1
|
Liu F, Ma L, Chen W, Wang S, Wei C, Huang C, Jiang Y, Wang S, Lin H, Chen J, Wang G, Xie B, Yuan Z. Preliminary study on the anti-CO 2 stress and growth ability of hypsizygus marmoreus mutant strain HY68. BMC Microbiol 2023; 23:293. [PMID: 37845623 PMCID: PMC10580535 DOI: 10.1186/s12866-023-03050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND A high concentration of CO2 will stagnate the development of the newly formed primordia of Hypsizygus marmoreus, hinder the development of the mushroom cap, thereby inhibiting the normal differentiation of the fruiting body. Moreover, in the previous experiment, our research group obtained the mutant strain HY68 of H. marmoreus, which can maintain normal fruiting under the condition of high concentration of CO2. Our study aimed to evaluate the CO2 tolerance ability of the mutant strain HY68, in comparison with the starting strain HY61 and the control strain HY62. We analyzed the mycelial growth of these strains under various conditions, including different temperatures, pH levels, carbon sources, and nitrogen sources, and measured the activity of the cellulose enzyme. Additionally, we identified and predicted β-glucosidase-related genes in HY68 and analyzed their gene and protein structures. RESULTS Our results indicate that HY68 showed superior CO2 tolerance compared to the other strains tested, with an optimal growth temperature of 25 °C and pH of 7, and maltose and beef paste as the ideal carbon and nitrogen sources, respectively. Enzyme activity assays revealed a positive correlation between β-glucosidase activity and CO2 tolerance, with Gene14147 identified as the most closely related gene to this activity. Inbred strains of HY68 showed trait segregation for CO2 tolerance. CONCLUSIONS Both HY68 and its self-bred offspring could tolerate CO2 stress. The fruiting period of the strains resistant to CO2 stress was shorter than that of the strains not tolerant to CO2 stress. The activity of β-GC and the ability to tolerate CO2 were more closely related to the growth efficiency of fruiting bodies. This study lays the foundation for understanding how CO2 regulates the growth of edible fungi, which is conducive to the innovation of edible fungus breeding methods. The application of the new strain HY68 is beneficial to the research of energy-saving production in factory cultivation.
Collapse
Affiliation(s)
- Fang Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Lin Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weifeng Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Sifan Wang
- Future Technology Academy, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chuanzheng Wei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chengpo Huang
- Fujian Wanchen Biotechnology Group Stock Co., Ltd., Zhangzhou, Zhangpu, Fujian, 363299, China
| | - Yimin Jiang
- Fujian Wanchen Biotechnology Group Stock Co., Ltd., Zhangzhou, Zhangpu, Fujian, 363299, China
| | - Song Wang
- Fujian Wanchen Biotechnology Group Stock Co., Ltd., Zhangzhou, Zhangpu, Fujian, 363299, China
| | - Hongyan Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jian Chen
- Fuzhou Institute of Agricultural Sciences, Fuzhou, Fujian, 350002, China
| | - Gang Wang
- Wetland College, Yancheng Teachers College, Yancheng, Jiangsu, 224008, China.
| | - Baogui Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Zongsheng Yuan
- College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
2
|
Li B, Xiang G, Huang G, Jiang X, He L. Self-exothermic reaction assisted green synthesis of carbon dots for the detection of para-nitrophenol and β-glucosidase activity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
3
|
Anusuyadevi K, Velmathi S. Design strategies of carbon nanomaterials in fluorescent sensing of biomolecules and metal ions -A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
4
|
Zhang WY, Tian T, Peng LJ, Zhou HY, Zhang H, Chen H, Yang FQ. A Paper-Based Analytical Device Integrated with Smartphone: Fluorescent and Colorimetric Dual-Mode Detection of β-Glucosidase Activity. BIOSENSORS 2022; 12:893. [PMID: 36291030 PMCID: PMC9599113 DOI: 10.3390/bios12100893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this work, indoxyl-glucoside was used as the substrate to develop a cost-effective, paper-based analytical device for the fluorescent and colorimetric dual-mode detection of β-glucosidase activity through a smartphone. The β-glucosidase can hydrolyze the colorless substrate indoxyl-glucoside to release indoxyl, which will be self-oxidized to generate green products in the presence of oxygen. Meanwhile, the green products emit bright blue-green fluorescence under ultraviolet-visible light irradiation at 365 nm. Fluorescent or colorimetric images were obtained by a smartphone, and the red-green-blue channels were analyzed by the Adobe Photoshop to quantify the β-glucosidase activity. Under the optimum conditions, the relative fluorescent and colorimetric signals have a good linear relationship with the activity of β-glucosidase, in the range of 0.01-1.00 U/mL and 0.25-5.00 U/mL, and the limits of detection are 0.005 U/mL and 0.0668 U/mL, respectively. The activities of β-glucosidase in a crude almond sample measured by the fluorescent and colorimetric methods were 23.62 ± 0.53 U/mL and 23.86 ± 0.25 U/mL, respectively. In addition, the spiked recoveries of normal human serum and crude almond samples were between 87.5% and 118.0%. In short, the paper-based device, combined with a smartphone, can provide a simple, environmentally friendly, and low-cost method for the fluorescent and colorimetric dual-mode detection of β-glucosidase activity.
