1
|
Xu M, Zhu J, Wang Z, Yan J, Zhou X. Neuroprotective effect of autologous mitochondrial transplantation against global ischemia/reperfusion injury in a rat model of cardiac arrest. Mitochondrion 2024; 78:101924. [PMID: 38944369 DOI: 10.1016/j.mito.2024.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Mitochondria have emerged as a promising target for ischemic disease. A previous study reported the application of mitochondrial transplantation in focal cerebral ischemia/reperfusion injury, but it is unclear whether exogenous mitochondrial transplantation could be a therapeutic strategy for global ischemia/reperfusion injury induced by cardiac arrest. METHODS We hypothesized that transplantation of autologous mitochondria would rescue hippocampal cells and alleviate neurological impairment after cardiac arrest. In this study, we employed a rat cardiac arrest-global cerebral ischemia injury model (CA-GCII) and transplanted isolated mitochondria intravenously. Behavior test was applied to assess neurological deficit. Apoptosis and mitochondria permeability transition pore opening in hippocampus was determined using immunoblotting and swelling assay, respectively. RESULTS Transplanted mitochondria distributed throughout hippocampal cells and reduced oxidative stress. An improved neurological outcome was observed in rats receiving autologous mitochondria. In the hippocampus, mitophagy was enhanced while cell apoptosis was induced by ischemia/reperfusion insult was downregulated by mitochondrial transplantation. Mitochondrial permeability transition pore (MPTP) opening in surviving hippocampal cells was also suppressed. CONCLUSIONS These results indicated that transplantation of autologous mitochondria rescued hippocampal cells from ischemia/reperfusion injury and ameliorated neurological impairment caused by cardiac arrest.
Collapse
Affiliation(s)
- MengDa Xu
- Department of Anesthesiology, General hospital of central theater command of PLA, Wuhan, China
| | - Jie Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - JingYu Yan
- Department of Anesthesiology, General hospital of central theater command of PLA, Wuhan, China
| | - Xiang Zhou
- Department of Anesthesiology, General hospital of central theater command of PLA, Wuhan, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Nehlin JO. Senolytic and senomorphic interventions to defy senescence-associated mitochondrial dysfunction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:217-247. [PMID: 37437979 DOI: 10.1016/bs.apcsb.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The accumulation of senescent cells in the aging individual is associated with an increase in the occurrence of age-associated pathologies that contribute to poor health, frailty, and mortality. The number and type of senescent cells is viewed as a contributor to the body's senescence burden. Cellular models of senescence are based on induction of senescence in cultured cells in the laboratory. One type of senescence is triggered by mitochondrial dysfunction. There are several indications that mitochondria defects contribute to body aging. Senotherapeutics, targeting senescent cells, have been shown to induce their lysis by means of senolytics, or repress expression of their secretome, by means of senomorphics, senostatics or gerosuppressors. An outline of the mechanism of action of various senotherapeutics targeting mitochondria and senescence-associated mitochondria dysfunction will be here addressed. The combination of geroprotective interventions together with senotherapeutics will help to strengthen mitochondrial energy metabolism, biogenesis and turnover, and lengthen the mitochondria healthspan, minimizing one of several molecular pathways contributing to the aging phenotype.
Collapse
Affiliation(s)
- Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark.
| |
Collapse
|
3
|
Szabo I, Szewczyk A. Mitochondrial Ion Channels. Annu Rev Biophys 2023; 52:229-254. [PMID: 37159294 DOI: 10.1146/annurev-biophys-092622-094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
4
|
Yadav E, Yadav P, Khan MMU, Singh H, Verma A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front Pharmacol 2022; 13:922232. [PMID: 36188541 PMCID: PMC9523540 DOI: 10.3389/fphar.2022.922232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/25/2022] [Indexed: 12/06/2022] Open
Abstract
Most polyphenols can cross blood-brain barrier, therefore, they are widely utilized in the treatment of various neurodegenerative diseases (ND). Resveratrol, a natural polyphenol contained in blueberry, grapes, mulberry, etc., is well documented to exhibit potent neuroprotective activity against different ND by mitochondria modulation approach. Mitochondrial function impairment is the most common etiology and pathological process in various neurodegenerative disorders, viz. Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Nowadays these ND associated with mitochondrial dysfunction have become a major threat to public health as well as health care systems in terms of financial burden. Currently available therapies for ND are limited to symptomatic cures and have inevitable toxic effects. Therefore, there is a strict requirement for a safe and highly effective drug treatment developed from natural compounds. The current review provides updated information about the potential of resveratrol to target mitochondria in the treatment of ND.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - HariOm Singh
- Department of Molecular Biology, ICMR-National Aids Research Institute, Pune, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
5
|
Gong YX, Liu Y, Jin YH, Jin MH, Han YH, Li J, Shen GN, Xie DP, Ren CX, Yu LY, Lee DS, Kim JS, Jo YJ, Kwon J, Lee J, Park YH, Kwon T, Cui YD, Sun HN. Picrasma quassioides Extract Elevates the Cervical Cancer Cell Apoptosis Through ROS-Mitochondrial Axis Activated p38 MAPK Signaling Pathway. In Vivo 2021; 34:1823-1833. [PMID: 32606152 DOI: 10.21873/invivo.11977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Picrasma quassioides (P. quassioides) is used in traditional Asian medicine widely for the treatment of anemopyretic cold, eczema, nausea, loss of appetite, diabetes mellitus, hypertension etc. In this study we aimed to understand the effect of P. quassioides ethanol extract on SiHa cervical cancer cell apoptosis. MATERIALS AND METHODS The P. quassioides extract-induced apoptosis was analyzed using the MTT assay, fluorescence microscopy, flow cytometry and western blotting. RESULTS P. quassioides extract induced cellular apoptosis by increasing the accumulation of cellular and mitochondrial reactive oxygen species (ROS) levels and inhibiting ATP synthesis. Pretreatment with N-Acetylcysteine (NAC), a classic antioxidant, decreased the intracellular ROS production and inhibited apoptosis. In addition, the P38 MAPK signaling pathway is a key in the apoptosis of SiHa cells induced by the P. quassioides extract. CONCLUSION The P. quassioides extract exerts its anti-cancer properties on SiHa cells through ROS-mitochondria axis and P38 MAPK signaling. Our data provide a new insight for P. quassioides as a therapeutic strategy for cervical cancer treatment.
