1
|
Dillion Lima Cavalcanti I, Humberto Xavier Junior F, Stela Santos Magalhães N, Cajubá de Britto Lira Nogueira M. ISOTHERMAL TITRATION CALORIMETRY (ITC) AS A PROMISING TOOL IN PHARMACEUTICAL NANOTECHNOLOGY. Int J Pharm 2023; 641:123063. [PMID: 37209790 DOI: 10.1016/j.ijpharm.2023.123063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Isothermal titration calorimetry (ITC) is a technique for evaluating the thermodynamic profiles of connection between two molecules, allowing the experimental design of nanoparticles systems with drugs and/or biological molecules. Taking into account the relevance of ITC, we conducted, therefore, an integrative revision of the literature, from 2000 to 2023, on the main purposes of using this technique in pharmaceutical nanotechnology. The search were carried out in the Pubmed, Sciencedirect, Web of Science, and Scifinder databases using the descriptors "Nanoparticles", "Isothermal Titration Calorimetry", and "ITC". We have observed that the ITC technique has been increasingly used in pharmaceutical nanotechnology, seeking to understand the interaction mechanisms in the formation of nanoparticles. Additionally, to understand the behavior of nanoparticles with biological materials (proteins, DNA, cell membranes, among others), thereby helping to understand the behavior of nanocarriers in vivo studies. As a contribution, we intended to reveal the importance of ITC in the laboratory routine, which is itself a quick and easy technique to obtain relevant results that help to optimize the nanosystems formulation process.
Collapse
Affiliation(s)
- Iago Dillion Lima Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Francisco Humberto Xavier Junior
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Department of Pharmacy, Pharmaceutical Biotechnology Laboratory (BioTecFarm), Federal University of Paraíba (UFPB), Campus I Lot. Cidade Universitaria, PB, 58051-900, Brazil
| | - Nereide Stela Santos Magalhães
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego - Cidade Universitária, Recife - PE, Brazil; Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória, Federal University of Pernambuco (CAV/UFPE), R. Alto do Reservatório - Alto José Leal, Vitória de Santo Antão - PE, 55608-680, Brazil.
| |
Collapse
|
2
|
Romo Quiñonez CR, Alvarez-Ruiz P, Mejía-Ruiz CH, Bogdanchikova N, Pestryakov A, Gamez-Jimenez C, Valenzuela-Quiñonez W, Montoya-Mejía M, Nava Pérez E. Chronic toxicity of shrimp feed added with silver nanoparticles (Argovit-4®) in Litopenaeus vannamei and immune response to white spot syndrome virus infection. PeerJ 2022; 10:e14231. [PMID: 36438583 PMCID: PMC9695493 DOI: 10.7717/peerj.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the application of silver nanoparticles (AgNPs) as antibacterial compounds has been widely used in human and veterinary medicine. In this work, we investigated the effects of AgNPs (Argovit-4®) as feed additives (feed-AgNPs) on shrimp (Litopenaeus vannamei) using three different methods: 1) chronic toxicity after 28 days of feeding, 2) Effects against white spot syndrome virus (WSSV) challenged by oral route, and 3) transcriptional responses of immune-related genes (PAP, ProPO, CTL-3, Crustin, PEN3, and PEN4) following WSSV infection. The results showed that the feed-AgNPs did not interfere with the growth and survival of shrimp. Also, mild lesions in the hepatopancreas were recorded, proportional to the frequency of the feed-AgNP supply. Challenge test versus WSSV showed that feeding every 7 days with feed-AgNPs reduced mortality, reaching a survival rate of 53%, compared to the survival rates observed in groups fed every 4 days, daily and control groups of feed-AgNPs for the 30%, 10%, and 7% groups, respectively. Feed-AgNPs negatively regulated the expression of PAP, ProPO, and Crustin genes after 28 days of treatment and altered the transcriptional responses of PAP, ProPO, CTL-3, and Crustin after WSSV exposure. The results showed that weekly feeding-AgNPs could partially prevent WSSV infection in shrimp culture. However, whether or not transcriptional responses against pathogens are advantageous remains to be elucidated.
