1
|
Sharma V, Sharma P, Singh TG. Mechanistic insights on the role of Nrf-2 signalling in Huntington's disease. Neurol Sci 2025; 46:593-604. [PMID: 39392523 DOI: 10.1007/s10072-024-07802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder affecting individuals worldwide. It is characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. The pathogenesis of HD involves oxidative stress, neuroinflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor regulating cellular responses to redox imbalance and inflammation, has emerged as a potential target for therapeutic intervention. METHODS Through the use of a number of different search engines like Scopus, PubMed, Elsevier and Bentham, a literature review was carried out with the keywords 'Huntington's Disease, 'Pathology of HD' and 'Nrf2 signalling pathway'. Using the keywords that were given above, this review was carried out in order to collect the most recent publications and gain an understanding of the breadth of the extensive research that has been conducted on the role of Nrf2 in HD pathogenesis. RESULTS Oxidative stress and neuroinflammation significantly contribute to HD progression. Activation of Nrf2 offers neuroprotection by enhancing anti-oxidant defense mechanisms. Furthermore, several signaling pathways, play crucial roles in HD pathophysiology. Pharmacological modulation of these pathways through selective inhibitors or agonists shows promise for the development of new therapeutic strategies. CONCLUSION The various downstream pathways such as extracellular signal-related kinase (ERK), phosphoinositide 3-Kinase (PI3-K), 5'-AMP-activated protein kinase (AMPK), Sirtuins, Mitogen-activated protein kinases (MAPK) plays a role in alleviating pathophysiology of HD. Diverse reports of these studies demonstrated PI3-K/AMPK/ERK/Sirtuins activators and MAPK inhibitors as encouraging targets in alleviating HD pathophysiology.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
3
|
Hamzeh O, Rabiei F, Shakeri M, Parsian H, Saadat P, Rostami-Mansoor S. Mitochondrial dysfunction and inflammasome activation in neurodegenerative diseases: Mechanisms and therapeutic implications. Mitochondrion 2023; 73:S1567-7249(23)00087-9. [PMID: 39492438 DOI: 10.1016/j.mito.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/05/2024]
Abstract
Impaired mitochondrial function is crucial to the pathogenesis of several neurodegenerative diseases. It causes the release of mitochondrial DNA (mtDNA), mitochondrial reactive oxygen species (mtROS), ATP, and cardiolipin, which activate the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. NLRP3 inflammasome is an important innate immune system element contributing to neuroinflammation and neurodegeneration. Therefore, targeting the NLRP3 inflammasome has become an interesting therapeutic approach for treating neurodegenerative diseases. This review describes the role of mitochondrial abnormalities and over-activated inflammasomes in the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Friedrich ataxia (FRDA). We also discuss the therapeutic strategies focusing on signaling pathways associated with inflammasome activation, which potentially alleviate neurodegenerative symptoms and impede disease progression.
Collapse
Affiliation(s)
- Olia Hamzeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Shakeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Bolshakova OI, Borisenkova AA, Golomidov IM, Komissarov AE, Slobodina AD, Ryabova EV, Ryabokon IS, Latypova EM, Slepneva EE, Sarantseva SV. Fullerenols Prevent Neuron Death and Reduce Oxidative Stress in Drosophila Huntington's Disease Model. Cells 2022; 12:cells12010170. [PMID: 36611963 PMCID: PMC9818496 DOI: 10.3390/cells12010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Huntington's disease (HD) is one of the human neurodegenerative diseases for which there is no effective treatment. Therefore, there is a strong demand for a novel neuroprotective agent that can alleviate its course. Fullerene derivatives are considered to be such agents; however, they need to be comprehensively investigated in model organisms. In this work, neuroprotective activity of C60(OH)30 and C120O(OH)44 fullerenols was analyzed for the first time in a Drosophila transgenic model of HD. Lifespan, behavior, oxidative stress level and age-related neurodegeneration were assessed in flies with the pathogenic Huntingtin protein expression in nerve cells. Feed supplementation with hydroxylated C60 fullerene and C120O dimer oxide molecules was shown to diminish the oxidative stress level and neurodegenerative processes in the flies' brains. Thus, fullerenes displayed neuroprotective activity in this model.