Collapse
Affiliation(s)
- Yi-Xi Gong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Yue Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Jing Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Gui-Nan Shen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Li-Yun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Dong-Seok Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Jeongwoo Kwon
- Department of Animal Sciences, Chungbuk Natonal University, Cheongju, Republic of Korea
| | - Jaihyung Lee
- Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Yang Ho Park
- Park Yang Ho BRM Institute, Seoul, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Dong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| |
Collapse
|
6
|
Der Sarkissian S, Aceros H, Williams PM, Scalabrini C, Borie M, Noiseux N. Heat shock protein 90 inhibition and multi-target approach to maximize cardioprotection in ischaemic injury. Br J Pharmacol 2020; 177:3378-3388. [PMID: 32335899 DOI: 10.1111/bph.15075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/23/2019] [Accepted: 04/10/2020] [Indexed: 01/27/2023] Open
Abstract
Despite several advances in medicine, ischaemic heart disease remains a major cause of morbidity and mortality. The unravelling of molecular mechanisms underlying disease pathophysiology has revealed targets for pharmacological interventions. However, transfer of these pharmcological possibilities to clinical use has been disappointing. Considering the complexity of ischaemic disease at the cellular and molecular levels, an equally multifaceted treatment approach may be envisioned. The pharmacological principle of 'one target, one key' may fall short in such contexts, and optimal treatment may involve one or many agents directed against complementary targets. Here, we introduce a 'multi-target approach to cardioprotection' and propose heat shock protein 90 (HSP90) as a target of interest. We report on a member of a distinct class of HSP90 inhibitor possessing pleiotropic activity, which we found to exhibit potent infarct-sparing effects.
Collapse
Affiliation(s)
- Shant Der Sarkissian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Henry Aceros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Mélanie Borie
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Nicolas Noiseux
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Merolle L, Sponder G, Sargenti A, Mastrototaro L, Cappadone C, Farruggia G, Procopio A, Malucelli E, Parisse P, Gianoncelli A, Aschenbach JR, Kolisek M, Iotti S. Overexpression of the mitochondrial Mg channel MRS2 increases total cellular Mg concentration and influences sensitivity to apoptosis. Metallomics 2019; 10:917-928. [PMID: 29952392 DOI: 10.1039/c8mt00050f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mechanism of action of the mitochondrial Mg channel MRS2 and its involvement in cell viability remain unclear. Deletion of MRS2 has been reported to abolish Mg influx into mitochondria, to induce functional defects in mitochondrial organelles, and to result in cell death. We evaluated whether MRS2 expression had an impact on total Mg cellular content by inducing the overexpression of MRS2 in HEK-293 cells. We observed a remarkable increase of total intracellular Mg concentration in cells overexpressing MRS2 compared with control cells. In order to investigate whether and in what manner the detected Mg increment was involved in the MRS2 influence on cell viability, we treated MRS2-overexpressing cells with two known apoptotic inducers. We found that cells overexpressing the MRS2 channel became less responsive to these pharmacological insults. Our experimental evidence indicates that the MRS2 channel controls overall intracellular Mg levels, the alteration of which might have a role in the molecular signaling leading to apoptotic cell death.
Collapse
Affiliation(s)
- Lucia Merolle
- Transfusion Medicine Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li X, Jia P, Huang Z, Liu S, Miao J, Guo Y, Wu N, Jia D. Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Drug Des Devel Ther 2019; 13:2331-2342. [PMID: 31371925 PMCID: PMC6635826 DOI: 10.2147/dddt.s194753] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/22/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Mitochondria permeability transition pore (MPTP) is an important therapeutic target for myocardial ischemia-reperfusion injury (MIRI). Lycopene (LP) is a potent antioxidant extracted from the mature fruits of plants and has been reported to protect against MIRI; however, its mechanism of action has yet to be completely elucidated. The present study aimed to investigate the role of MPTP in the cardioprotection of LP. METHODS H9c2 cells were pretreated with LP for 12 hrs and were subjected to 12-hr hypoxia/1-hr re-oxygenation, and cell viability was measured by a Cell Counting Kit-8 (CCK-8) assay. Male rats were subsequently intraperitoneally injected with LP for 5 consecutive days. At 24 hrs following the final injection, the rat hearts were isolated and subjected to 30-min ischemia/120-min reperfusion using Langendorff apparatus. The myocardial infarct size was measured by a TTC stain. Opening of the MPTP was induced by CaCl2 and measured by colorimetry. The change in mitochondrial transmembrane potential (ΔΨm) was observed under a fluorescence microscope. Apoptosis was measured by flow cytometry and a TUNEL stain, and the expression of apoptosis-related proteins was detected by Western blotting. RESULTS LP pretreatment significantly increased cell viability, reduced myocardial infarct size and decreased the apoptosis rate. In addition, opening and the decrease of ΔΨm were attenuated by LP and the expressions of cytochrome c, APAF-1, cleaved caspase-9 and cleaved caspase-3 were also decreased by LP. However, these beneficial effects on MIRI were abrogated by the MPTP opener (atractyloside). Furthermore, LP treatment markedly increased Bcl-2 expression, decreased Bax expression and the Bax/Bcl-2 ratio. CONCLUSION The results of the present study demonstrated that LP protects against MIRI by inhibiting MPTP opening, partly through the modulation of Bax and Bcl-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nan Wu
-
The Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | | |
Collapse
|
9
|
Sheng X, Zhou Y, Wang H, Shen Y, Liao Q, Rao Z, Deng F, Xie L, Yao C, Mao H, Liu Z, Peng M, Long Y, Zeng Y, Xue L, Gao N, Kong Y, Zhou X. Establishment and characterization of a radiation-induced dermatitis rat model. J Cell Mol Med 2019; 23:3178-3189. [PMID: 30821089 PMCID: PMC6484338 DOI: 10.1111/jcmm.14174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022] Open
Abstract
Radiation‐induced dermatitis is a common and serious side effect after radiotherapy. Current clinical treatments cannot efficiently or fully prevent the occurrence of post‐irradiation dermatitis, which remains a significant clinical problem. Resolving this challenge requires gaining a better understanding of the precise pathophysiology, which in turn requires establishment of a suitable animal model that mimics the clinical condition, and can also be used to investigate the mechanism and explore effective treatment options. In this study, a single dose of 90 Gy irradiation to rats resulted in ulceration, dermal thickening, inflammation, hair follicle loss, and sebaceous glands loss, indicating successful establishment of the model. Few hair follicle cells migrated to form epidermal cells, and both the severity of skin fibrosis and hydroxyproline levels increased with time post‐irradiation. Radiation damaged the mitochondria and induced both apoptosis and autophagy of the skin cells. Therefore, irradiation of 90 Gy can be used to successfully establish a rat model of radiation‐induced dermatitis. This model will be helpful for developing new treatments and gaining a better understanding of the pathological mechanism of radiation‐induced dermatitis. Specifically, our results suggest autophagy regulation as a potentially effective therapeutic target.
Collapse
Affiliation(s)
- Xiaowu Sheng
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yue Zhou
- Department of Radiation Oncology, Key Laboratory of Translational Radiation Oncology, Changsha, Hunan Province, China.,Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Radiation Oncology, Key Laboratory of Translational Radiation Oncology, Changsha, Hunan Province, China.,Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yongyi Shen
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Qianjin Liao
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Zhen Rao
- Department of Head and Neck Surgery, The First People's Hospital of Changde City, Changsha, Hunan Province, China
| | - Feiyan Deng
- University of South China, Hengyang, Hunan Province, China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Luyuan Xie
- University of South China, Hengyang, Hunan Province, China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Chaoling Yao
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Huangxing Mao
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Zhiyan Liu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Mingjing Peng
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Ying Long
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yong Zeng
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Lei Xue
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Nina Gao
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Yu Kong
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Zhou
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2018; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
11
|
Lynnyk A, Lunova M, Jirsa M, Egorova D, Kulikov A, Kubinová Š, Lunov O, Dejneka A. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation. BIOMEDICAL OPTICS EXPRESS 2018; 9. [PMID: 29541521 PMCID: PMC5846531 DOI: 10.1364/boe.9.001283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses.
