1
|
Karimi M, Sadeghi E, Zahedifar M, Mirzaei H, Nejati M, Hamblin MR. Green Synthesis of Au-Doped Tin Oxide Nanoparticles Using Teucrium Polium Extract with Potential Applications in Photodynamic Therapy. Photobiomodul Photomed Laser Surg 2024; 42:643-652. [PMID: 39315923 DOI: 10.1089/photob.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Objective: The green synthesis of Tin(IV) oxide (SnO2): Gold (Au) nanoparticles (NPs) using Teucrium polium medicinal plant extract was investigated, and the NPs were characterized and tested as photosensitizers to produce reactive oxygen species (ROS). Methods: The cytotoxic effect on C26 cells was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) technique. The results showed their toxicity in a dose-dependent manner. The green synthesis of SnO2:Au NPs was achieved for the first time using an extract of T. polium medicinal plant as a reducing and stabilizing agent. The produced NPs were examined for their application in photodynamic therapy (PDT) for cancer. Results: Methylene blue and anthracene were used to confirm that the photosensitizer could produce ROS when excited with UVA radiation. The anticancer activity of SnO2:Au was investigated in vitro using the C26 cell line and an MTT assay, showing that PDT with SnO2:Au NPs could inhibit cancer cell proliferation. Conclusions: The significant afterglow of the SnO2:Au NPs could cause the generation of ROS to continue several minutes after switching off the light source.
Collapse
Affiliation(s)
- Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Ehsan Sadeghi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Department of Physics, University of Kashan, Kashan, Iran
| | - Mostafa Zahedifar
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Department of Physics, University of Kashan, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Xing W, Liu G, Zhang Y, Zhang T, Lou H, Fan P. Selective Antitumor Effect and Lower Toxicity of Mitochondrion-Targeting Derivatization of Triptolide. J Med Chem 2024; 67:1093-1114. [PMID: 38169372 DOI: 10.1021/acs.jmedchem.3c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Triptolide has a significant antitumor activity, but its toxicity limits its clinical application. As the mitochondrion-targeting strategy showed an advantage in selective antitumor effect based on the higher mitochondrial membrane potential (MMP) in tumor cells than normal cells, the lipophilic cations triphenylphosphonium and E-4-(1H-indol-3-yl vinyl)-N-methylpyridinium iodide (F16) were selected as targeting carriers for structural modification of triptolide. The derivatives bearing F16 generally retained most antitumor activities, overcame its inhibition plateau phenomena, and enhanced its selective antitumor effect in lung cancer. The representative derivative F9 could accumulate in the mitochondria of NCI-H1975 cells, inducing apoptosis and a dose-dependent increase in intracellular reactive oxygen species and reducing MMP. Moreover, no effects were observed in normal cells BEAS-2B. In vivo studies showed that the developmental, renal, and liver toxicities of F9 to zebrafish were significantly lower than those of triptolide. This study provides a promising idea to relieve the toxicity problem of triptolide.
