1
|
Parambil AM, Priyadarshini E, Goutam R, Tsai PC, Huang PC, Rajamani P, Lin YC, Ponnusamy VK. Self-assembled mesoporous silica decorated with biogenic carbon dot nanospheres hybrid nanomaterial for efficient removal of aqueous Methoxy-DDT via a Short-Bed Adsorption column technique. ENVIRONMENTAL RESEARCH 2024; 260:119653. [PMID: 39038773 DOI: 10.1016/j.envres.2024.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Methoxy-DDT is an organochlorine pesticide extensively used in agricultural practices as a DDT substitute. Methoxy-DDT has been found and quantified in several investigations in groundwater, drinking water, sediment, and various biota. Therefore, designing efficient and cost-effective adsorbents for removing methoxy-DDT is vital. In this work, we embedded Ficus benghalensis L. derived carbon dots (CDs) in mesoporous silica (MS) to fabricate MS-CDs nanohybrid material. MS-CDs nanohybrid exhibited remarkable selectivity and removal efficiency towards methoxy-DDT, outperforming other endocrine disruptors. Parameters for industrial-scale fixed-bed adsorption columns, such as bed capacity, length, and breakthrough times, were analyzed. The kinetic study revealed that pseudo-second-order (PSO) adsorption and isotherm analysis confirmed the Langmuir model as the best fit. Small bed adsorption (SBA) column analysis was carried out using spiked Yamuna river water, and the breakthrough curves were demonstrated by varying MS-CDs bed height. The maximum adsorption capacity obtained for methoxy-DDT was 17.16 mg/g at breakthrough and 49.98 mg/g at exhaustion. The adsorbent showed 86.53% removal efficiency in the 5th cycle, demonstrating good reusability. These results indicate that the developed material MS-CDs-based organic sphere is an effective adsorbent for aqueous methoxy-DDT adsorption and can be applied to wastewater treatment.
Collapse
Affiliation(s)
- Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohit Goutam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| |
Collapse
|
2
|
Na Y, Zhang J, Zhang S, Liang N, Zhao L. Fluorescence Sensor for Zearalenone Detection Based on Oxidized Single-walled Carbon Nanohorns/N-doped Carbon Quantum Dots-aptamer. J Fluoresc 2024; 34:2557-2569. [PMID: 37831356 DOI: 10.1007/s10895-023-03466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Zearalenone (ZEN), a resorcinolactone toxin, which has been a potential threat to agricultural production and human health. In this study, a sample and rapid fluorescence sensor was established for the detection of ZEN, which is based on the fluorescence properties of N-doped carbon dots-aptamer (NCDs-apt) and the quenching ability of oxidized single-walled carbon nanohorns (oxSWCNHs). NCDs synthesized by one-step hydrothermal method were connected with ZEN-aptamer (ZEN-apt), and oxSWCNHs were added to quench the fluorescence of NCDs-apt. Therefore, an oxSWCNHs/NCDs-apt aptasensor based on fluorescence "on-off" for the determination of ZEN in food was formed. Under optimum conditions, the limit of detection (LOD) of this method was 18 ng/mL and the linear range was 20 ~ 100 ng/mL. The possible interfering substances were investigated, and the results showed excellent selectivity. The recoveries were in the range of 99.5%~114.3%, and the relative standard deviations (RSDs) were not more than 6.5%, which demonstrated that this aptasensor was successfully applied for the detection of ZEN in food samples with satisfactory result.
Collapse
Affiliation(s)
- Yue Na
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, P. R. China
| | - Jiaxin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, P. R. China
| | - Shunhua Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, P. R. China
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, P. R. China.
| |
Collapse
|
3
|
Jiang M, Wang Y, Li J, Gao X. Review of carbon dot-hydrogel composite material as a future water-environmental regulator. Int J Biol Macromol 2024; 269:131850. [PMID: 38670201 DOI: 10.1016/j.ijbiomac.2024.131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichuan Li
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Gao
- College of Sports and Human Sciences, Post-doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, PR China.