Collapse
Affiliation(s)
- Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | | | | | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| |
Collapse
|
12
|
Ying J, Xu J, Shen L, Mao Z, Liang J, Lin S, Yu X, Pan R, Yan C, Li S, Bao Q, Li P. The Effect of Sodium Fluoride on Cell Apoptosis and the Mechanism of Human Lung BEAS-2B Cells In Vitro. Biol Trace Elem Res 2017; 179:59-69. [PMID: 28111709 DOI: 10.1007/s12011-017-0937-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
Sodium fluoride (NaF) is a source of fluoride ions used in many applications. Previous studies found that NaF suppressed the proliferation of osteoblast MC3T3 E1 cells and induced the apoptosis of chondrocytes. However, little is known about the effects of NaF on human lung BEAS-2B cells. Therefore, we investigated the mode of cell death induced by NaF and its underlying molecular mechanisms. BEAS-2B cells were treated with NaF at concentrations of 0, 0.25, 0.5, 1.0, 2.0, and 4.0 mmol/L. Cell viability decreased and apoptotic cells significantly increased as concentrations of NaF increased over specific periods of time. The IC50 of NaF was 1.9 and 0.9 mM after 24 and 48 h, respectively. The rates of apoptosis increased from 4.8 to 37.7% after NaF exposure. HE staining, electron microscopy, and single cell gel electrophoresis revealed that morphological changes of apoptosis increased with exposure concentrations. RT-PCR and Western blotting were used to detect the apoptotic pathways. The expressions of bax, caspase-3, caspase-9, p53, and the cytoplasmic CytC of the NaF groups increased, while bcl-2 and mitochondrial CytC decreased compared with that of the control group (P < 0.05). Further, the fluorescence intensities of ROS in the NaF groups were higher than those in the control group, and the membrane potential of mitochondria in the NaF group was significantly lower than that of the control group (P < 0.05). These findings suggested that NaF induced apoptosis in the BEAS-2B cells through mitochondria-mediated signal pathways. Our study provides the theoretical foundation and experimental basis for exploring the mechanisms of human lung epithelial cell damage and cytotoxicity induced by fluorine.
Collapse
Affiliation(s)
- Jun Ying
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710000, China
- School of Renji, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China
- School of Renji, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liping Shen
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China
- School of Renji, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhijie Mao
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China
- School of Renji, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jingchen Liang
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China
- School of Renji, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuangxiang Lin
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China
- School of Renji, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyan Yu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China
- School of Renji, Wenzhou Medical University, Wenzhou, 325035, China
| | | | - Chunxia Yan
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Shengbin Li
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Qiyu Bao
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Peizhen Li
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
13
|
Suppression of Inner Mitochondrial Membrane Peptidase 2-Like (IMMP2L) Gene Exacerbates Hypoxia-Induced Neural Death Under High Glucose Condition. Neurochem Res 2017; 42:1504-1514. [PMID: 28316022 DOI: 10.1007/s11064-017-2207-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 10/19/2022]
Abstract
It is known that diabetes hyperglycemia enhances cerebral ischemia and reperfusion induced damage. We have previously shown that mutation of inner mitochondrial membrane peptidase 2-like (IMMP2L) increases brain damage caused by transient cerebral ischemia. In this study, we attempt to examine the impact of IMMP2L deficiency on an in vitro model that mimics the diabetic hypoxic conditions. Normal IMMP2L wild type and IMMP2L gene deleted HT22 cells were cultured. Hypoxia was induced under high glucose and acidic conditions with 4 h of oxygen deprivation. Cell viability was assessed by CCK-8 assay and cell death was determined using Annexin V/7-AAD assay. Superoxide production was measured using dihydroethidium staining and mitochondrial membrane potential was detected using JC-1 probe. Suppression of IMMP2L reduced the cell viability, increased the ROS production and decreased the mitochondrial membrane potential. In conclusion, our study demonstrated that deficiency of IMMP2L in cells, cultured under hypoxia, high glucose and acidic conditions, exacerbated neuronal death under a condition that mimics in vivo cerebral ischemia in diabetic condition.
Collapse
|
14
|
de Oliveira MR, da Costa Ferreira G, Brasil FB, Peres A. Pinocembrin Suppresses H2O2-Induced Mitochondrial Dysfunction by a Mechanism Dependent on the Nrf2/HO-1 Axis in SH-SY5Y Cells. Mol Neurobiol 2017; 55:989-1003. [DOI: 10.1007/s12035-016-0380-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/30/2016] [Indexed: 01/23/2023]
|
15
|
Tanshinone I Attenuates the Effects of a Challenge with H 2O 2 on the Functions of Tricarboxylic Acid Cycle and Respiratory Chain in SH-SY5Y Cells. Mol Neurobiol 2016; 54:7858-7868. [PMID: 27848206 DOI: 10.1007/s12035-016-0267-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Tanshinone I (T-I; C18H12O3) is a cytoprotective molecule. T-I has been viewed as an antioxidant and anti-inflammatory agent exerting neuroprotective actions in several experimental models. Nonetheless, the mechanisms underlying the beneficial effects of T-I in mammalian cells are not completely understood yet. Mitochondrial dysfunction has been associated with several neurodegenerative diseases which remain uncured. Therefore, there is increasing interest in compounds that may be used in the prevention or treatment of those pathologies. Since T-I presents an antioxidant capacity, we investigated here whether and how this compound would prevent mitochondrial impairment in SH-SY5Y cells exposed to hydrogen peroxide (H2O2), which has been involved in the triggering of deleterious effects in several experimental models mimicking neurodegenerative processes. We found that a pretreatment with T-I at 2.5 μM for 2 h suppressed the pro-oxidant effects of H2O2 on mitochondrial membranes. Furthermore, T-I prevented the H2O2-elicited inhibition of the tricarboxylic acid (TCA) cycle enzymes (aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase) and of the mitochondrial complexes I and V. T-I also abrogated the mitochondrial depolarization and the mitochondrial failure to produce ATP in cells exposed to H2O2. T-I upregulated the levels of reduced glutathione (GSH) in the mitochondria of SH-SY5Y cells. T-I induced mitochondrial protection, at least in part, by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), because silencing of Nrf2 by using small interference RNA (SiRNA) blocked these effects. Therefore, T-I afforded mitochondrial protection (involving both redox and bioenergetics-related aspects) against H2O2 through the activation of Nrf2.