Collapse
|
5
|
Sawant N, Morton H, Kshirsagar S, Reddy AP, Reddy PH. Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics. Mol Neurobiol 2021; 58:6350-6377. [PMID: 34519969 DOI: 10.1007/s12035-021-02556-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is a fatal and pure genetic disease with a progressive loss of medium spiny neurons (MSN). HD is caused by expanded polyglutamine repeats in the exon 1 of HD gene. Clinically, HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. Several years of intense research revealed that multiple cellular changes, including defective axonal transport, protein-protein interactions, defective bioenergetics, calcium dyshomeostasis, NMDAR activation, synaptic damage, mitochondrial abnormalities, and selective loss of medium spiny neurons are implicated in HD. Recent research on mutant huntingtin (mHtt) and mitochondria has found that mHtt interacts with the mitochondrial division protein, dynamin-related protein 1 (DRP1), enhances GTPase DRP1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. Recent research also revealed that failure to remove dead and/or dying mitochondria is an early event in the disease progression. Currently, efforts are being made to reduce abnormal protein interactions and enhance synaptic mitophagy as therapeutic strategies for HD. The purpose of this article is to discuss recent research in HD progression. This article also discusses recent developments of cell and mouse models, cellular changes, mitochondrial abnormalities, DNA damage, bioenergetics, oxidative stress, mitophagy, and therapeutics strategies in HD.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neurology, Department of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, Cell Biology & Biochemistry, Public Health and School of Health Professions, Texas Tech University Health Sciences Center, Neuroscience & Pharmacology3601 4th Street, NeurologyLubbock, TX, 79430, USA.
| |
Collapse
|
6
|
Ahiawodzi PD, Buzkova P, Djousse L, Ix JH, Kizer JR, Mukamal KJ. Nonesterified Fatty Acids and Hospitalizations Among Older Adults: The Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2021; 76:1326-1332. [PMID: 32914181 DOI: 10.1093/gerona/glaa228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We sought to determine associations between total serum concentrations of nonesterified fatty acids (NEFAs) and incident total and cause-specific hospitalizations in a community-living cohort of older adults. METHODS We included 4715 participants in the Cardiovascular Health Study who had fasting total serum NEFA measured at the 1992/1993 clinic visit and were followed for a median of 12 years. We identified all inpatient admissions requiring at least an overnight hospitalization and used primary diagnostic codes to categorize cause-specific hospitalizations. We used Cox proportional hazards regression models to determine associations with time-to-first hospitalization and Poisson regression for the rate ratios (RRs) of hospitalizations and days hospitalized. RESULTS We identified 21 339 hospitalizations during follow-up. In fully adjusted models, higher total NEFAs were significantly associated with higher risk of incident hospitalization (hazard ratio [HR] per SD [0.2 mEq/L] = 1.07, 95% confidence interval [CI] = 1.03-1.10, p < .001), number of hospitalizations (RR per SD = 1.04, 95% CI = 1.01-1.07, p = .01), and total number of days hospitalized (RR per SD = 1.06, 95% CI = 1.01-1.10, p = .01). Among hospitalization subtypes, higher NEFA was associated with higher likelihood of mental, neurologic, respiratory, and musculoskeletal causes of hospitalization. Among specific causes of hospitalization, higher NEFA was associated with diabetes, pneumonia, and gastrointestinal hemorrhage. CONCLUSIONS Higher fasting total serum NEFAs are associated with a broad array of causes of hospitalization among older adults. While some of these were expected, our results illustrate a possible utility of NEFAs as biomarkers for risk of hospitalization, and total days hospitalized, in older adults. Further research is needed to determine whether interventions based on NEFAs might be feasible.
Collapse
Affiliation(s)
- Peter D Ahiawodzi
- Department of Public Health, Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joachim H Ix
- Divisions of Nephrology and Preventive Medicine, University of California, San Diego
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, and Departments of Medicine, Epidemiology and Biostatistics, University of California
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Melentev PA, Ryabova EV, Surina NV, Zhmujdina DR, Komissarov AE, Ivanova EA, Boltneva NP, Makhaeva GF, Sliusarenko MI, Yatsenko AS, Mohylyak II, Matiytsiv NP, Shcherbata HR, Sarantseva SV. Loss of swiss cheese in Neurons Contributes to Neurodegeneration with Mitochondria Abnormalities, Reactive Oxygen Species Acceleration and Accumulation of Lipid Droplets in Drosophila Brain. Int J Mol Sci 2021; 22:8275. [PMID: 34361042 PMCID: PMC8347196 DOI: 10.3390/ijms22158275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)-the evolutionarily conserved ortholog of human NTE/PNPLA6-in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.