| |
Collapse
|
4
|
Mohanta T, Behuria HG, Sahu SK, Jena AK, Sahu S. Green synthesis of N,S-doped carbon dots for tartrazine detection and their antibacterial activities. Analyst 2023; 148:5597-5604. [PMID: 37846523 DOI: 10.1039/d3an01609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A simple, green and low-cost method was developed for the synthesis of highly fluorescent N,S-doped carbon dots (N,S-CDs) via the hydrothermal treatment of Gandha Prasarini (GP) leaves as a natural source of carbon, nitrogen and sulfur. The as-prepared N,S-CDs exhibited excitation-dependent green fluorescence emission (λex = 450 nm, λem = 525 nm) with excellent stability, and were used as a fluorescent probe for the selective detection of tartrazine with a limit of detection of 0.18 μM. The fluorescence quenching of N,S-CDs was due to the inner filter effect. The developed method has been employed for the determination of tartrazine in honey and soft drinks with satisfactory recovery ranging from 92 to 110.2%. In addition, the antibacterial activity of the N,S-CDs was explored against both Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and Gram-positive bacteria, Staphylococcus aureus (S. aureus). The antibacterial mechanism of the N,S-CDs was investigated. The results indicated that the antibacterial activity was due to the membrane damage of the bacteria by the N,S-CDs. Besides, the N,S-CDs showed negligible lytic effects on human erythrocytes. These findings will inspire further exploitation of CD-based nano-bactericides in biomedical applications.
Collapse
Affiliation(s)
- Tanmayee Mohanta
- Department of Chemistry, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada, Odisha-757 003, India.
| | - Himadri Gourav Behuria
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada-757 003, Odisha, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada-757 003, Odisha, India
| | - Ashis Kumar Jena
- Department of Chemistry, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Baripada, Odisha-757 003, India.
| | - Swagatika Sahu
- Department of Chemistry, Maharaja Purna Chandra (Autonomous) College, Baripada-757 003, Odisha, India.
- Department of Chemistry, Betnoti College, Betnoti, Odisha-757025
| |
Collapse
|
5
|
Construction of multicolor fluorescence hydrogels based on the dual-emission CDs@SiO2/AuNCs for alternative visual recognition of copper ions and glutathione. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Sahu Y, Hashmi A, Patel R, Singh AK, Susan MABH, Carabineiro SAC. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3434. [PMID: 36234561 PMCID: PMC9565249 DOI: 10.3390/nano12193434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Rajmani Patel
- Hemchand Yadav University, Durg 491001, Chhattisgarh, India
| | - Ajaya K. Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | | | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Dual Fluorometric Detection of Fe 3+ and Hg 2+ Ions in an Aqueous Medium Using Carbon Quantum Dots as a "Turn-off" Fluorescence Sensor. J Fluoresc 2022; 32:1143-1154. [PMID: 35318547 DOI: 10.1007/s10895-022-02922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The present study aimed to develop a carbon dots-based fluorescence (FL) sensor that can detect more than one pollutant simultaneously in the same aqueous solution. The carbon dots-based FL sensor has been prepared by employing a facile hydrothermal method using citric acid and ethylenediamine as precursors. The as-synthesized CDs displayed excellent hydrophilicity, good photostability and blue fluorescence under UV light. They have been used as an efficient "turn-off" FL sensor for dual sensing of Fe3+ and Hg2+ ions in an aqueous medium with high sensitivity and selectivity through a static quenching mechanism. The lowest limit of detection (LOD) for Fe3+ and Hg2+ ions was found to be 0.406 µM and 0.934 µM, respectively over the concentration range of 0-50 µM. Therefore, the present work provides an effective strategy to monitor the concentration of Fe3+ and Hg2+ ions simultaneously in an aqueous medium using environment-friendly CDs.
