1
|
Parikh J, Bhatt K, Patel N, Modi K, Parmar N. Host-guest interaction of tryptophane with acid-functionalized calix[4]pyrrole: a fluorescence-based study. J Biomol Struct Dyn 2024; 42:5895-5902. [PMID: 37378514 DOI: 10.1080/07391102.2023.2229448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Functionalized calix[4]pyrroles are at forefront of host-guest aided molecular sensors. They offer unique platform for flexible functionalization to develop receptors suitable for different applications. In this context, calix[4]pyrrole derivative (TACP) was functionalized with an acidic group to investigate its binding behavior with different amino acids. The acid functionalization facilitated host-guest interactions through hydrogen bonding and increase the solubility of ligand in 90% aqueous media. The results indicated that TACP exhibited significant fluorescence enhancement in the presence of tryptophan while no considerable changes were observed with other amino acids. The other complexation properties such as LOD and LOQ were determined to be 25 µM and 22 µM respectively with 1:1 stoichiometry. In addition, the proposed binding phenomena were further confirmed through computational docking studies and NMR complexation study. Overall, this work highlights the potential of acid functionalization in developing molecular sensors for amino acid detection using calix[4]pyrrole derivatives.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jaymin Parikh
- Department of Chemistry, Faculty of Science, Ganpat University, Mehsana, Gujarat, India
| | - Keyur Bhatt
- Department of Chemistry, Faculty of Science, Ganpat University, Mehsana, Gujarat, India
| | - Nihal Patel
- Department of Chemistry, Faculty of Science, Ganpat University, Mehsana, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Sciences, School of engineering, Indrashil university, Kadi, Mehsana, Gujarat, India
| | - Nirali Parmar
- Department of Chemistry, Faculty of Science, Ganpat University, Mehsana, Gujarat, India
| |
Collapse
|
2
|
Zhu S, Yang L, Zhao Y. Ethyl 3-aminobenzo[b]thiophene-2-carboxylate Derived Ratiometric Schiff Base Fluorescent Sensor for the Recognition of In 3+ and Pb 2. J Fluoresc 2024:10.1007/s10895-023-03576-7. [PMID: 38206512 DOI: 10.1007/s10895-023-03576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
An ethyl 3-aminobenzo[b]thiophene-2-carboxylate derived ratiometric Schiff base fluorescent sensor R was devised and synthesized. R exhibited a highly sensitive and selective ratiometric response to In3+ in DMF/H2O tris buffer solution. R exhibited a colorimetric/fluorescent dual-channel response to In3+. More importantly, R can distinguish In3+ from Ga3+ and Al3+ in less than 5 min. R exhibited a good linear correlation with the concentration of In3+ in the 5-25 μM range and the limit of detection for In3+ was found to be 8.36 × 10-9 M. According to the job`s plot and MS spectra, R formed a complex with In3+ at 1:2 with a complexation constant of 8.24 × 109 M2. Based on Gaussian theory calculations, the response mechanism of R to In3+ can be explained by photo-induced electron transfer (PET) and intramolecular charge transfer (ICT) mechanisms. In addition, R can be used for the detection of indium in tap water with satisfactory recoveries. Meanwhile, R displayed a linear relationship to micromolar concentrations (0-50 μM) of Pb2+ and recognized Pb2+ in a ratiometric response with a detection limit of 8.3 × 10-9 M.
Collapse
Affiliation(s)
- Shifeng Zhu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Liangru Yang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yingying Zhao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Patel N, Modi K, Bhatt K, Parikh J, Desai A, Jain B, Parmar N, Patel CN, Liska A, Ludvik J, Pillai S, Mohan B. Propyl-phthalimide Cyclotricatechylene-Based Chemosensor for Sulfosulfuron Detection: Hybrid Computational and Experimental Approach. ACS OMEGA 2023; 8:41523-41536. [PMID: 37969992 PMCID: PMC10633956 DOI: 10.1021/acsomega.3c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
The detection of trace amounts of sulfosulfuron, a pesticide of increasing importance, has become a pressing issue, prompting the development of effective chemosensors. In this study, we functionalized cyclotricatechylene (CTC) with propyl-phthalimide due to the presence of electronegative oxygen and nitrogen binding sites. Our optimized ligand displayed the highest docking score with sulfosulfuron, and experimental studies confirmed a significant fluorescence enhancement upon its interaction with sulfosulfuron. To gain a deeper understanding of the binding mechanism, we introduced density functional theory (DFT) studies. We carried out binding constant, Job's plot, and limit of detection (LOD) calculations to establish the effectiveness of our chemosensor as a selective detector for sulfosulfuron. These findings demonstrate the potential of our chemosensor for future applications in the field of pesticide detection.