Collapse
Affiliation(s)
- Wei-Yi Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Tao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li-Jing Peng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hang-Yu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
5
|
Wang G, Yan F, Wang Y, Liu Y, Cui J, Yu Z, Feng L, James TD, Wang C, Kong Y. Visual Sensing of β-Glucosidase From Intestinal Fungus in the Generation of Cytotoxic Icarisid II. Front Chem 2022; 10:919624. [PMID: 35692694 PMCID: PMC9184716 DOI: 10.3389/fchem.2022.919624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
β-Glucosidase (β-Glc) is an enzyme capable of the selective hydrolysis of the β-glycosidic bond of glycosides and glycans containing glucose. β-Glc expressed by intestinal microbiota has attracted increasing levels of interest, due to their important roles for the metabolism of exogenous substances in the gut. Using the 2-((6-hydroxy-2,3-dihydro-1H-xanthen-4-yl)methylene)malononitrile fluorophore (DXM-OH, λem 636 nm) and the recognition group β-Glucose, an enzymatic activatable turn-on fluorescent probe (DXM-Glc) was developed for the selective and sensitive sensing of β-Glc. In addition, DXM-Glc could be used to sense endogenous β-Glc in living fungal cells. Using DXM-Glc, Pichia terricola M2 was identified as a functional intestinal fungus with β-Glc expression. P. terricola M2 could transform the flavone glycoside Icariin to Icariside Ⅱ efficiently, which confirmed the metabolism of glycosides in the gut mediated by fungi. Furthermore, Icariside Ⅱ could inhibit the proliferation of human endometrial cancer cells (RL 95-2 and ishikawa) significantly, suggesting the metabolic activation of Icariin by intestinal fungi in vivo. Therefore, DXM-Glc as a probe for β-Glc provided a novel technique for the investigation of the metabolism of bioactive substances by intestinal microbiota.
Collapse
Affiliation(s)
- Gang Wang
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fei Yan
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
- Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yufei Wang
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yingping Liu
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Zhenlong Yu
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lei Feng
- Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Tony D. James, ; Chao Wang, ; Ying Kong,
| | - Chao Wang
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Tony D. James, ; Chao Wang, ; Ying Kong,
| | - Ying Kong
- College of Basic Medical Sciences, College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Tony D. James, ; Chao Wang, ; Ying Kong,
| |
Collapse
|
6
|
Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Mote US, Gore AH, Panja SK, Kolekar GB. Effect of Various Aqueous Extracting Agents on Fluorescence Properties of Waste Tea Residue Derived Carbon Dots (WTR-CDs): Comparative Spectroscopic Analysis. LUMINESCENCE 2022; 37:440-447. [PMID: 34994075 DOI: 10.1002/bio.4190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022]
Abstract
Fluorescent carbon dots are one of the important carbonaceous nanomaterials in the area of nanoscience and nanotechnology because of their interesting physical as well as chemical properties. Herein we studied the effect of various aqueous extracting agents on fluorescence properties of waste tea residue-based carbon dots (WTR-CDs). WTR-CDs are firstly synthesized by utilizing kitchen waste-based carbonaceous biomass. To check the role of various aqueous media during the course of WTR-CDs synthesis from carbonized carbon powder, extraction of WTR-CDs was carried out in kinds of aqueous media viz., only aqueous (100 % water), aqueous-alcoholic (10% ethanol), aqueous-acidic (10% acetic acid), and aqueous-basic (10% Ammonia). The consequences of extracting agents on the photophysical properties of final WTR-CDs-WT, WTR-CDs-AA, WTR-CDs-ET and WTR-CDs-AM were also discussed in detail. We have observed interesting blue shift fluorescence spectra in acidic medium for WTR-CDs-AA and polar protic solvents compared to polar aprotic medium. The solvatochromic behavior of WTR-CDs-WT in model polar and non-polar solvent was also studied. The effect of cationic, anionic and non-anionic surfactants on the fluorescence of WTR-CDs-WT was also evaluated. The proposed finding may help in the near future to the researchers for fast, easy and direct synthesize CDs from a variety of biomass-based precursors under different aqueous conditions.