Collapse
|
8
|
Sethi S, Medha, Singh G, Sharma R, Kaith BS, Sharma N, Khullar S. Fluorescent hydrogel of chitosan and gelatin cross‐linked with maleic acid for optical detection of heavy metals. J Appl Polym Sci 2021. [DOI: 10.1002/app.51941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sapna Sethi
- Department of Chemistry DAV University Jalandhar Jalandhar Punjab India
| | - Medha
- Department of Chemistry DAV University Jalandhar Jalandhar Punjab India
| | | | - Rashmi Sharma
- Department of Chemistry DAV University Jalandhar Jalandhar Punjab India
| | - Balbir Singh Kaith
- Department of Chemistry Dr. B. R. Ambedkar National Institute of Technology Jalandhar Jalandhar Punjab India
| | - Neeraj Sharma
- Department of Chemistry DAV University Jalandhar Jalandhar Punjab India
| | - Sadhika Khullar
- Department of Chemistry Dr. B. R. Ambedkar National Institute of Technology Jalandhar Jalandhar Punjab India
| |
Collapse
|
9
|
Yan F, Yi C, Sun J, Zang Y, Wang Y, Xu M, Xu J. Self-quenching-resistant solid-state carbon dots for mechanism and applications. Mikrochim Acta 2021; 188:412. [PMID: 34741664 DOI: 10.1007/s00604-021-05068-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Solid-state carbon dots (SCDs) have been widely investigated by scholars owing to their stability, environmental friendliness, and their good optical properties. The current studies on carbon dots (CDs) are mainly focused on the solutions of CDs, while the researches on SCDs are relatively few in comparison. Nowadays, the fabrication and design of high-performance SCDs have attracted much interest. However, due to resonance energy transfer and π-π interactions, CDs undergo aggregation-induced quenching (ACQ) phenomena. This poses an obstacle to the acquisition of SCDs and affects their luminescence performance. Publications of the past 5 years are reviewed on how to suppress the ACQ phenomenon and improve the fluorescence and phosphorescence emission of CDs (Ref. 87) and about the mechanism of achieving the luminescence of SCDs. Then, the applications of SCDs in the fields of luminescent devices, anti-counterfeiting, and detection are outlined. The concluding section analyzes the current challenges faced by SCDs and provides an outlook. Mechanism of photoluminescence from solid state carbon dots.
Collapse
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China.,School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Jingru Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yueyan Zang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Ming Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Jinxia Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
10
|
Huo X, Shen H, Liu R, Shao J. Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging. ACS OMEGA 2021; 6:26499-26508. [PMID: 34661005 PMCID: PMC8515583 DOI: 10.1021/acsomega.1c03731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 05/25/2023]
Abstract
Carbon dots (CDs) are synthesized by the solvothermal method with four kinds of solvents including water, dimethylformamide (DMF), ethanol, and acetic acid (AA). The aqueous solutions of the above CDs emit multiple colors of blue (470 nm), green (500 nm), yellow (539 nm), and orange (595 nm). The structures, sizes, and chemical composition of the CDs are characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The optical properties of multicolored CDs are analyzed by UV-vis absorption and photoluminescence (PL) spectra. It has been revealed that DMF is the key solvent to synthesized CDs for the red shift of fluorescence emission, which could be enhanced by adding an AA solvent. The structures of functional groups such as the contents of graphitic N in carbon cores and oxygen-containing functional groups on the surface of CDs are affected by these four solvents. According to the oxidation and selective reduction of NaBH4, the implication for multicolor imaging has been discussed based on the COOH, C-O-C, and C=O functional groups.