Collapse
Affiliation(s)
- Wenlan Xing
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Guoliang Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Yue Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Tao Zhang
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Shandong Qidu Pharmaceutical Research Institute, Zibo 255400, P. R. China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Peihong Fan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
3
|
Xu J, Shamul JG, Kwizera EA, He X. Recent Advancements in Mitochondria-Targeted Nanoparticle Drug Delivery for Cancer Therapy. NANOMATERIALS 2022; 12:nano12050743. [PMID: 35269231 PMCID: PMC8911864 DOI: 10.3390/nano12050743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
Mitochondria are critical subcellular organelles that produce most of the adenosine triphosphate (ATP) as the energy source for most eukaryotic cells. Moreover, recent findings show that mitochondria are not only the "powerhouse" inside cells, but also excellent targets for inducing cell death via apoptosis that is mitochondria-centered. For several decades, cancer nanotherapeutics have been designed to specifically target mitochondria with several targeting moieties, and cause mitochondrial dysfunction via photodynamic, photothermal, or/and chemo therapies. These strategies have been shown to augment the killing of cancer cells in a tumor while reducing damage to its surrounding healthy tissues. Furthermore, mitochondria-targeting nanotechnologies have been demonstrated to be highly efficacious compared to non-mitochondria-targeting platforms both in vitro and in vivo for cancer therapies. Moreover, mitochondria-targeting nanotechnologies have been intelligently designed and tailored to the hypoxic and slightly acidic tumor microenvironment for improved cancer therapies. Collectively, mitochondria-targeting may be a promising strategy for the engineering of nanoparticles for drug delivery to combat cancer.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
4
|
Antoszczak M, Otto-Ślusarczyk D, Kordylas M, Struga M, Huczyński A. Synthesis of Lasalocid-Based Bioconjugates and Evaluation of Their Anticancer Activity. ACS OMEGA 2022; 7:1943-1955. [PMID: 35071884 PMCID: PMC8771711 DOI: 10.1021/acsomega.1c05434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/28/2021] [Indexed: 06/06/2023]
Abstract
Using rationally designed bioconjugates is an attractive strategy to develop novel anticancer drugs with enhanced therapeutic potential and minimal side effects compared to the native structures. With respect to the promising activity of lasalocid (LAS) toward various cancer cells, this polyether ionophore seems to be an ideal candidate for bioconjugation. Herein, we describe the synthetic access to a cohort of nine conjugated products of LAS, in which the ionophore biomolecule was successfully combined via covalent bonds with selected anticancer therapeutics or other anticancer active components. The in vitro screening of a series of cancer cell lines allowed us to identify three products with improved anticancer activity profiles compared to those of the starting materials. The results indicate that human prostate cancer cells (PC3) and human primary colon cancer cells (SW480) were essentially more sensitive to exposure to LAS derivatives than human keratinocytes (HaCaT). Furthermore, the selected products were stronger inducers of late apoptosis and/or necrosis in PC3 and SW480 cancer cells, when compared to the metastatic variant of colon cancer cells (SW620). To establish the anticancer mechanism of LAS-based bioconjugates, the levels of interleukin 6 (IL-6) and reactive oxygen species (ROS) were measured; the tested compounds significantly reduced the release of IL-6, while the level of ROS was significantly higher in all the cell lines studied.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Dagmara Otto-Ślusarczyk
- Chair
and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Marta Kordylas
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marta Struga
- Chair
and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Adam Huczyński
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Ciaffaglione V, Modica MN, Pittalà V, Romeo G, Salerno L, Intagliata S. Mutual Prodrugs of 5-Fluorouracil: From a Classic Chemotherapeutic Agent to Novel Potential Anticancer Drugs. ChemMedChem 2021; 16:3496-3512. [PMID: 34415107 PMCID: PMC9290623 DOI: 10.1002/cmdc.202100473] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the “mutual prodrug” approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad‐spectrum chemotherapeutics available for clinical use today, 5‐fluorouracil (5‐FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5‐FU‐based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
6
|
Spivak AY, Nedopekina DA, Gubaidullin RR, Davletshin EV, Tukhbatullin AA, D’yakonov VA, Yunusbaeva MM, Dzhemileva LU, Dzhemilev UM. Pentacyclic triterpene acid conjugated with mitochondria-targeting cation F16: Synthesis and evaluation of cytotoxic activities. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02702-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Chen H, Wang J, Feng X, Zhu M, Hoffmann S, Hsu A, Qian K, Huang D, Zhao F, Liu W, Zhang H, Cheng Z. Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chem Sci 2019; 10:7946-7951. [PMID: 31853349 PMCID: PMC6836573 DOI: 10.1039/c9sc01410a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