Collapse
|
16
|
Swomley AM, Triplett JC, Keeney JT, Warrier G, Pearson KJ, Mattison JA, de Cabo R, Cai J, Klein JB, Butterfield DA. Comparative proteomic analyses of the parietal lobe from rhesus monkeys fed a high-fat/sugar diet with and without resveratrol supplementation, relative to a healthy diet: Insights into the roles of unhealthy diets and resveratrol on function. J Nutr Biochem 2016; 39:169-179. [PMID: 27840293 DOI: 10.1016/j.jnutbio.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
A diet consisting of a high intake of saturated fat and refined sugars is characteristic of a Western-diet and has been shown to have a substantial negative effect on human health. Expression proteomics were used to investigate changes to the parietal lobe proteome of rhesus monkeys consuming either a high fat and sugar (HFS) diet, a HFS diet supplemented with resveratrol (HFS+RSV), or a healthy control diet for 2 years. Here we discuss the modifications in the levels of 12 specific proteins involved in various cellular systems including metabolism, neurotransmission, structural integrity, and general cellular signaling following a nutritional intervention. Our results contribute to a better understanding of the mechanisms by which resveratrol functions through the up- or down-regulation of proteins in different cellular sub-systems to affect the overall health of the brain.
Collapse
Affiliation(s)
- Aaron M Swomley
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jeriel T Keeney
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Govind Warrier
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Kevin J Pearson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Molecular and Biomedical Pharmacology and Nutrition, University of Kentucky, Lexington, KY 40536, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jian Cai
- Proteomics Center, University of Louisville, Louisville, KY 40202, USA
| | - Jon B Klein
- Proteomics Center, University of Louisville, Louisville, KY 40202, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
17
|
de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Gama CS, Bosco SMD. Carnosic Acid Protects Mitochondria of Human Neuroblastoma SH-SY5Y Cells Exposed to Paraquat Through Activation of the Nrf2/HO-1Axis. Mol Neurobiol 2016; 54:5961-5972. [DOI: 10.1007/s12035-016-0100-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
|
18
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
19
|
Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3928714. [PMID: 26881024 PMCID: PMC4736365 DOI: 10.1155/2016/3928714] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Oxidative stress results from a disturbed balance between oxidation and antioxidant systems. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) may be either harmful or beneficial to the cells. Ion channels are transmembrane proteins that participate in a large variety of cellular functions and have been implicated in the development of a variety of diseases. A significant amount of the available drugs in the market targets ion channels. These proteins have sulfhydryl groups of cysteine and methionine residues in their structure that can be targeted by ROS and RNS altering channel function including gating and conducting properties, as well as the corresponding signaling pathways associated. The regulation of ion channels by ROS has been suggested to be associated with some pathological conditions including liver diseases. This review focuses on understanding the role and the potential association of ion channels and oxidative stress in liver diseases including fibrosis, alcoholic liver disease, and cancer. The potential association between ion channels and oxidative stress conditions could be used to develop new treatments for major liver diseases.
Collapse
|
20
|
Andrabi SS, Parvez S, Tabassum H. Melatonin and Ischemic Stroke: Mechanistic Roles and Action. Adv Pharmacol Sci 2015; 2015:384750. [PMID: 26435711 PMCID: PMC4575994 DOI: 10.1155/2015/384750] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022] Open
Abstract
Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
21
|
Chen LY, Yang B, Zhou L, Ren F, Duan ZP, Ma YJ. Promotion of mitochondrial energy metabolism during hepatocyte apoptosis in a rat model of acute liver failure. Mol Med Rep 2015; 12:5035-41. [PMID: 26135512 PMCID: PMC4581801 DOI: 10.3892/mmr.2015.4029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/08/2015] [Indexed: 12/27/2022] Open
Abstract
Hepatocyte apoptosis and energy metabolism in mitochondria have an important role in the mechanism of acute liver failure (ALF). However, data on the association between apoptosis and the energy metabolism of hepatocytes are lacking. The current study assessed the activity of several key enzymes in mitochondria during ALF, including citrate synthase (CS), carnitine palmitoyltransferase-1 (CPT-1) and cytochrome c oxidase (COX), which are involved in hepatocyte energy metabolism. A total of 40 male Sprague-Dawley rats were divided into five groups and administered D-galactosamine and lipopolysaccharide to induce ALF. Hepatic pathology and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling examinations indicated that hepatocyte apoptosis was observed at 4 h and increased 8 h after ALF. Hepatocyte necrosis appeared at 12 h and was significantly higher at 24 h with inflammatory cell invasion. The results measured by electron microscopy indicated that ultrastructural changes in mitochondria began at 4 h and the mitochondrial outer membrane was completely disrupted at 24 h resulting in mitochondrial collapse. The expression of CS, CPT-1 and COX was measured and analyzed using assay kits. The activity and protein expression of CS, CPT-1 and COX began to increase at 4 h, reached a peak at 8 h and decreased at 12 h during ALF. The activities of CS, CPT-1 and COX were enhanced during hepatocyte apoptosis suggesting that these enzymes are involved in the initiation and development of ALF. Therefore, these results demonstrated that energy metabolism is important in hepatocyte apoptosis during ALF and hepatocyte apoptosis is an active and energy-consuming procedure. The current study on how hepatocyte energy metabolism affects the transmission of death signals may provide a basis for the early diagnosis and development of an improved therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Li-Yan Chen
- The Second Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Baoshan Yang
- The Second Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Li Zhou
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Ren
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Zhong-Ping Duan
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Ying-Ji Ma
- The Fourth Department of Infectious Diseases, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
22
|
Saenz GJ, Hovanessian R, Gisis AD, Medh RD. Glucocorticoid-mediated co-regulation of RCAN1-1, E4BP4 and BIM in human leukemia cells susceptible to apoptosis. Biochem Biophys Res Commun 2015; 463:1291-6. [PMID: 26102033 DOI: 10.1016/j.bbrc.2015.06.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
Abstract
Glucocorticoids (GCs) are known to induce apoptosis of leukemia cells via gene regulatory changes affecting key pro-and anti-apoptotic genes. Three genes previously implicated in GC-evoked apoptosis in the CEM human T-cell leukemia model, RCAN1, E4BP4 and BIM, were studied in a panel of human lymphoid and myeloid leukemia cell lines. Of the two RCAN1 transcripts, the synthetic GC Dexamethasone (Dex) selectively upregulates RCAN1-1, but not RCAN1-4, in GC-susceptible Sup-B15, RS4;11, Kasumi-1 cells but not in GC-resistant Sup T1 and Loucy cells. E4BP4 and BIM regulation correlated with that of RCAN1-1. A putative GRE and four EBPREs were identified within 1500bp upstream from the transcription start site of RCAN1-1. GC-refractory CEM C1-15 cells sensitized to GC-evoked apoptosis by ectopic E4BP4 expression, CEM C1-15mE#3, showed restored RCAN1-1 upregulation, suggesting that RCAN1-1 is a downstream target of E4BP4. A model for coordinated regulation of RCAN1-1, E4BP4 and BIM, and their role in GC-evoked apoptosis is proposed.