Collapse
Affiliation(s)
- Umesh S Mote
- Department of Chemistry, KarmaveerBhaurao Patil College, Urun-Islampur, Tal. Walwa, Dist. Sangli, Maharashtra, India
| | - Anil H Gore
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India.,Department of Chemistry, UkaTarsadia University, Bardoli-Mahuva, Road, Tarsadi, Gujar, India
| | - Sumit Kumar Panja
- Department of Chemistry, UkaTarsadia University, Bardoli-Mahuva, Road, Tarsadi, Gujar, India
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| |
Collapse
|
8
|
Hu Y, Ji W, Sun J, Liu X, Zhou R, Yan J, Zhang N. Simple and eco-friendly synthesis of crude orange-peel-derived carbon nanoparticles for detection of Fe 3+ and ascorbic acid. LUMINESCENCE 2021; 36:1385-1394. [PMID: 33942474 DOI: 10.1002/bio.4064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 01/23/2023]
Abstract
Although fluorescence sensors based on carbon dots (CDs) have been developed widely, multicomponent detection using CDs without extra and tedious surface modification remains a challenge. Here, the crude carbon nanoparticles (CPs) as a fluorescence sensor were prepared through one-pot hydrothermal process using orange peel as the precursor. The method was simple, rapid, economical, and eco-friendly given that such extra steps as dialysis and lyophilization were not required. By adding ethanol into the reaction solvent, the fluorescence properties of orange-peel-derived CPs as well as their sensitivity of detecting Fe3+ with a limit of detection of 0.25 μM were improved. Additionally, orange-peel-derived CPs could be used as a fluorescence sensor for detection of ascorbic acid (AA) with a LOD of 5 μM. More importantly, the proposed fluorescence methods were successfully used to qualitatively and quantitatively analyze Fe3+ and AA in real samples. Recovery of Fe3+ from tap water was within the range 97.2-105.4%. Conversely, recovery of AA from vitamin C tablets and orange juices laid within the ranges 97.7-99.3% and 93.2-97.6%, respectively.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Medical College, China Three Gorges University, Yichang, China.,Third-grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine of China, SATCM), China Three Gorges University, Yichang, China
| | - Wenxuan Ji
- Medical College, China Three Gorges University, Yichang, China
| | - Junxuan Sun
- Medical College, China Three Gorges University, Yichang, China
| | - Xingyue Liu
- Medical College, China Three Gorges University, Yichang, China
| | - Run Zhou
- Medical College, China Three Gorges University, Yichang, China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, China.,Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, China.,Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Emami E, Mousazadeh MH. pH-responsive zwitterionic carbon dots for detection of rituximab antibody. LUMINESCENCE 2021; 36:1198-1208. [PMID: 33749984 DOI: 10.1002/bio.4045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 01/25/2023]
Abstract
Zwitterionic carbon dots (CDs) have received much attention as a result of good photostability, high biocompatibility, and high quantum yield. In this study, novel zwitterionic CDs were synthesized using a simple hydrothermal method of citric acid (CA) and l-histidine as carbon and nitrogen precursors, respectively. Prepared zwitterionic CDs have an average particle size of 4 nm diameter and showed green fluorescence with a peak at 530 nm when excited at 470 nm; quantum efficiency was 39.34% using rhodamine 6G as a baseline. The fluorescence intensity of zwitterionic CDs was quenched by rituximab in the range 0-400 μmol L-1 , with a limit of detection of 27 μmol L-1 . In addition, the synthesized zwitterionic CDs had low toxicity, good stability, and high selectivity and sensitivity sensing for rituximab, therefore zwitterionic CDs are a promising candidate for practical applications.