Collapse
Affiliation(s)
- Xiaomin Huo
- College
of Materials Science and Technology, Jiangsu Key Laboratory of Materials
and Technology for Energy Conversion, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- Dalian
Inspection, Testing and Certification Group
Co., Ltd., Dalian 116021, P. R. China
| | - Honglie Shen
- College
of Materials Science and Technology, Jiangsu Key Laboratory of Materials
and Technology for Energy Conversion, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Rui Liu
- College
of Materials Science and Technology, Jiangsu Key Laboratory of Materials
and Technology for Energy Conversion, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Jing Shao
- Department
of Material Physics, Faculty of Science, Bengbu University, Bengbu 233030, P. R. China
| |
Collapse
|
11
|
Yan X, Rahman S, Rostami M, Tabasi ZA, Khan F, Alodhayb A, Zhang Y. Carbon Quantum Dot-Incorporated Chitosan Hydrogel for Selective Sensing of Hg 2+ Ions: Synthesis, Characterization, and Density Functional Theory Calculation. ACS OMEGA 2021; 6:23504-23514. [PMID: 34549147 PMCID: PMC8444287 DOI: 10.1021/acsomega.1c03557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 05/24/2023]
Abstract
A carbon quantum dot-based chitosan hydrogel was prepared in this work as a fluorescence sensor for the selective sensing of Hg2+ ions. Among the eight tested metal ions, the prepared hydrogel exhibited remarkable sensing selectivity and sensitivity toward Hg2+. The results demonstrated that a prominent fluorescence quenching at 450 nm was observed in the presence of Hg2+ with a linear response range of 0-100.0 nM and an estimated limit of detection of 9.07 nM. The as-prepared hydrogel demonstrates pH-dependent fluorescence intensity and sensitivity. The highest fluorescence intensity and sensitivity were obtained under pH 5.0. The excellent sensing selectivity could be attributed to a strong interaction between the hydrogel film and Hg2+ ions to form complexes, which provokes an effective electron transfer for fluorescence quenching. Results from density functional theory (DFT) calculation confirm that the interaction energies (ΔIE) of the hydrogel with three toxic metal ions (Hg2+, Cd2+, and Pb2+) are in the following order: Hg2+ > Cd2+ > Pb2+.
Collapse
Affiliation(s)
- Xiangyu Yan
- Department
of Process Engineering, Memorial University
of Newfoundland, St. John’s A1B 3X5, Canada
| | - Shofiur Rahman
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s A1B
3X7, Canada
| | - Masoumeh Rostami
- Department
of Process Engineering, Memorial University
of Newfoundland, St. John’s A1B 3X5, Canada
| | - Zahra A. Tabasi
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s A1B
3X7, Canada
| | - Faisal Khan
- Department
of Process Engineering, Memorial University
of Newfoundland, St. John’s A1B 3X5, Canada
| | - Abdullah Alodhayb
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yan Zhang
- Department
of Process Engineering, Memorial University
of Newfoundland, St. John’s A1B 3X5, Canada
| |
Collapse
|
12
|
Nan X, Huyan Y, Li H, Sun S, Xu Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213580] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Bejan A, Doroftei F, Cheng X, Marin L. Phenothiazine-chitosan based eco-adsorbents: A special design for mercury removal and fast naked eye detection. Int J Biol Macromol 2020; 162:1839-1848. [PMID: 32745550 DOI: 10.1016/j.ijbiomac.2020.07.232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The aim of the paper was to investigate the ability of an eco-friendly luminescent xerogel prepared by chitosan crosslinking with a phenothiazine luminogen to detect and remove heavy metals. Its ability to give a divergent morphological and optical response towards fifteen environmental relevant metals was investigated by naked eye and UV lamp, fluorescence spectroscopy and scanning electron microscopy. A distinct response was noted for mercury, consisting in the transformation of the xerogel into a rubber-like material accompanied by the red shifting of the color of emitted light from yellow-green to greenish-yellow domain. The particularities of the metals anchoring into the xerogel were analyzed by FTIR spectroscopy and X-ray diffraction. The morphological changes and the metal uptake were analyzed by SEM-EDAX, swelling and gravimetric methods. It was concluded that mercury has a superior affinity towards this heteroatoms rich system, leading to a secondary crosslinking. This directed a great absorption capacity of 1673 mg/g and a specific morphological response for mercury ion concentrations up to 0.001 ppm.