Collapse
Affiliation(s)
- Carlos R. Romo Quiñonez
- Laboratorio de Biotecnología de Organismos Marinos, Centro de investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Píndaro Alvarez-Ruiz
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | - Claudio H. Mejía-Ruiz
- Laboratorio de Biotecnología de Organismos Marinos, Centro de investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Nina Bogdanchikova
- Fisicoquímica de nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Carina Gamez-Jimenez
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | | | - Magnolia Montoya-Mejía
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | - Eusebio Nava Pérez
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| |
Collapse
|
3
|
Zhao L, Guo D, Lin J, Liu R. Responses of catalase and superoxide dismutase to low-dose quantum dots on molecular and cellular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:388-394. [PMID: 31212187 DOI: 10.1016/j.ecoenv.2019.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
With the wider application of cadmium-containing quantum dots (Cd-QDs) in biomedical fields, it is easier for people to be exposed. Studies have suggested that Cd-QDs could release cadmium ion and induce oxidative effects due to the disruption of redox equilibrium. Antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), play an important role in organisms to resist the negative impact of exogenous substances. Molecular mechanisms of antioxidant enzymes with Cd-QDs remain unclear, however. In this study, structural and functional changes of CAT and SOD have been investigated under low dose Cd-QDs exposure. Cell viability, malondialdehyde (MDA) level, CAT and SOD activities were influenced by Cd-QDs in hepatocytes of mice. To further investigate the responses of CAT and SOD to Cd-QDs, multiple spectroscopic, calorimetric and activity measurements were carried out. Similar interaction patterns were observed that result in interaction force, structural and functional changes: Cd-QDs combine with CAT and SOD through hydrophobic forces; Intrinsic fluorescence of proteins was statically quenched by Cd-QDs and new complexes were formed; Also, the skeleton and secondary structure (with α-helix decrease) of CAT and SOD was influenced. Taken together, we suggest that Cd-QDs chosen in this study induce oxidative stress effects to hepatocytes but have not caused serious oxidative stress damage at concentrations below 10 μg/mL. MPA-CdSe/ZnS QDs caused the lowest level of oxidative stress which is associated with the induction of antioxidant proteins. This paper presents responses of CAT and SOD to low-dose Cd-QDs, and provides a reference for evaluating health damages caused by Cd-QDs.
Collapse
Affiliation(s)
- Lining Zhao
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Dandan Guo
- Digital Management Center of Urban Underground Pipelines, Qixia Branch of Nanjing Planning Bureau, Jiangsu Province, 118# Wenyuan Road, Nanjing, 210046, PR China
| | - Jing Lin
- North China Sea Data & Information Service of SOA, 27# Yunling Road, Laoshan, Qingdao, 266061, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
4
|
Fang W, Chi Z, Li W, Zhang X, Zhang Q. Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: from the aspects of antioxidant enzyme activities and molecular interaction mechanisms. J Nanobiotechnology 2019; 17:66. [PMID: 31101056 PMCID: PMC6524268 DOI: 10.1186/s12951-019-0502-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/09/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The wide application of silver nanoparticles (AgNPs) in medicals and daily utensils increases the risk of human exposure. The study on cell and protein changes induced by medical AgNPs (20 nm) and Ag+ gave insights into the toxicity mechanisms of them. RESULTS AgNPs and Ag+ affected the enzymatic and non-enzymatic antioxidant systems of red blood cells (RBCs). When RBCs were exposed to AgNPs or Ag+ (0-0.24 μg/mL), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were more sensitive to Ag+, whereas the RBCs had slightly higher glutathione (GSH) contents treated by AgNPs. Both AgNPs and Ag+ increased the malondialdehyde (MDA) content of RBCs, but the difference was not significant. The difference in the change of the enzyme activity indicated that AgNPs and Ag+ have different influencing mechanisms on CAT and GPX. And SOD has stronger resistance to both of AgNPs and Ag+. When AgNPs or Ag+ (0-10 μg/mL) was directly applied on enzymatic proteins, although AgNPs or Ag+ at a high concentration was toxic, at the concentration below 0.4 μg/mL could promote the activities of CAT/SOD/GPX. The spectroscopic results (fluorescence, synchronous fluorescence, resonance light scattering and ultraviolet absorption), including the changes in amino acid microenvironment, peptide chain conformation, and aggregation state, indicated that the interaction mechanism and conformational changes were also the important factors for the changes in the activities of SOD/CAT when SOD/CAT were directly exposed to AgNPs or Ag+. CONCLUSIONS Low concentration (< 0.4 μg/mL) of AgNPs is relatively safe and the direct effects of AgNPs and Ag+ on enzymes are important reasons for the change in antioxidant capacity of RBCs.