Collapse
Affiliation(s)
- Nihal Patel
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Krunal Modi
- Department
of Humanity and Sciences, Indrashil University,
Kadi, Mehsana, Gujarat 382740, India
| | - Keyur Bhatt
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Jaymin Parikh
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Ajay Desai
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Bhavesh Jain
- Department
of Computer Science and Engineering, Indrashil
University, Kadi, Mehsana, Gujarat 382740, India
| | - Nirali Parmar
- Department
of Chemistry, Faculty of Science, Ganpat
University, Kherva, Mehsana, Gujarat 384012, India
| | - Chirag N. Patel
- Department
of Botany, Bioinformatics and Climate Change Impacts Management, School
of Science, Gujarat University, Ahmedabad, Gujarat 380009, India
- Biotechnology
Research Center, Technology Innovation Institute, Abu Dhabi 9639, United Arab Emirates
| | - Alan Liska
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute
of Physical Chemistry, Academy of Sciences
of the Czech Republic, Dolejskova 2155/3,182 23 Praha 8, Czech Republic
| | - Jiri Ludvik
- Department
of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute
of Physical Chemistry, Academy of Sciences
of the Czech Republic, Dolejskova 2155/3,182 23 Praha 8, Czech Republic
| | - Shibu Pillai
- Department
of Chemistry, Institute of Technology, Nirma
University, Ahmedabad, Gujarat 380009, India
| | - Brij Mohan
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Reconnoitering the Dynamics-Calix[4]pyrrole: A heights in research and technology. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
5
|
Patel N, Modi K, Bhatt K, Mohan B, Parikh J, Liska A, Ludvik J, Patel C, Jain V, Mishra D. Cyclotriveratrylene (CTV): Rise of an untapped supramolecular prodigy providing a new generation of sensors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
7
|
Parikh J, Bhatt K, Modi K, Patel N, Desai A, Kumar S, Mohan B. A versatile enrichment of functionalized calixarene as a facile sensor for amino acids. LUMINESCENCE 2022; 37:370-390. [PMID: 34994071 DOI: 10.1002/bio.4186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022]
Abstract
Amino acids have become the most important part of the human biological system due to their roles in the living processes. Role of amino acids stretches beyond their traditional role as a building block for proteins, deficiency of the same could lead to decreased immunity, digestive problems, depression, fertility issues, lower mental alertness, slowed growth in children, and many other health issues. The acute detection of amino acids is necessary to determine the human health domain. Here in this review, we summarize and study the calixarenes as a complex detailed being of an immeasurable value and its utilization for the amino acids' detection. The key factors responsible such as noncovalent forces, LOD and supramolecular chemistry of calixarenes with amino acids are described well. This study presents the most recent efforts made for the development of potential and highly efficient calixarene based sensors for the detection of amino acids.
Collapse
Affiliation(s)
- Jaymin Parikh
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Keyur Bhatt
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Krunal Modi
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Nihal Patel
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Ajay Desai
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology, Shenzhen, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
8
|
Desai AL, Patel NP, Parikh JH, Modi KM, Bhatt KD. In Silico Studies and Design of Scrupulous Novel Sensor for Nitro Aromatics Compounds and Metal Ions Detection. J Fluoresc 2022; 32:483-504. [PMID: 34981281 DOI: 10.1007/s10895-021-02866-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Abstract
A Novel calix[4]pyrrole system bearing carboxylic acid functionality [ABuCP] has been synthesized and its interaction towards various nitroaromatics compounds [NACs] were investigated. ABuCP showed significant color change with 1,3-dinitro benzene (1,3-DNB) in comparison to the solution of other nitroaromatic compounds such as 2,3-dinitro toluene (2,3-DNT), 2,4-dinitro toluene (2,4-DNT), 2,6-dinitro toluene (2,6-DNT), 4-NBB (4-nitrobenzyl bromide) and 4-nitro toluene (4-NT). The ABuCP-1,3-DNB complex produces a red shift in absorption spectra based on charge transfer mediated recognition. Additionally, the density functional theory calculation confirmed the possible mechanism for the binding of 1,3-DNB as a guest is well supported by the calculation of other parameters such as hardness, stabilization energy, softness, electrophilicity index and chemical potential. The TDDFT calculation facilitates the understanding of the proper binding mechanism in reference to experimental results. Additionally we have also developed its derivative which acts as a new fluorescent sensor which can selectively recognize Sr(II) ions. In this view its aminoanthraquinone derivative of calix[4]pyrrole i.e. ABuCPTAA is synthesized which also results in generation of high fluorescence capability sensor.