Collapse
Affiliation(s)
- Andrei Bejan
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania.
| |
Collapse
|
14
|
Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. A phenobarbital containing polymer/ silica coated quantum dot composite for the selective recognition of mercury species in fish samples using a room temperature phosphorescence quenching assay. Talanta 2020; 216:120959. [PMID: 32456893 DOI: 10.1016/j.talanta.2020.120959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Kamal K Jinadasa
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Dager A, Baliyan A, Kurosu S, Maekawa T, Tachibana M. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: application of C-QDs to grow fluorescent protein crystals. Sci Rep 2020; 10:12333. [PMID: 32704038 PMCID: PMC7378176 DOI: 10.1038/s41598-020-69264-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023] Open
Abstract
Herein, we present the rapid synthesis of mono-dispersed carbon quantum dots (C-QDs) via a single-step microwave plasma-enhanced decomposition (MPED) process. Highly-crystalline C-QDs were synthesized in a matter of 5 min using the fenugreek seeds as a sustainable carbon source. It is the first report, to the best of our knowledge, where C-QDs were synthesized using MPED via natural carbon precursor. Synthesis of C-QDs requires no external temperature other than hydrogen (H2) plasma. Plasma containing the high-energy electrons and activated hydrogen ions predominantly provide the required energy directly into the reaction volume, thus maximizing the atom economy. C-QDs shows excellent Photoluminescence (PL) activity along with the dual-mode of excitation-dependent PL emission (blue and redshift). We investigate the reason behind the dual-mode of excitation-dependent PL. To prove the efficacy of the MPED process, C-QDs were also derived from fenugreek seeds using the traditional synthesis process, highlighting their respective size-distribution, crystallinity, quantum yield, and PL. Notably, C-QDs synthesis via MPED was 97.2% faster than the traditional thermal decomposition process. To the best of our knowledge, the present methodology to synthesize C-QDs via natural source employing MPED is three times faster and far more energy-efficient than reported so far. Additionally, the application of C-QDs to produce the florescent lysozyme protein crystals "hybrid bio-nano crystals" is also discussed. Such a guest-host strategy can be exploited to develop diverse and complex "bio-nano systems". The florescent lysozyme protein crystals could provide a platform for the development of novel next-generation polychrome luminescent crystals.
Collapse
Affiliation(s)
- Akansha Dager
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Ankur Baliyan
- NISSAN ARC, LTD, 1-Natsushima-cho, Yokosuka, 236-0061, Japan
| | - Shunji Kurosu
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Masaru Tachibana
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| |
Collapse
|
16
|
Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104886] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
|
18
|
Ma J, Jiang Z, Cao J, Yu F. Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions. CHEMOSPHERE 2020; 242:125188. [PMID: 31675580 DOI: 10.1016/j.chemosphere.2019.125188] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 05/27/2023]
Abstract
Large-scale abuse of antibiotics has led to serious environmental problems. Some conventional adsorbents such as several biopolymer gels have poor adsorption performance and inadequate mechanical properties. In this paper, carbon nanotubes (CNTs) and graphene oxide (GO), were combined with sodium alginate (SA) to improve the adsorption performance and other properties of traditional adsorbents. With the help of hydrogen peroxide and l-cysteine (L-cys), carbon nanotubes/l-cysteine@graphene oxide/sodium alginate (CNTs/L-cys@GO/SA) triple-network composite hydrogels were prepared. Compared with traditional hydrogels and the double-network hydrogels that are currently being developed, these triple-network composite hydrogels can exploit their three-dimensional structure to improve their adsorption capacity. The independent triple-network structure increases the three-dimensional space, so there are more pores and pollutant adsorption sites to achieve the high-efficient removal of ciprofloxacin. And the adsorption capacity of CNTs/L-cys@GO/SA hydrogels can reach 181 mg g-1 and 200 mg g-1 at 25 °C and 15 °C respectively in weak acidity environment. In fact, CNTs/L-cys@GO/SA hydrogels show better property at low temperature. In addition, the thermal stability, mechanical properties and swelling ability of the triple-network hydrogels have also been improved. The independent multilayer network can retain the excellent properties of the original materials and make the internal space of hydrogels larger. These multinetwork hydrogels have great potential for removing pollutants from wastewater. In addition, the CNTs/L-cys@GO/SA hydrogels show the higher adsorption capacity of ciprofloxacin under the conditions of weak acidity, low temperature and low inorganic salt concentration, so the removal of ciprofloxacin by hydrogels can also be promoted by changing environmental conditions.