Collapse
Affiliation(s)
- Elham Emami
- Department of Chemistry, Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box: 15875-4413, Tehran, Iran
| | - Mohammad H Mousazadeh
- Department of Chemistry, Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box: 15875-4413, Tehran, Iran
| |
Collapse
|
10
|
A simple and portable method for β-Glucosidase activity assay and its inhibitor screening based on a personal glucose meter. Anal Chim Acta 2020; 1142:19-27. [PMID: 33280697 DOI: 10.1016/j.aca.2020.10.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022]
Abstract
In this study, a simple and portable enzyme activity assay and inhibitor screening method was developed based on β-Glucosidase-mediated cascade reaction in a personal glucose meter (PGM). The inhibition of castanospermine (β-Glucosidase inhibitor) on β-Glucosidase leads to reducing the yields of glucose and saligenin produced by the catalysis hydrolysis of D (-)-Salicin. The ferricyanide (K3 [Fe(CN)6]) can be reduced by the products of glucose and saligenin to form ferrocyanide ([K4[Fe(CN)6]) in the glucose strips, and thereby get the electron to generate PGM detectable signals. This strategy can realize the direct determination of glucose and saligenin using PGM as simple as measuring the glucose in blood. Under the optimum experimental conditions, quantitative detection of β-Glucosidase in crude almond sample was achieved within the ranges of 1.0-9.0 U/mL with the limit of detection of 0.45 U/mL. The recoveries of β-Glucosidase spiked with two different concentrations (3.0 and 6.0 U/mL) in the crude bitter almond extracts were determined as 96.2% and 84.3%, respectively. Furthermore, gallic acid, protocatechualdehyde, cryptochlorogenic acid, epigallocatechin, epicatechin and vanillic acid exhibited good inhibitory effect (all higher than 40%) on β-Glucosidase. In addition, tea polyphenol extracts of raw Pu-erh and Fuding white tea had good inhibition potency and the % of inhibition were (29.0 ± 3.5)% and (21.1 ± 2.2)% on β-Glucosidase, respectively. Finally, molecular docking study indicated that hydrogen bonding plays an important role in the interaction between the compounds and β-Glucosidase. The enzyme activity assay and inhibitor screening method developed in present study using PGM based on β-Glucosidase-mediated cascade reaction would be of value for expanding the application of PGM in non-glucose target analysis.
Collapse
|
11
|
Zhang Z, Pei K, Yan Z, Chen J. Facile synthesis of AgNPs@SNCDs nanocomposites as a fluorescent 'turn on' sensor for detection of glutathione. LUMINESCENCE 2020; 36:215-221. [PMID: 32830909 DOI: 10.1002/bio.3938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
The present study illustrates the facile synthesis of silver nanoparticles capped with sulfur and nitrogen co-doped carbon dots (AgNPs@SNCDs) nanocomposites and their application towards the sensitive and selective detection of glutathione (GSH) using a spectrofluorimetry method. SNCDs were synthesized using solvothermal treatment of cysteamine hydrochloride and p-phenylenediamine. The as-fabricated SNCDs were then utilized as capping and stabilizing agents for the preparation of AgNPs@SNCDs nanocomposites using wet chemistry. The size of AgNPs@SNCDs nanocomposites was characterized to be ~37.58 nm or even larger aggregates. Particularly, the quenched fluorescence of AgNPs@SNCDs nanocomposites could be significantly restored upon addition of GSH, and the colour of its solution changed to some extent. The fluorescence intensity ratio of AgNPs@SNCDs nanocomposites at ~450 nm and 550 nm was directly proportional to the GSH concentration within the ranges 8.35-66.83 μM and 66.83-200.5 μM, and the detection limit was 0.52 μM. Furthermore various common organic molecules had no obvious interference in the detection mode. The proposed nanosensor was successfully applied for GSH assay in actual water samples.
Collapse
Affiliation(s)
- Zhengwei Zhang
- School of Science, China Pharmaceutical University, Nanjing, China.,College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhengyu Yan
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Jianqiu Chen
- School of Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Han Z, He L, Pan S, Liu H, Hu X. Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid. LUMINESCENCE 2020; 35:989-997. [DOI: 10.1002/bio.3803] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Zhu Han
- College of Chemistry and Chemical Engineering Southwest University Chongqing China
| | - Li He
- College of Chemistry and Chemical Engineering Southwest University Chongqing China
| | - Shuang Pan
- College of Chemistry and Chemical Engineering Southwest University Chongqing China
| | - Hui Liu
- College of Pharmaceutical Sciences Southwest University Chongqing China
| | - Xiaoli Hu
- College of Chemistry and Chemical Engineering Southwest University Chongqing China
| |
Collapse
|