Collapse
Affiliation(s)
- Ajay L Desai
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India
| | - Nihal P Patel
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India
| | - Jaymin H Parikh
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India
| | - Krunal M Modi
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India.
| | - Keyur D Bhatt
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, Gujarat, 384012, India.
| |
Collapse
|
9
|
Zhang J, Ma X, Chen W, Bai Y, Xue P, Chen K, Chen W, Bian L. Bifunctional single-labelled oligonucleotide probe for detection of trace Ag(I) and Pb(II) based on cytosine-Ag(I)-cytosine mismatches and G-quadruplex. Anal Chim Acta 2021; 1151:338258. [PMID: 33608073 DOI: 10.1016/j.aca.2021.338258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
A novel bifunctional oligonucleotide (OND) probe with single fluorescent group HEX labelled at 5'-end was designed for detecting trace Ag(I) and Pb(II) in real samples. In the presence of Ag(I), the hairpin structure originating from Ag(I) induced cytosine-Ag(I)-cytosine mismatches causes the proximity of the HEX to the consecutive guanine bases (G)4 at 3'-terminal, resulting in the fluorescence quenching of the HEX. While in the presence of Pb(II), the G-quadruplex structure originating from two G-quartet planes by the intramolecular hydrogen bond with Pb(II) also causes the HEX approaching the (G)4 terminal and consequently the fluorescence quenching. The results showed the quantitative detection of trace Ag(I) and Pb(II) both in the linear response ranges of 1.0-20.0 × 10-9 mol L-1 with no visible interferences of other 11 metal ions observed. And the detection limits were 82 × 10-12 mol L-1 for Ag(I), 92 × 10-12 mol L-1 for Pb(II), respectively. The fluorescence quenching mechanism of the (G)4 to HEX was verified to be the photoinduced electron transfer in the aspect of thermodynamics. This method provided a feasible application for sensitive and selective detection of Pb(II) and Ag(I) in water and Chinese traditional herbs with convenient operation.
Collapse
Affiliation(s)
- Jiaxin Zhang
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xian Ma
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenhua Chen
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yifan Bai
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Pengli Xue
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Kehan Chen
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wang Chen
- College of Life Science and Technology, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
10
|
Zhong W, Wang L, Qin D, Zhou J, Duan H. Two Novel Fluorescent Probes as Systematic Sensors for Multiple Metal Ions: Focus on Detection of Hg 2. ACS OMEGA 2020; 5:24285-24295. [PMID: 33015445 PMCID: PMC7528189 DOI: 10.1021/acsomega.0c02481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Many precedents prove that fluorescent probes are promising candidates for detection of metal ions in the environment and biological systems. Herein, two novel photoinduced electron transfer (PET)-based fluorescent probes, CH 3 -R6G and CN-R6G, were rationally synthesized by incorporating a triazolyl benzaldehyde moiety into the rhodamine 6G fluorophore. The optical properties of these probes were studied using an ultraviolet-visible (UV-vis) absorption spectrophotometer and a fluorescence spectrophotometer. Through the analysis of the test results, it is concluded that the selectivity and sensitivity of these two probes to Hg2+ are better than to other metal ions (Ag+, Al3+, Ba2+, Cd2+, Co3+, Cu2+, Cr3+, Fe3+, Ga2+, K+, Mg2+, Na+, Ni2+, Pb2+, and Zn2+). According to the standard curve diagram, the detection limits of CH 3 -R6G and CN-R6G were determined to be 1.34 × 10-8 and 1.56 × 10-8 M, respectively. Reaction of the probes with Hg2+ resulted in a color change of the solution from colorless to pink. The corresponding molecular geometric configuration, orbital electron distribution, and orbital energy of these two compounds were predicted by density functional theory (DFT). The two probes CH 3 -R6G and CN-R6G have been successfully used for imaging Hg2+ in live breast cancer cells, thereby indicating their great potential for the micro-detection of Hg2+ in vivo.