Collapse
Affiliation(s)
- Jie Ma
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Zhe Jiang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Jianglin Cao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
19
|
Kaur J, Sharma S, Mehta SK, Kansal SK. Highly photoluminescent and pH sensitive nitrogen doped carbon dots (NCDs) as a fluorescent sensor for the efficient detection of Cr (VI) ions in aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117572. [PMID: 31670040 DOI: 10.1016/j.saa.2019.117572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Fluorescent carbon dots (CDs) are contemporary class of fluorescent materials that has emerged recently and have gathered increasing attention due to its excellent properties as compared to traditional semiconductor quantum dots. CDs have lucrative benefits of less toxicity, biocompatibility, eco friendliness, tunable fluorescence, high chemical and photostability, effortless synthesis routes and uncomplicated surface modifications and functionalization. In the present work, nitrogen-doped carbon dots (NCDs) were prepared by a facile hydrothermal process using l-ascorbic acid and ethylene diamine as precursors. The as-prepared NCDs were hydrophilic in nature and could remain stable for several weeks. NCDs displayed bright blue fluorescence under UV light irradiation and also exhibited an extensive range of emission spectra in the visible region to infra-red region based upon the excitation wavelength. NCDs possessed quasi-spherical morphology and high density growth. NCDs were further utilized as nanoprobes for the pH sensing and proficient sensitive and selective detection of chromium (VI) ions present in aqueous phase. Under augmented modifications and conditions, the photoluminescence intensity of NCDs against various micromolar concentration of chromium (VI) ions presented a linear relationship, as per Stern-Volmer equation. The calibration curve was found to be linear in the range of 0-4 μM and from the slope of the linear curve, the limit of detection (LOD) was calculated to be 2.598 nM. The Stern-Volmer calibration curve was also plotted against different temperatures, verifying static quenching mechanism. Therefore, the as synthesized NCDs can be successfully demonstrated for the efficient pH sensing and the detection of Cr (VI) ions.
Collapse
Affiliation(s)
- Jasjot Kaur
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Shelja Sharma
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Surinder Kumar Mehta
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Sushil Kumar Kansal
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
20
|
Guo F, Zhu Z, Zheng Z, Jin Y, Di X, Xu Z, Guan H. Facile synthesis of highly efficient fluorescent carbon dots for tetracycline detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4520-4527. [PMID: 31768961 DOI: 10.1007/s11356-019-06779-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Rampant use of tetracycline in animal feed is a threat to food security, the environment, and human health because of the risk of drug residues. Therefore, it is necessary to establish a sensitive, efficient, and reliable method for qualitative and quantitative detection of tetracycline. In this paper, we synthesized fluorescent carbon dots (FCDs) by thermal cracking of crab shell waste, and obtained a fluorescence quantum yield of 30%. Characterization of the FCDs by transmission electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet visible absorption spectroscopy, and photoluminescence spectroscopy showed that they were fluorescent and evenly distributed with an average size of approximately 10 nm. We designed a sensitive probe for detecting tetracycline using the fluorescence intensity change of the FCDs. This method is sensitive, inexpensive, and environmentally friendly. The concentration of tetracycline was examined by comparing the fluorescence intensities of the FCDs before and after tetracycline addition. The limit of detection for tetracycline was 0.005 mg/L (signal-to-noise ratio = 3), which is promising for method development.
Collapse
Affiliation(s)
- Feng Guo
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China.
| | - Zihan Zhu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Zhangqin Zheng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Ying Jin
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Xiaoxuan Di
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Zhonghao Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| | - Hongwei Guan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China
| |
Collapse
|
21
|
On the Emission Properties of Carbon Dots: Reviewing Data and Discussing Models. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040060] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The emission properties of carbon dots (CDs) have already found many potential applications, from bio-imaging and cell labelling, to optical imaging and drug delivery, and are largely investigated in technological fields, such as lighting and photonics. Besides their high efficiency emission, CDs are also virtually nontoxic and can be prepared through many green chemistry routes. Despite these important features, the very origin of their luminescence is still debated. In this paper, we present an overview of sounding data and the main models proposed to explain the emission properties of CDs and their tunability.