Collapse
Affiliation(s)
- G Jonatan Saenz
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | - Rebeka Hovanessian
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | - Andrew D Gisis
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | - Rheem D Medh
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| |
Collapse
|
23
|
Guo Z, Liao Z, Huang L, Liu D, Yin D, He M. Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1. Eur J Pharmacol 2015; 761:245-53. [PMID: 26086862 DOI: 10.1016/j.ejphar.2015.05.056] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023]
Abstract
Mitochondria-mediated apoptosis is a critical mechanism of anoxia/ reoxygenation (A/R)-induced injury in cardiomyocytes. Kaempferol (Kae) is a natural polyphenol and a type of flavonoid, which has been demonstrated to protect myocardium against ischemia/reperfusion (I/R) injury. However, the mechanism is still not fully elucidated. We hypothesize that Kae may improve the mitochondrial function during I/R injury via a potential signal pathway. In this study, an in vitro I/R model was replicated on neonatal rat primary cardiomyocytes by A/R treatment. Cell viability was monitored by the 3-(4,5-dimethylthiazol- 2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay. The levels of intracellular reactive oxygen species, mitochondrial membrane potential (Δψm) and apoptosis were determined by flow cytometry. Protein expression was detected by Western Blotting. mPTP opening and the activity of caspase-3 were measured by colorimetric method. The results showed that Kae effectively enhanced the cell viability and decreased the LDH release in cardiomyocytes subjected to A/R injury. Kae reduced the A/R-induced reactive oxygen species generation, the loss of Δψm, and the release of cytochrome c from mitochondria into cytosol. Kae inhibited the A/R-stimulated mPTP opening and activation of caspase-3, and ultimate decrease in cardiomyocytes apoptosis. Furthermore, we found Kae up-regulated Human Silent Information Regulator Type 1 (SIRT1) expression, indicating SIRT1 signal pathway likely involved the cardioprotection of Kae. Sirtinol, a SIRT1 inhibitor, abolished the protective effect of Kae in cardiomyocytes subjected to A/R. Additionally, Kae significantly increased the expression of Bcl-2. Thus, we firstly demonstrate that Kae protects cardiomyocytes against A/R injury through mitochondrial pathway mediated by SIRT1.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Pharmacology & Molecular Therapeutics, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Zhangping Liao
- Department of Pharmacology & Molecular Therapeutics, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Liqing Huang
- Department of Pharmacology & Molecular Therapeutics, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Dan Liu
- Department of Pharmacology & Molecular Therapeutics, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine at the Second Affiliated Hospital, Nanchang University, Nanchang 330006, PR China
| | - Ming He
- Department of Pharmacology & Molecular Therapeutics, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China.
| |
Collapse
|
24
|
Huang CL, Chao CC, Lee YC, Lu MK, Cheng JJ, Yang YC, Wang VC, Chang WC, Huang NK. Paraquat Induces Cell Death Through Impairing Mitochondrial Membrane Permeability. Mol Neurobiol 2015; 53:2169-88. [DOI: 10.1007/s12035-015-9198-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
|
25
|
Testai L, Rapposelli S, Martelli A, Breschi M, Calderone V. Mitochondrial Potassium Channels as Pharmacological Target for Cardioprotective Drugs. Med Res Rev 2014; 35:520-53. [DOI: 10.1002/med.21332] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- L. Testai
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - S. Rapposelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - A. Martelli
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - M.C. Breschi
- Department of Pharmacy; University of Pisa; Pisa Italy
| | - V. Calderone
- Department of Pharmacy; University of Pisa; Pisa Italy
| |
Collapse
|
26
|
Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets? J Bioenerg Biomembr 2014; 47:89-99. [PMID: 25216534 PMCID: PMC4323516 DOI: 10.1007/s10863-014-9576-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022]
Abstract
The sustained integrity of the mitochondrial population of a cell is critical for maintained cell health, and disruption of that integrity is linked strongly to human disease, especially to the neurodegenerative diseases. These are appalling diseases causing untold levels of suffering for which treatment is woefully inadequate. Understanding the mechanisms that disturb mitochondrial homeostasis may therefore prove key to identification of potential new therapeutic pathways. Mechanisms causing mitochondrial dysfunction include the acute catastrophic loss of function caused by opening of the mitochondrial permeability transition pore (mPTP), which collapses bioenergetic function and initiates cell death. This is best characterised in ischaemic reperfusion injury, although it may also contribute to a number of other diseases. More insidious disturbances of mitochondrial homeostasis may result from impaired balance in the pathways that promote mitochondrial repair (biogenesis) and pathways that remove dysfunctional mitochondria (mitophagy). Impaired coordination between these processes is emerging as a key feature of a number of neurodegenerative and neuromuscular disorders. Here we review pathways that may prove to be valuable potential therapeutic targets, focussing on the molecular mechanisms that govern the coordination of these processes and their involvement in neurodegenerative diseases.
Collapse
|
27
|
Liu D, Yi B, Liao Z, Tang L, Yin D, Zeng S, Yao J, He M. 14-3-3γ protein attenuates lipopolysaccharide-induced cardiomyocytes injury through the Bcl-2 family/mitochondria pathway. Int Immunopharmacol 2014; 21:509-15. [PMID: 24957688 DOI: 10.1016/j.intimp.2014.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Previous studies have indicated that 14-3-3γ is upregulated by stress in LPS-induced cardiovascular injury. In this study, we investigated the interaction of 14-3-3γ and Bcl-2 family members in the control of the mitochondrial permeability transition (MPT) to test the hypothesis that abundant levels of 14-3-3γ can protect against LPS-induced injury via a Bcl-2 family/mitochondria pathway. The cardiomyocytes were treated with LPS (1mg l(-1)) for 6h; the interaction between 14-3-3γ and phospho-Bad(S112) was detected by co-immunoprecipitation (co-IP); the levels of Bcl-2 family members in the cytosolic and mitochondrial fractions were examined by Western blot; the apoptosis and mitochondrial membrane potential (ΔΨm) were detected by flow cytometry; and the mitochondrial permeability transition pore (mPTP) opening was tested by mitochondrial swelling. Our results revealed that LPS treatment results in cardiomyocyte injury, and these effects were significantly attenuated by pFLAG-14-3-3γ. Moreover, LPS treatment induced Bax translocation to the mitochondria, ΔΨm loss, mitochondrial swelling, and cytochrome c release, and pFLAG-14-3-3γ reversed these effects induced by LPS. Moreover, overexpressed 14-3-3γ protein could assist Bad(S112) phosphorylation and interact with it to form a complex, which might result in the disassociation of Bcl-2 from the Bad/Bcl-2 complex and its translocation from the cytosol to the mitochondria. Our data firstly confirmed that a high level of 14-3-3γ protects against LPS-induced cardiomyocyte injury likely through a pathway associated with the regulation of the subcellular localizations of Bcl-2 and Bad that results in the prevention of mPTP opening, the maintenance of ΔΨm, and ultimately the inhibition of apoptosis.