Collapse
Affiliation(s)
- Wenxu Fang
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Zhenxing Chi
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China.
- Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, 510632, People's Republic of China.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China
| | - Xunuo Zhang
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China
| | - Qiang Zhang
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, 2# Wenhua West Road, Weihai, 264209, People's Republic of China
| |
Collapse
|
5
|
Juganson K, Mortimer M, Ivask A, Pucciarelli S, Miceli C, Orupõld K, Kahru A. Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: From gene expression to phenotypic events. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:481-489. [PMID: 28318795 DOI: 10.1016/j.envpol.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles (AgNPs) are highly toxic to aquatic organisms, however, there is no consensus whether the toxicity is caused solely by released Ag-ions or also by reactive oxygen species (ROS). Here, the effects of protein-coated AgNPs (14.6 nm, Collargol) were studied on viability, oxidative stress and gene expression levels in wild type strains (CU427 and CU428) of ciliate Tetrahymena thermophila. Viability-based 24 h EC50 values of AgNPs were relatively high and significantly different for the two strains: ∼100 mg/L and ∼75 mg/L for CU427 and CU428, respectively. Similarly, the expression profiles of oxidative stress (OS) related genes in the two strains were different. However, even though some OS related genes were overexpressed in AgNP-exposed ciliates, intracellular ROS level was not elevated, possibly due to efficient cellular antioxidant defence mechanisms. Compared to OS related genes, metallothionein genes were upregulated at a considerably higher level (36 versus 5000-fold) suggesting that Ag-ion mediated toxicity mechanism prevailed over OS related pathway. Also, comparison between Ag-ions released from AgNPs at EC50 concentration and the respective EC50 values of AgNO3 indicated that Ag-ions played a major role in the toxicity of AgNPs in T. thermophila. The study highlights the importance of combining physiological assays with gene expression analysis in elucidating the mechanisms of action of NPs to reveal subtle cellular responses that may not be detectable in bioassays. In addition, our data filled the gaps on the toxicity of AgNPs for environmentally relevant and abundant organisms. The parallel study of two wild type strains allowed us to draw conclusions on strain to strain variability in susceptibility to AgNPs.
Collapse
Affiliation(s)
- Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Monika Mortimer
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Kaja Orupõld
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
6
|
Niu S, Si L, Liu D, Zhou A, Zhang Z, Shao Z, Wang S, Zhang L, Zhou D, Lin W. Spiromastilactones: A new class of influenza virus inhibitors from deep-sea fungus. Eur J Med Chem 2016. [DOI: 10.1016/j.ejmech.2015.09.037 pmid: 266869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Niu S, Si L, Liu D, Zhou A, Zhang Z, Shao Z, Wang S, Zhang L, Zhou D, Lin W. Spiromastilactones: A new class of influenza virus inhibitors from deep-sea fungus. Eur J Med Chem 2016; 108:229-244. [DOI: 10.1016/j.ejmech.2015.09.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 01/12/2023]
|