Collapse
|
22
|
Yan F, Zhang H, Sun Z, Sun X, Jiang Y, Bai Z, Zu F, Chen L. Carbon dots as building blocks for the construction of functional nanocomposite materials. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01749-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Xu J, Li J, Wang C, Zhao W. Preparation and application of solvent‐modulated self‐doped N–S multicolour fluorescence carbon quantum dots. LUMINESCENCE 2019; 35:34-42. [DOI: 10.1002/bio.3698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Xu
- School of Materials Science and EngineeringUniversity of Jinan Jinan China
| | - Jinkai Li
- School of Materials Science and EngineeringUniversity of Jinan Jinan China
| | - Congling Wang
- School of Materials Science and EngineeringUniversity of Jinan Jinan China
| | - Weilin Zhao
- School of Materials Science and EngineeringUniversity of Jinan Jinan China
| |
Collapse
|
24
|
Deng Z, Liu C, Jin Y, Pu J, Wang B, Chen J. High quantum yield blue- and orange-emitting carbon dots: one-step microwave synthesis and applications as fluorescent films and in fingerprint and cellular imaging. Analyst 2019; 144:4569-4574. [PMID: 31225569 DOI: 10.1039/c9an00672a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A high quantum yield (QY) is the key requirement for implementing carbon dots (CDs) in nearly all applications. In this work, blue emissive N-doped CDs with a QY of 83% and orange emissive N-doped CDs with a QY of 47% were successfully prepared using resorcinol and phloroglucin as carbon resources in formamide by one-step microwave synthesis, respectively. Formamide not only plays a role as the solvent but also takes part in the formation of the high QY CDs. It is demonstrated that the as-prepared blue- and orange-emitting N-doped CDs with a high QY can be uniformly dispersed into glue and be fabricated as CD/glue fluorescent composites for fluorescent films and fingerprint imaging. Furthermore, these CDs also show excellent cellular imaging capability.
Collapse
Affiliation(s)
- Zhiqin Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Chang Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Yanzi Jin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Jianlin Pu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Bin Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Jiucun Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China. and Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| |
Collapse
|
25
|
Mintz KJ, Mercado G, Zhou Y, Ji Y, Hettiarachchi SD, Liyanage PY, Pandey RR, Chusuei CC, Dallman J, Leblanc RM. Tryptophan carbon dots and their ability to cross the blood-brain barrier. Colloids Surf B Biointerfaces 2019; 176:488-493. [PMID: 30690384 PMCID: PMC6441370 DOI: 10.1016/j.colsurfb.2019.01.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/25/2023]
Abstract
Drug traversal across the blood-brain barrier has come under increasing scrutiny recently, particularly concerning the treatment of sicknesses, such as brain cancer and Alzheimer's disease. Most therapies and medicines are limited due to their inability to cross this barrier, reducing treatment options for maladies affecting the brain. Carbon dots show promise as drug carriers, but they experience the same limitations regarding crossing the blood-brain barrier as many small molecules do. If carbon dots can be prepared from a precursor that can cross the blood-brain barrier, there is a chance that the remaining original precursor molecule can attach to the carbon dot surface and lead the system into the brain. Herein, tryptophan carbon dots were synthesized with the strategy of using tryptophan as an amino acid for crossing the blood-brain barrier via LAT1 transporter-mediated endocytosis. Two types of carbon dots were synthesized using tryptophan and two different nitrogen dopants: urea and 1,2-ethylenediamine. Carbon dots made using these precursors show excitation wavelength-dependent emission, low toxicity, and have been observed inside the central nervous system of zebrafish (Danio rerio). The proposed mechanism for these carbon dots abilities to cross the blood-brain barrier concerns residual tryptophan molecules which attach to the carbon dots surface, enabling them to be recognized by the LAT1 transporter. The role of carbon dots for transport open promising avenues for drug delivery and imaging in the brain.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Yiwen Ji
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Piumi Y Liyanage
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Raja R Pandey
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Charles C Chusuei
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Julia Dallman
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