Collapse
Affiliation(s)
- Dan Liu
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Bo Yi
- 2nd Abdominal Surgery Department of JiangXi province tumor Hospital,Nanchang 330029, PR China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Lei Tang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang 330006, PR China
| | - Shu Zeng
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Jianguo Yao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, PR China.
| |
Collapse
|
28
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
29
|
Datler C, Pazarentzos E, Mahul-Mellier AL, Chaisaklert W, Hwang MS, Osborne F, Grimm S. CKMT1 regulates the mitochondrial permeability transition pore in a process that provides evidence for alternative forms of the complex. J Cell Sci 2014; 127:1816-28. [PMID: 24522192 PMCID: PMC3986677 DOI: 10.1242/jcs.140467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/08/2014] [Indexed: 12/23/2022] Open
Abstract
The permeability transition pore (PT-pore) mediates cell death through the dissipation of the mitochondrial membrane potential (ΔΨm). Because the exact composition of the PT-pore is controversial, it is crucial to investigate the actual molecular constituents and regulators of this complex. We found that mitochondrial creatine kinase-1 (CKMT1) is a universal and functionally necessary gatekeeper of the PT-pore, as its depletion induces mitochondrial depolarization and apoptotic cell death. This can be inhibited efficiently by bongkrekic acid, a compound that is widely used to inhibit the PT-pore. However, when the 'classical' PT-pore subunits cyclophilin D and VDAC1 are pharmacologically inhibited or their expression levels reduced, mitochondrial depolarization by CKMT1 depletion remains unaffected. At later stages of drug-induced apoptosis, CKMT1 levels are reduced, suggesting that CKMT1 downregulation acts to reinforce the commitment of cells to apoptosis. A novel high-molecular-mass CKMT1 complex that is distinct from the known CKMT1 octamer disintegrates upon treatment with cytotoxic drugs, concomitant with mitochondrial depolarization. Our study provides evidence that CKMT1 is a key regulator of the PT-pore through a complex that is distinct from the classical PT-pore.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefan Grimm
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
30
|
Abstract
PURPOSE Mycophenolic acid (MPA) is an immunosuppressive agent that controls noninfectious uveitis. Intravitreal MPA delivery may be a potential adjuvant therapy in patients who have to discontinue steroid or immunosuppressive systemic therapy because of side effects. The aims of this study are to evaluate the in vitro effects of MPA over human retinal pigment epithelium (ARPE-19) and human Muller cells (MIO M-1). METHODS ARPE-19 cells and MIO M-1 cells were exposed to 25, 50, and 100 µg/mL of MPA (Roche Bioscience, Palo Alto, CA) for 24 hours. Toxicity was evaluated by trypan blue dye-exclusion cell viability assay, caspase-3/7 apoptosis-related assay, and JC-1 mitochondrial membrane potential assay. RESULTS The MPA (25 µg/mL and 50 µg/mL) did not cause reduction in cell viability or significant change in caspase-3/7 activity in both cell lines tested. Mycophenolic acid (100 µg/mL) caused a significant decrease in cell viability (P < 0.01) and higher caspase-3/7 activity (P < 0.05) in both cell lines compared with untreated cells. The JC-1 mitochondrial membrane potential did not show statistically significant differences for both cell lines and all concentration tested when compared with untreated controls (P > 0.05). CONCLUSION Intraocular delivery may be a potential alternative for the treatment of noninfectious uveitis, either by intravitreal injection or sustained-release drug-delivery systems, in doses of 50 µg/mL or lower.
Collapse
|
31
|
Chen J, Liao W, Gao W, Huang J, Gao Y. Intermittent hypoxia protects cerebral mitochondrial function from calcium overload. Acta Neurol Belg 2013; 113:507-13. [PMID: 24122478 DOI: 10.1007/s13760-013-0220-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
Hypoxia leads to Ca(2+) overload and results in mitochondrial uncoupling, decreased ATP synthesis, and neuronal death. Inhibition of mitochondrial Ca(2+) overload protects mitochondrial function after hypoxia. The present study was aimed to investigate the effect of intermittent hypoxia on mitochondrial function and mitochondrial tolerance to Ca(2+) overload. Wistar rats were divided into control and intermittent hypoxia (IH) groups. The IH group was subject to hypoxia for 4 h daily in a hypobaric cabin (5,000 m) for 7 days. Brain mitochondria were isolated on day 7 following hypoxia. The baseline mitochondrial functions, such as ST3, ST4, and respiratory control ratio (RCR = ST3/ST4), were measured using a Clark-type oxygen electrode. Mitochondrial adenine nucleotide concentrations were measured by HPLC. Mitochondrial membrane potential was determined by measuring rhodamine 123 (Rh-123) fluorescence in the absence and presence of high Ca(2+) concentration (0.1 M), which simulates Ca(2+) overload. Our results revealed that IH did not affect mitochondrial respiratory functions, but led to a reduction in AMP and an increase in ADP concentrations in mitochondria. Both control and IH groups demonstrated decreased mitochondrial membrane potential in the presence of high Ca(2+) (0.1 M), while the IH group showed a relative higher mitochondrial membrane potential. These results indicated that the neuroprotective effect of intermittent hypoxia was resulted partly from preserving mitochondrial membrane potential, and increasing mitochondrial tolerance to high calcium levels. The increased ADP and decreased AMP in mitochondria following intermittent hypoxia may be a mechanism underlying this protection.
Collapse
|
32
|
Xu Y, Kang J, Yuan Z, Li H, Su J, Li Y, Kong X, Zhang H, Wang W, Sun L. Suppression of CLIC4/mtCLIC enhances hydrogen peroxide-induced apoptosis in C6 glioma cells. Oncol Rep 2013; 29:1483-91. [PMID: 23380911 DOI: 10.3892/or.2013.2265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022] Open
Abstract
CLIC4/mtCLIC (referred to here as CLIC4) is one of the seven-member family of chloride intracellular channels (CLIC). CLIC4 localizes to the mitochondria, nucleus, cytoplasm and other organellular compartments and participates in the apoptotic response to stress. However, the role of CLIC4 in oxidative stress and apoptosis is not well understood. In this study, we showed the important role of CLIC4 in apoptosis of C6 glioma cells induced by hydrogen peroxide (H2O2). Our results showed that CLIC4 protein expression was upregulated following H2O2-induced C6 cell apoptosis. The upregulation of CLIC4 protein expression was paralleled with an increased Bax/Bcl-2 ratio, cytochrome c and cleaved caspase-3 protein expression upon H2O2-induced C6 cell apoptosis. Suppression of CLIC4 expression by RNA interference enhanced cell apoptosis, but the ratio of Bax/Bcl-2 was not involved in this process. Dissipation of mitochondrial membrane potential and nuclear translocation of CLIC4 were involved in the activation of apoptosis induced by H2O2. Our data indicate that CLIC4 protein may be a key element in the apoptotic response to oxidative stress.
