulatory aspects that may deserve further attention for translating these technological developments into actual advanced therapy medicinal products (ATMPs).
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Chen X, Gonçalves MAFV. Engineered Viruses as Genome Editing Devices. Mol Ther 2015; 24:447-57. [PMID: 26336974 PMCID: PMC4786910 DOI: 10.1038/mt.2015.164] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/26/2015] [Indexed: 12/23/2022] Open
Abstract
Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR−Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| |
Collapse
|
4
|
Pelascini LPL, Gonçalves MAFV. Lentiviral vectors encoding zinc-finger nucleases specific for the model target locus HPRT1. Methods Mol Biol 2014; 1114:181-99. [PMID: 24557904 DOI: 10.1007/978-1-62703-761-7_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zinc-finger nucleases (ZFNs) are artificial proteins designed to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. These site-specific genomic lesions facilitate the study of translocations and cellular DNA repair processes and serve as powerful stimuli for the editing of complex genomes. The delivery of ZFNs into a wide range of cell types is of utmost importance for the broad evaluation and deployment of the technology. Lentiviral vectors (LVs) are versatile gene delivery vehicles that transduce alike transformed and primary cells regardless of their division rate. In this chapter, we describe the generation of conventional and integrase-defective LVs encoding ZFNs targeting the human hypoxanthine phosphoribosyltransferase 1 (HPRT1) locus. Furthermore, we introduce a general LV titration method based on a cost-effective quantitative PCR protocol and implement a rapid and simple restriction enzyme site polymorphism assay to detected DSB formation at the HPRT1 target sequence. Owing in part to the small molecule-based clone selection schemes conferred by HPRT1 allelic knockouts, this X-linked gene has become a "classical" target model locus in mammalian cells. The reagents and techniques detailed herein yield LV preparations that induce HPRT1-specific DSBs. As a result, they should constitute a valuable resource to increase the robustness and decrease the timelines of the various protocols based on HPRT1 gene disruption and targeting.
Collapse
Affiliation(s)
- Laetitia P L Pelascini
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Yang G, Wong A, Rooke R. ATon, abundant novel nonautonomous mobile genetic elements in yellow fever mosquito (Aedes aegypti). BMC Genomics 2012; 13:283. [PMID: 22738224 PMCID: PMC3422177 DOI: 10.1186/1471-2164-13-283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/27/2012] [Indexed: 12/16/2022] Open
Abstract
Background Mosquitoes are important pathogen vectors affecting human and other animals. Studies on genetic control of mosquito mediated disease transmission gained traction recently due to mosquito transgenesis technology. Active transposons are considered valuable tools to propagate pathogen resistance transgenes among mosquitoes, rendering the whole population recalcitrant to diseases. A major hurdle in this approach is the inefficient remobilization activity after the integration of heterologous transposon vectors bearing transgenes into chromosomes. Therefore, endogenous active transposons in mosquito genomes are highly desirable. Results Starting with the transposable element database of the yellow fever mosquito Aedes aegypti genome, detailed analyses of the members of each TE family were performed to identify sequences with multiple identical copies, an indicator of their latest or current transposition activity. Among a dozen of potentially active TE families, two DNA elements (TF000728 and TF000742 in TEfam) are short and nonautonomous. Close inspection of the elements revealed that these two families were previously mis-categorized and, unlike other known TEs, insert specifically at dinucleotide “AT”. These two families were therefore designated as ATon-I and ATon-II. ATon-I has a total copy number of 294, among which three elements have more than 10 identical copies (146, 61 and 17). ATon-II has a total copy number of 317, among which three elements have more than 10 identical copies (84, 15 and 12). Genome wide searches revealed additional 24 ATon families in A. aegypti genome with nearly 6500 copies in total. Transposon display analysis of ATon-1 family using different A. aegypti strains suggests that the elements are similarly abundant in the tested mosquito strains. Conclusion ATons are novel mobile genetic elements bearing terminal inverted repeats and insert specifically at dinucleotide “AT”. Five ATon families contain elements existing at more than 10 identical copies, suggesting very recent or current transposition activity. A total of 24 new TE families with nearly 6000 copies were identified in this study.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Biology, University of Toronto Mississauga, SB3058, Mississauga, ON, L5L 1 C6, Canada.