Fluorescent mitochondria-accumulating delocalized lipophilic cations (DLCs) for cancer therapy have drawn significant attention in the field of cancer theranostics. One of the most promising fluorescent DLCs, F16, can selectively trigger the apoptosis and necrosis of cancer cells, making it an attractive targeted theranostic drug candidate. However, it suffers from low clinical translation potential, largely due to its inefficient anti-cancer activity (IC50 in the μM range) and poorly understood structure-activity relationship (SAR). In this report, eleven indole-ring substituted F16 derivatives (F16s) were synthesized. Among these derivatives, 5BMF was identified as a highly effective theranostic agent, with in vitro studies showing a low IC50 of ∼50 nM (to H2228 cells) and high cancer to normal cell selectivity index of 225. In vivo studies revealed that tumors treated with 5BMF were significantly suppressed (almost no growth over the treatment period) compared to the PBS treated control group, and also no obvious toxicity to mice was found. In addition, the tumor imaging capability of 5BMF was demonstrated by in vivo fluorescence imaging. Finally, we report for the first time a proposed SAR for F16 DLCs. Our work lays down a solid foundation for translating 5BMF into a novel and highly promising DLC for cancer theranostics.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
- Center for Molecular Imaging Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai , 201203 , China
| | - Jing Wang
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Xin Feng
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
- The College of Veterinary Medicine , Jilin University , Changchun , 130021 , China
| | - Mark Zhu
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Simon Hoffmann
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Alex Hsu
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Kun Qian
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Daijuan Huang
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Feng Zhao
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Wei Liu
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
| | - Huimao Zhang
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| |
Collapse
|
8
|
Battogtokh G, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondrial-Targeting Anticancer Agent Conjugates and Nanocarrier Systems for Cancer Treatment. Front Pharmacol 2018; 9:922. [PMID: 30174604 PMCID: PMC6107715 DOI: 10.3389/fphar.2018.00922] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
The mitochondrion is an important intracellular organelle for drug targeting due to its key roles and functions in cellular proliferation and death. In the last few decades, several studies have revealed mitochondrial functions, attracting the focus of many researchers to work in this field over nuclear targeting. Mitochondrial targeting was initiated in 1995 with a triphenylphosphonium-thiobutyl conjugate as an antioxidant agent. The major driving force for mitochondrial targeting in cancer cells is the higher mitochondrial membrane potential compared with that of the cytosol, which allows some molecules to selectively target mitochondria. In this review, we discuss mitochondria-targeting ligand-conjugated anticancer agents and their in vitro and in vivo behaviors. In addition, we describe a mitochondria-targeting nanocarrier system for anticancer drug delivery. As previously reported, several agents have been known to have mitochondrial targeting potential; however, they are not sufficient for direct application for cancer therapy. Thus, many studies have focused on direct conjugation of targeting ligands to therapeutic agents to improve their efficacy. There are many variables for optimal mitochondria-targeted agent development, such as choosing a correct targeting ligand and linker. However, using the nanocarrier system could solve some issues related to solubility and selectivity. Thus, this review focuses on mitochondria-targeting drug conjugates and mitochondria-targeted nanocarrier systems for anticancer agent delivery.
Collapse
Affiliation(s)
| | | | | | | | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
9
|
İnci D, Aydın R, Vatan Ö, Zorlu Y, Çinkılıç N. New binary copper(II) complexes containing intercalating ligands: DNA interactions, an unusual static quenching mechanism of BSA and cytotoxic activities. J Biomol Struct Dyn 2017; 36:3878-3901. [DOI: 10.1080/07391102.2017.1404936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Duygu İnci
- Department of Chemistry, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Rahmiye Aydın
- Department of Chemistry, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Özgür Vatan
- Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Yunus Zorlu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Nilüfer Çinkılıç
- Department of Biology, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| |
Collapse
|
10
|
Wen R, Umeano AC, Francis L, Sharma N, Tundup S, Dhar S. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems. Vaccines (Basel) 2016; 4:E18. [PMID: 27258316 PMCID: PMC4931635 DOI: 10.3390/vaccines4020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Afoma C Umeano
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lily Francis
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Nivita Sharma
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Smanla Tundup
- School of Medicine, Department of Pulmonary and Critical Care, University of Virginia, Charlottesville, WV 22908, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Wang J, Fan XY, Yang LY, He H, Huang R, Jiang FL, Liu Y. Conjugated 5-fluorouracil with mitochondria-targeting lipophilic cation: design, synthesis and biological evaluation. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00268d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Fluorouracil (5-FU) was linked with mitochondria-targeting lipophilic cation F16 by three kinds of vulnerable bonds.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- PR China
| | - Xiao-Yang Fan
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- PR China
| | - Li-Yun Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- PR China
| | - Huan He
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- PR China
| | - Rong Huang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- PR China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- PR China
| |
Collapse
|