Collapse
Affiliation(s)
- Ye Xu
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sharma V, Bell RM, Yellon DM. Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin Pharmacother 2012; 13:1153-75. [PMID: 22594845 DOI: 10.1517/14656566.2012.685163] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) (secondary to lethal ischemia-reperfusion [IR]) contributes to much of the mortality and morbidity from ischemic heart disease. Currently, the treatment for AMI is early reperfusion; however, this itself contributes to the final myocardial infarct size, in the form of what has been termed 'lethal reperfusion injury'. Over the last few decades, the discovery of the phenomena of ischemic preconditioning and postconditioning, as well as remote preconditioning and remote postconditioning, along with significant advances in our understanding of the cardioprotective pathways underlying these phenomena, have provided the possibility of successful mechanical and pharmacological interventions against reperfusion injury. AREAS COVERED This review summarizes the evidence from clinical trials evaluating pharmacological agents as adjuncts to standard reperfusion therapy for ST-elevation AMI. EXPERT OPINION Reperfusion injury pharmacotherapy has moved from bench to bedside, with clinical evaluation and ongoing clinical trials providing us with valuable insights into the shortcomings of current research in establishing successful treatments for reducing reperfusion injury. There is a need to address some key issues that may be leading to lack of translation of cardioprotection seen in basic models to the clinical setting. These issues are discussed in the Expert opinion section.
Collapse
Affiliation(s)
- Vikram Sharma
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, UK
| | | | | |
Collapse
|
34
|
Moreno AJM, Vicente JA. Use of a calcium-sensitive electrode for studies on mitochondrial calcium transport. Methods Mol Biol 2012; 810:207-17. [PMID: 22057569 DOI: 10.1007/978-1-61779-382-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Ca(2+)-sensitive electrode as a practical approach is used to follow Ca(2+) changes in the medium and particularly useful to study mitochondrial Ca(2+) uptake (or release); this method permits the continuous recording of Ca(2+) movements through the mitochondrial inner membrane. In this chapter, it is described how to prepare a Ca(2+)-sensitive electrode, and its application on mitochondrial studies with emphasis on the mitochondrial permeability transition.
Collapse
Affiliation(s)
- António J M Moreno
- Department of Life Sciences, IMAR, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal.
| | | |
Collapse
|
35
|
Relationship between the Affinity of PEO-PPO-PEO Block Copolymers for Biological Membranes and Their Cellular Effects. Pharm Res 2012; 29:1908-18. [DOI: 10.1007/s11095-012-0716-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
|
36
|
Huang CL, Lee YC, Yang YC, Kuo TY, Huang NK. Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction. Toxicol Lett 2012; 209:203-10. [PMID: 22245251 DOI: 10.1016/j.toxlet.2011.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/31/2022]
Abstract
Paraquat (PQ) was demonstrated to induce dopaminergic neuron death and is used as a Parkinson's disease (PD) mimetic; however, its mechanism remains contradictory. Alternatively, minocycline is a second-generation tetracycline and is undergoing clinical trials for treating PD with an unresolved mechanism. We thus investigated the molecular mechanism of minocycline in preventing PQ-induced cytotoxicity. In this study, minocycline was effective in preventing PQ-induced apoptotic cell death, which involves the cleavages of poly (ADP-ribose) polymerase (PARP) and caspase 3 and increased fluorescence intensity of annexin V-FITC. In addition, PQ also quickly induced alterations of unfolded protein responses (UPRs) and subsequently dysfunction of the mitochondria (such as the decrease in membrane potential and increase in membrane permeability and superoxide formation). Finally, the mechanism of minocycline in preventing PQ-induced apoptosis might be mediated by attenuating endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which respectively results in caspase-12 activation and the release of H2O2, HtrA2/Omi, and Smac/Diablo. Thus, minocycline could possibly be used to treat other neurodegenerative disorders with similar pathologic mechanisms.
Collapse
Affiliation(s)
- Chuen-Lin Huang
- Medical Research Center, Cardinal Tien Hospital, Hsintien, New Taipei City, Taiwan, ROC
| | | | | | | | | |
Collapse
|
37
|
Field MG, Yang D, Bian ZM, Petty HR, Elner VM. Retinal flavoprotein fluorescence correlates with mitochondrial stress, apoptosis, and chemokine expression. Exp Eye Res 2011; 93:548-55. [PMID: 21767533 PMCID: PMC3206137 DOI: 10.1016/j.exer.2011.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 12/31/2022]
Abstract
Oxidative stress and mitochondrial dysfunction occur before apoptosis in many retinal diseases. Under these conditions, a larger fraction of flavoproteins become oxidized and, when excited by blue-light, emit green flavoprotein fluorescence (FPF). In this study, we evaluated the utility of FPF as an early indicator of mitochondrial stress, pre-apoptotic cellular instability, and apoptosis of human retinal pigment epithelial (HRPE) cells subjected to hydrogen peroxide (H(2)O(2)) or monocytes (unstimulated or interferon-γ-stimulated) in vitro and of freshly-isolated pieces of human and rat neural retina subjected to H(2)O(2)ex vivo. Increased FPF of HRPE cells exposed to H(2)O(2) correlated with reduced mitochondrial membrane potential (ΔΨm) and increased apoptosis in a time- and dose-dependent manner. HRPE cells co-cultured with monocytes had increased FPF that correlated in a time-dependent manner with reduced ΔΨm, increased apoptosis, and early expression of pro-inflammatory chemokines, interleukin-8 (IL8) and monocyte chemotactic factor-1 (MCP1), which are known to be induced by oxidative stress. Increased FPF, reduced ΔΨm, and upregulation of IL8 and MCP1 occurred as early as 1-2 h after exposure to stressors, while apoptosis did not occur in HRPE cells until later time points. The antioxidant, N-acetyl-cysteine (NAC), inhibited increased FPF and apoptosis of HRPE cells subjected to H(2)O(2). Increased FPF of human and rat neural retina also correlated with increased apoptosis. This study suggests that FPF is a useful measure of mitochondrial function in retinal cells and tissues and can detect early mitochondrial dysfunction that may precede apoptosis.