| | | | | |
Collapse
|
6
|
Gonçalves MAFV, Janssen JM, Holkers M, de Vries AAF. Rapid and sensitive lentivirus vector-based conditional gene expression assay to monitor and quantify cell fusion activity. PLoS One 2010; 5:e10954. [PMID: 20532169 PMCID: PMC2880594 DOI: 10.1371/journal.pone.0010954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 05/12/2010] [Indexed: 11/18/2022] Open
Abstract
Cell-to-cell fusion is involved in multiple fundamental biological processes. Prominent examples include osteoclast and giant cell formation, fertilization and skeletal myogenesis which involve macrophage, sperm-egg and myoblast fusion, respectively. Indeed, the importance of cell fusion is underscored by the wide range of homeostatic as well as pathologic processes in which it plays a key role. Therefore, rapid and sensitive systems to trace and measure cell fusion events in various experimental systems are in demand. Here, we introduce a bipartite cell fusion monitoring system based on a genetic switch responsive to the site-specific recombinase FLP. To allow flexible deployment in both dividing as well as non-dividing cell populations, inducer and reporter modules were incorporated in lentivirus vector particles. Moreover, the recombinase-inducible transcription units were designed in such a way as to minimize basal activity and chromosomal position effects in the "off" and "on" states, respectively. The lentivirus vector-based conditional gene expression assay was validated in primary human mesenchymal stem cells and in a differentiation model based on muscle progenitor cells from a Duchenne muscular dystrophy patient using reporter genes compatible with live- and single-cell imaging and with whole population measurements. Using the skeletal muscle cell differentiation model, we showed that the new assay displays low background activity, a 2-log dynamic range, high sensitivity and is amenable to the investigation of cell fusion kinetics. The utility of the bipartite cell fusion monitoring system was underscored by a study on the impact of drug- and RNAi-mediated p38 MAPK inhibition on human myocyte differentiation. Finally, building on the capacity of lentivirus vectors to readily generate transgenic animals the present FLP-inducible system should be adaptable, alone or together with Cre/loxP-based assays, to cell lineage tracing and conditional gene manipulation studies in vivo.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Plomin R, Davis OSP. The future of genetics in psychology and psychiatry: microarrays, genome-wide association, and non-coding RNA. J Child Psychol Psychiatry 2009; 50:63-71. [PMID: 19220590 PMCID: PMC2898937 DOI: 10.1111/j.1469-7610.2008.01978.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? METHODS Although quantitative genetics such as twin studies will continue to yield important findings, nothing will advance the field as much as identifying the specific genes responsible for heritability. Advances in molecular genetics have been driven by technology, especially DNA microarrays the size of a postage stamp that can genotype a million DNA markers simultaneously. DNA microarrays have led to a dramatic shift in research towards genome-wide association (GWA) studies. The ultimate goal of GWA is to sequence each individual's entire genome, which has begun to happen. RESULTS GWA studies suggest that for most complex traits and common disorders genetic effects are much smaller than previously considered: The largest effects account for only 1% of the variance of quantitative traits. This finding implies that hundreds of genes are responsible for the heritability of behavioural problems in childhood, and that it will be difficult to identify reliably these genes of small effect. Another discovery with far-reaching implications for future genetic research is the importance of non-coding RNA (DNA transcribed into RNA but not translated into amino acid sequences), which redefines what the word gene means. Non-coding RNA underlines the need for a genome-wide approach that is not limited to the 2% of DNA responsible for specifying the amino acid sequences of proteins. CONCLUSIONS The only safe prediction is that the fast pace of genetic discoveries will continue and will increasingly affect research in child psychology and psychiatry. DNA microarrays will make it possible to use hundreds of genes to predict genetic risk and to use these sets of genes in top-down behavioural genomic research that explores developmental change and continuity, multivariate heterogeneity and co-morbidity, and gene-environment interaction and correlation. A crucial question is whether the prediction of genetic risk will be sufficiently robust to translate into genetically based diagnoses, personalized treatments, and prevention programmes.
Collapse
Affiliation(s)
- Robert Plomin
- Institute of Psychiatry, King's College, London, UK.
| | | |
Collapse
|
8
|
Guan YS, La Z, Yang L, He Q, Li P. p53 gene in treatment of hepatic carcinoma: status quo. World J Gastroenterol 2007; 13:985-92. [PMID: 17373730 PMCID: PMC4146884 DOI: 10.3748/wjg.v13.i7.985] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 12/12/2006] [Accepted: 01/16/2007] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the 10 most common cancers worldwide. There is no ideal treatment for HCC yet and many researchers are trying to improve the effects of treatment by changing therapeutic strategies. As the majority of human cancers seem to exhibit either abnormal p53 gene or disrupted p53 gene activation pathways, intervention to restore wild-type p53 (wt-p53) activities is an attractive anti-cancer therapy including HCC. Abnormalities of p53 are also considered a predisposition factor for hepatocarcinogenesis. p53 is frequently mutated in HCC. Most HCCs have defects in the p53-mediated apoptotic pathway although they carry wt-p53. High expression of p53 in vivo may exert therapeutic effects on HCC in two aspects: (1) High expression of exogenous p53 protein induces apoptosis of tumor cells by inhibiting proliferation of cells through several biologic pathways and (2) Exogenous p53 renders HCC more sensitive to some chemotherapeutic agents. Several approaches have been designed for the treatment of HCC via the p53 pathway by restoring the tumor suppression function from inactivation, rescuing the mutated p53 gene from instability, or delivering therapeutic exogenous p53. Products with p53 status as the target have been studied extensively in vitro and in vivo. This review elaborates some therapeutic mechanisms and advances in using recombinant human adenovirus p53 and oncolytic virus products for the treatment of HCC.