26
|
Mintz KJ, Zhou Y, Leblanc RM. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. NANOSCALE 2019; 11:4634-4652. [PMID: 30834912 PMCID: PMC6467229 DOI: 10.1039/c8nr10059d] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Carbon quantum dots (CDs) are a relatively new class of carbon nanomaterials which have been studied very much in the last fifteen years to improve their already favorable properties. The optical properties of CDs have drawn particular interest as they display the unusual trait of excitation-dependent emission, as well as high fluorescence quantum yields (QY), long photoluminescence (PL) decay lifetimes, and photostability. These qualities naturally lead researchers to apply CDs in the field of imaging (particularly bio-imaging) and sensing. Since the amount of publications regarding CDs has been growing nearly exponentially in the last ten years, many improvements have been made in the optical properties of CDs such as QY and PL lifetime. However, a great deal of confusion remains regarding the PL mechanism of CDs as well as their structural properties. Therefore, presented in this review is a summary and discussion of the QYs and PL lifetimes reported in recent years. The effect of method as well as precursor has been evaluated and discussed appropriately. The current theories regarding the PL mechanism of CDs are discussed, with special attention to the concept of surface state-controlled PL. With this knowledge, the improvement of preparation and applications of CDs related to their optical properties will be easily accomplished. Further improvements can be made to CDs through the understanding of their structural and optical properties.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, USA.
| | | | | |
Collapse
|
27
|
Sun X, Li G, Yin Y, Zhang Y, Li H. Carbon quantum dot-based fluorescent vesicles and chiral hydrogels with biosurfactant and biocompatible small molecule. SOFT MATTER 2018; 14:6983-6993. [PMID: 29972201 DOI: 10.1039/c8sm01155a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, it is heartening to witness that carbon quantum dots (CQDs), a rising star in the family of carbon nanomaterials, have displayed tremendous applications in bioimaging, biosensing, drug delivery, optoelectronics, photovoltaics and photocatalysis. However, the investigations toward self-assembly of CQDs are still in their infancy. The participation of CQDs can bring additional functions to supramolecular self-assemblies, with photoluminescent property as the most exciting aspect. Here, we introduce CQDs into two types of classic colloidal systems containing low molecular weight surfactant and gelator to construct fluorescent vesicles and chiral hydrogels. The CQD-based vesicles were constructed through electrostatic interaction between the positively charged CQDs with peripherally substituted imidazolium cations and a negatively-charged biosurfactant, i.e., sodium deoxycholate (NaDC). The chiral hydrogels were prepared by increasing the concentration of NaDC and addition of a tripeptide (glutathione, GSH). It was found that both the hydrogels and corresponding xerogels are highly photoluminescent. A solid sensing system was prepared by coating a uniform layer of the hydrogel onto the silica gel plates by doctor blade technique followed by air-drying, which was then utilized to semiquantitatively detect Cu2+ in aqueous solutions.
Collapse
Affiliation(s)
- Xiaofeng Sun
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, China.
| | | | | | | | | |
Collapse
|
28
|
Li M, Liao H, Deng Q, Wu Y, Xiao F, Wei X, Tu D. Preparation of an intelligent hydrogel sensor based on g-C3N4 nanosheets for selective detection of Ag+. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1453260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mengqiu Li
- School of materials science and engineering, Southwest University of Science and Technology, Mianyang China
| | - Huiwei Liao
- School of materials science and engineering, Southwest University of Science and Technology, Mianyang China
| | - Qiulin Deng
- School of materials science and engineering, Southwest University of Science and Technology, Mianyang China
- Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huaian, China
| | - Yibing Wu
- School of materials science and engineering, Southwest University of Science and Technology, Mianyang China
| | - Feng Xiao
- School of materials science and engineering, Southwest University of Science and Technology, Mianyang China
| | - Xiao Wei
- School of materials science and engineering, Southwest University of Science and Technology, Mianyang China
| | - Dan Tu
- School of materials science and engineering, Southwest University of Science and Technology, Mianyang China
| |
Collapse
|