Collapse
Affiliation(s)
- Wenxia Zhong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, Shandong, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250014, Shandong, China
| | - Dawei Qin
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, Shandong, China
| | - Jianhua Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, Shandong, China
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, Shandong, China
| |
Collapse
|
11
|
Sierra AF, Hernández-Alonso D, Romero MA, González-Delgado JA, Pischel U, Ballester P. Optical Supramolecular Sensing of Creatinine. J Am Chem Soc 2020; 142:4276-4284. [PMID: 32045249 DOI: 10.1021/jacs.9b12071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calix[4]pyrrole phosphonate-cavitands were used as receptors for the design of supramolecular sensors for creatinine and its lipophilic derivative hexylcreatinine. The sensing principle is based on indicator displacement assays of an inherently fluorescent guest dye or a black-hole quencher from the receptor's cavity by means of competition with the creatinine analytes. The systems were thermodynamically and kinetically characterized regarding their 1:1 binding properties by means of nuclear magnetic resonance spectroscopy (1H and 31P NMR), isothermal titration calorimetry, and optical spectroscopies (UV/vis absorption and fluorescence). For the use of the black-hole indicator dye, the calix[4]pyrrole was modified with a dansyl chromophore as a signaling unit that engages in Förster resonance energy transfer with the indicator dye. The 1:1 binding constants of the indicator dyes are in the range of 107 M-1, while hexylcreatinine showed values around (2-4) × 105 M-1. The competitive displacement of the indicators by hexylcreatinine produced supramolecular fluorescence turn-on sensors that work at micromolar analyte concentrations that are compatible with those observed for healthy as well as sick patients. The limit of detection for one of the systems reached submicromolar ranges (110 nM).
Collapse
Affiliation(s)
- Andrés F Sierra
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, 43007 Tarragona, Spain.,Universitat Rovira i Virgili (URV), Departament de Quı́mica Analı́tica i Quı́mica Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Daniel Hernández-Alonso
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Miguel A Romero
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - José A González-Delgado
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Uwe Pischel
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08018 Barcelona, Spain
| |
Collapse
|
12
|
Hu FX, Wang J, Chen S, Rao Q. Enhanced electrochemiluminescence from reduced graphene oxide-CdTe quantum dots for highly selective determination of copper ion. LUMINESCENCE 2019; 34:666-672. [PMID: 31243864 DOI: 10.1002/bio.3649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
An electrochemiluminescence (ECL) sensor based on reduced graphene oxide-CdTe quantum dots (RGO-CdTe QDs) composites for detecting copper ion (Cu2+ ) was proposed. The ECL behaviours of the RGO-CdTe QD modified electrode were investigated with H2 O2 as the co-reactant. Quantitative detection of Cu2+ was realized as Cu2+ could effectively quench the ECL signal of the RGO-CdTe QDs. A wide linear range of 1.00 × 10-14 to 1.00 × 10-4 M (R = 0.9953) was obtained under optimized conditions, and a detection limit (S/N = 3) was achieved of as low as 3.33 × 10-15 M. The proposed sensor also exhibited good stability and selectivity for the detection of copper ions. Finally, the analytical application of the proposed sensor was also evaluated using river water.
Collapse
Affiliation(s)
- Fang Xin Hu
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, China
| | - Juanli Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Shihong Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Qianghai Rao
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
13
|
Bhatt KD, Shah HD, Modi KM, Narechania MB, Patel C. Calix[4]pyrrole virtuous sensor: a selective and sensitive recognition for Pb(II) ions by spectroscopic and computational study. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1568434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Keyur D. Bhatt
- Department of Chemistry, Mehsana Urban Institute of Sciences, Ganpat University, Kherva, India
| | - Hemangini D. Shah
- Department of Chemistry, C. U. Shah University, Wadhwan, Gujarat, India
| | - Krunal M. Modi
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | | | - Chirag Patel
- School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|