Collapse
Affiliation(s)
- Yong-Song Guan
- Department of Radiology and Oncology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | |
Collapse
|
9
|
Wettig SD, Badea I, Donkuru M, Verrall RE, Foldvari M. Structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles. J Gene Med 2007; 9:649-58. [PMID: 17654656 DOI: 10.1002/jgm.1060] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Increases in DNA transfection efficiencies for non-viral vectors can be achieved through rational design of novel cationic building blocks. Based on previous results examining DNA condensation by polyamines, novel gemini surfactants have been designed that incorporate aza or imino substituents within the spacer group in order to increase interactions with DNA and potentially improve their DNA transfection ability. METHODS Transfection efficiencies and cell toxicity of gemini nanoparticles constructed from plasmid DNA, gemini surfactant, and a neutral lipid were measured in COS7 cells using a luciferase assay. Structural properties of nanoparticles were examined by using circular dichroism, particle size, zeta potential, and small-angle X-ray scattering (SAXS) measurements. RESULTS The incorporation of aza and imino substituents within the spacer group was observed to enhance the transfection ability of gemini surfactants. Incorporation of an imino group in the structure of the 1,9-bis(dodecyl)-1,1,9,9-tetramethyl-5-imino-1,9-nonanediammonium dibromide surfactant (12-7NH-12) resulted in a statistically significant (p < 0.01) 9-fold increase in transfection compared to an unsubstituted gemini surfactant and a 3-fold increase compared to the corresponding aza-substituted compound. A pH-dependent transition in size and zeta potential was observed to occur at pH 5.5 for complexes formed from the 12-7NH-12 compound. SAXS results show weakly ordered structures and the presence of multiple phases. CONCLUSIONS The incorporation of a pH-active imino group within the spacer of the gemini surfactant results in a significant increase in transfection efficiency that can be related to both pH-induced changes in nanoparticle structure and the formation of multiple phases that more readily allow for membrane fusion that may facilitate DNA release.
Collapse
Affiliation(s)
- Shawn D Wettig
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Pijlman GP, Suhrbier A, Khromykh AA. Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 2006; 6:135-45. [PMID: 16436039 DOI: 10.1517/14712598.6.2.135] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of viral vectors for gene expression and delivery is rapidly evolving, with several entering clinical trials. However, a number of issues, including safety, gene expression levels, cell selectivity and antivector immunity, are driving the search for new vector systems. A number of replicon-based vectors derived from positive-strand RNA viruses have recently been developed, and this paper reviews the current knowledge on the first flavivirus replicon system, which is based on the Australian flavivirus Kunjin (KUN). Like most replicon systems, KUN replicons can be delivered as DNA, RNA or virus-like particles, they replicate their RNA in the cytoplasm and direct prolonged high-level gene expression. However, unlike most alphavirus replicon systems, KUN replicons are non-cytopathic, with transfected cells able to divide, allowing the establishment of cell lines stably expressing replicon RNA and heterologous genes. As vaccine vectors KUN replicons can induce potent, long-lived, protective, immunogen-specific CD8+ T cell immunity, a feature potentially related to extended production of antigen and double-stranded RNA-induced 'danger signals'. The identification of KUN replicon mutants that induce increased levels of IFN-alpha/beta has also spawned investigation of KUN replicons for use in cancer gene therapy. The unique characteristics of KUN replicons may thus make them suitable for specific protein production, vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Gorben P Pijlman
- University of Queensland, School of Molecular and Microbial Sciences, MBS Bld 76, St. Lucia, 4072 QLD, Australia
| | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Degeneration of spiral ganglion neurons following hair cell loss carries critical implications for efforts to rehabilitate severe cases of hearing loss with cochlear implants or hair cell regeneration. This review considers recently identified neurotrophic factors and therapeutic strategies which promote spiral ganglion neuron survival and neurite growth. Replacement of these factors may help preserve or regenerate the auditory nerve in patients with extensive hair cell loss. RECENT FINDINGS Spiral ganglion neurons depend on neurotrophic factors supplied by hair cells and other targets for their development and continued survival. Loss of this trophic support leads to spiral ganglion neuron death via apoptosis. Hair cells support spiral ganglion neuron survival by producing several peptide neurotrophic factors such as neurotrophin-3 and glial derived neurotrophic factor. In addition, neurotransmitter release from the hair cells drives membrane electrical activity in spiral ganglion neurons which also supports their survival. In animal models, replacement of peptide neurotrophic factors or electrical stimulation with an implanted electrode attenuates spiral ganglion neuron degeneration following deafferentation. Cell death inhibitors can also preserve spiral ganglion neuron populations. Preliminary studies show that transfer of stem cells or neurons from other ganglia are two potential strategies to replace lost spiral ganglion neurons. Inducing the regrowth of spiral ganglion neuron peripheral processes to approximate or contact cochlear implant electrodes may help optimize signaling from a diminished population of neurons. SUMMARY Recent studies of spiral ganglion neuron development and survival have identified several trophic and neuritogenic factors which protect these specialized cells from degeneration following hair cell loss. While still preliminary, such strategies show promise for future clinical applications.
Collapse
Affiliation(s)
- Pamela C Roehm
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|