Collapse
Affiliation(s)
- Matthew G. Field
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Zong-Mei Bian
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Howard R. Petty
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Victor M. Elner
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
38
|
Delayed ischemic postconditioning protects hippocampal CA1 neurons by preserving mitochondrial integrity via Akt/GSK3β signaling. Neurochem Int 2011; 59:749-58. [PMID: 21867737 DOI: 10.1016/j.neuint.2011.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022]
Abstract
Delayed ischemic postconditioning (Post C), which involves a brief ischemia followed by reperfusion 2 days after 8-10min global cerebral ischemia (GCI), has been shown to exert a remarkable protection of the vulnerable hippocampal CA1 region of the brain and attenuation of behavioral deficits, although the mechanisms remain poorly understood. The purpose of the current study was to explore the effect of Post C upon mitochondrial integrity, cytochrome c release and Bax translocation as a potential key mechanism for Post C protection of the critical hippocampal CA1 region neurons. The results of the study revealed that ischemic Post C (3min) administered 2 days after 8-min GCI exerted a robust preservation from GCI injury, as evidenced by the increase of NeuN-positive and the decrease of TUNEL-positive cells, as well as morphological features of mitochondrial integrity in the hippocampal CA1 region. We also found that Post C significantly blocked inner mitochondrial membrane potential depolarization, as shown by JC-1 staining, and attenuates cytochrome c release and Bax translocation induced by GCI. Pre-treatment of the PI3K inhibitor LY294002, 20min prior to Post C, significantly attenuated Post C-induced elevation of p-Akt and p-GSK3β, as well as prevented Post C enhancement of mitochondrial integrity and Post C neuroprotection. The results suggest that phosphorylation of Akt and subsequent inactivation of GSK3β signaling is critical in mediating Post C beneficial effects upon mitochondrial integrity, function and neuroprotection following GCI injury.
Collapse
|
39
|
Ma Y, Mehta SL, Lu B, Li PA. Deficiency in the inner mitochondrial membrane peptidase 2-like (Immp21) gene increases ischemic brain damage and impairs mitochondrial function. Neurobiol Dis 2011; 44:270-6. [PMID: 21824519 DOI: 10.1016/j.nbd.2011.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/15/2011] [Accepted: 06/26/2011] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction plays an important role in mediating ischemic brain damage. Immp2l is an inner mitochondrial membrane peptidase that processes mitochondrial protein cytochrome c1 (Cyc1). Homozygous mutation of Immp2l (Immp2l(Tg(Tyr)979Ove) or Immp2l(-/-)) elevates mitochondrial membrane potential, increases superoxide (O(2)(-)) production in the brain and impairs fertility. The objectives of this study are to explore the effects of heterozygous mutation of Immp2l (Immp2l(+/-)) on ischemic outcome and to determine the influence of Immp2l deficiency on brain mitochondria after stroke. Male Immp2l(+/-) and wild-type (WT) mice were subjected to 1-h focal cerebral ischemia. Their brains were harvested after 5 and 24-h of reperfusion. The results showed that infarct volume and DNA oxidative damage significantly increased in the Immp2l(+/-) mice. There were no obvious cerebral vasculature abnormalities between the two types of mice viewed by Indian ink perfusion. The increased damage in Immp2l(+/-) mice was associated with early increase in O(2)(-) production. Mitochondrial respiratory rate, total mitochondrial respiratory capacity and mitochondrial respiratory complex activities were decreased at 5-h of recirculation in Immp2l(+/-) mice compared to WT mice. Our results suggest that Immp2l deficiency increases ischemic brain damage by enhancing O(2)(-) production and damaging mitochondrial functional performance.
Collapse
Affiliation(s)
- Yi Ma
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | |
Collapse
|
40
|
Peixoto PM, Dejean LM, Kinnally KW. The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration. Mitochondrion 2011; 12:14-23. [PMID: 21406252 DOI: 10.1016/j.mito.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/23/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Mitochondria communicate with the rest of the cell through channels located in their inner and outer membranes. Most of the time, the message is encoded by the flow of anions and cations e.g., through VDAC and PTP, respectively. However, proteins are also both imported and exported across the mitochondrial membranes e.g., through TOM and MAC, respectively. Transport through mitochondrial channels is exquisitely regulated and controls a myriad of processes; from energy production to cell death. Here, we examine the role of some of the mitochondrial channels involved in neurodegeneration, ischemia-reperfusion injury and cancer in the context of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Pablo M Peixoto
- New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, United States
| | | | | |
Collapse
|
41
|
Peixoto PM, Lue JK, Ryu SY, Wroble BN, Sible JC, Kinnally KW. Mitochondrial apoptosis-induced channel (MAC) function triggers a Bax/Bak-dependent bystander effect. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:48-54. [PMID: 21224042 DOI: 10.1016/j.ajpath.2010.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/20/2010] [Accepted: 09/14/2010] [Indexed: 02/08/2023]
Abstract
Collateral spread of apoptosis to nearby cells is referred to as the bystander effect, a process that is integral to tissue homeostasis and a challenge to anticancer therapies. In many systems, apoptosis relies on permeabilization of the mitochondrial outer membrane to factors such as cytochrome c and Smac/DIABLO. This permeabilization occurs via formation of a mitochondrial apoptosis-induced channel (MAC) and was mimicked here by single-cell microinjection of cytochrome c into Xenopus laevis embryos. Waves of apoptosis were observed in vivo from the injected to the neighboring cells. This finding indicates that a death signal generated downstream of cytochrome c release diffused to neighboring cells and ultimately killed the animals. The role of MAC in bystander effects was then assessed in mouse embryonic fibroblasts that did or did not express its main components, Bax and/or Bak. Exogenous expression of green fluorescent protein-Bax triggered permeabilization of the outer membrane and apoptosis in these cells. Time-lapse videos showed that neighboring cells also underwent apoptosis, but expression of Bax and/or Bak was essential to this effect, because no bystanders were observed in cells lacking both of these MAC components. These results may guide development of novel therapeutic strategies to selectively eliminate tumors or minimize the size of tissue injury in degenerative or traumatic cell death.
Collapse
Affiliation(s)
- Pablo M Peixoto
- Department of Basic Sciences, New York University College of Dentistry, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kinnally KW, Peixoto PM, Ryu SY, Dejean LM. Is mPTP the gatekeeper for necrosis, apoptosis, or both? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:616-22. [PMID: 20888866 DOI: 10.1016/j.bbamcr.2010.09.013] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 02/01/2023]
Abstract
Permeabilization of the mitochondrial membranes is a crucial step in apoptosis and necrosis. This phenomenon allows the release of mitochondrial death factors, which trigger or facilitate different signaling cascades ultimately causing the execution of the cell. The mitochondrial permeability transition pore (mPTP) has long been known as one of the main regulators of mitochondria during cell death. mPTP opening can lead to matrix swelling, subsequent rupture of the outer membrane, and a nonspecific release of intermembrane space proteins into the cytosol. While mPTP was purportedly associated with early apoptosis, recent observations suggest that mitochondrial permeabilization mediated by mPTP is generally more closely linked to events of late apoptosis and necrosis. Mechanisms of mitochondrial membrane permeabilization during cell death, involving three different mitochondrial channels, have been postulated. These include the mPTP in the inner membrane, and the mitochondrial apoptosis-induced channel (MAC) and voltage-dependent anion-selective channel (VDAC) in the outer membrane. New developments on mPTP structure and function, and the involvement of mPTP, MAC, and VDAC in permeabilization of mitochondrial membranes during cell death are explored. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Kathleen W Kinnally
- New York University College of Dentistry, Department Basic Sciences 345 East 24th Street, New York, NY 10010, USA
| | | | | | | |
Collapse
|