Collapse
Affiliation(s)
- Pavel A. Melentev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Nina V. Surina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Darya R. Zhmujdina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Artem E. Komissarov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Mariana I. Sliusarenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Andriy S. Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Iryna I. Mohylyak
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Nataliya P. Matiytsiv
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Halyna R. Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| |
Collapse
|
8
|
|
9
|
Pinho BR, Duarte AI, Canas PM, Moreira PI, Murphy MP, Oliveira JMA. The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington's disease mice. Free Radic Biol Med 2020; 146:372-382. [PMID: 31751762 PMCID: PMC6970224 DOI: 10.1016/j.freeradbiomed.2019.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022]
Abstract
Abnormal protein homeostasis (proteostasis), dysfunctional mitochondria, and aberrant redox signalling are often associated in neurodegenerative disorders, such as Huntington's (HD), Alzheimer's and Parkinson's diseases. It remains incompletely understood, however, how changes in redox signalling affect proteostasis mechanisms, including protein degradation pathways and unfolded protein responses (UPR). Here we address this open question by investigating the interplay between redox signalling and proteostasis in a mouse model of HD, and by examining the in vivo effects of the mitochondria-targeted antioxidant MitoQ. We performed behavioural tests in wild-type and R6/2 HD mice, examined markers of oxidative stress, UPR activation, and the status of key protein degradation pathways in brain and peripheral tissues. We show that R6/2 mice present widespread markers of oxidative stress, with tissue-specific changes in proteostasis that were more pronounced in the brain and muscle than in the liver. R6/2 mice presented increased levels of cytosolic and mitochondrial chaperones, particularly in muscle, indicating UPR activation. Treatment with MitoQ significantly ameliorated fine motor control of R6/2 mice, and reduced markers of oxidative damage in muscle. Additionally, MitoQ attenuated overactive autophagy induction in the R6/2 muscle, which has been associated with muscle wasting. Treatment with MitoQ did not alter autophagy markers in the brain, in agreement with its low brain bioavailability, which limits the risk of impairing neuronal protein clearance mechanisms. This study supports the hypotheses that abnormal redox signalling in muscle contributes to altered proteostasis and motor impairment in HD, and that redox interventions can improve muscle performance, highlighting the importance of peripheral therapeutics in HD.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana I Duarte
- CNC - Center for Neuroscience & Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- CNC - Center for Neuroscience & Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience & Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB20XY, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK.
| |
Collapse
|
10
|
Altinoz MA, Ozpinar A, Ozpinar A, Hacker E. Erucic acid, a nutritional PPARδ-ligand may influence Huntington's disease pathogenesis. Metab Brain Dis 2020; 35:1-9. [PMID: 31625071 DOI: 10.1007/s11011-019-00500-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Increasing recent evidence suggests a key role of oligodendroglial injury and demyelination in the pathophysiology of Huntington's Disease (HD) and the transcription factor PPARδ is critical for oligodendroglial regeneration and myelination. PPARδ directly involves in the pathogenesis of HD and treatment with a brain-permeable PPARδ-agonist (KD3010) alleviates its severity in mice. Erucic acid (EA) is also a PPARδ-ligand ω9 fatty acid which is highly consumed in Asian countries through ingesting cruciferous vegetables such as rapeseed (Brassica napus) and indian mustard (Brassica juncea). EA is also an ingredient of Lorenzo's oil employed in the medical treatment of adrenoleukodystrophy and can be converted to nervonic acid, a component of myelin. HD pathogenesis also involves oxidative and inflammatory injury and EA exerts antioxidative and antiinflammatory efficacies including inhibition of thrombin and elastase. Consumption of rapeseed, indian mustard, and Canola oils (containing EA) improves cognitive parameters in animal models, as well as treatment with pure EA. Moreover, erucamide, an endogenous EA-amide derivative regulating angiogenesis and water balance, exerts antidepressive and anxiolytic effects in mice. Hitherto, no study has investigated the therapeutic potential of EA in HD and we believe that it strongly merits to be studied in animal models of HD as a potential therapeutic.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem (Mehmet Ali Aydinlar) University, Istanbul, Turkey.
- Department of Psychiatry, Maastricht University, Maastricht, Netherlands.
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem (Mehmet Ali Aydinlar) University, Istanbul, Turkey
| | - Alp Ozpinar
- Department of Neurosurgery, Pittsburgh University, Pittsburgh, PA, USA
| | - Emily Hacker
- Department of Neurosurgery, Pittsburgh University, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Tellone E, Galtieri A, Ficarra S. Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease. Curr Med Chem 2019; 27:5137-5158. [PMID: 31223078 DOI: 10.2174/0929867326666190621101909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Huntingtin (Htt) is a multi-function protein of the brain. Normal Htt shows a common alpha-helical structure but conformational changes in the form with beta strands are the principal cause of Huntington's disease. Huntington's disease is a genetic neurological disorder caused by a repeated expansion of the CAG trinucleotide, causing instability in the N-terminal of the gene coding for the Huntingtin protein. The mutation leads to the abnormal expansion of the production of the polyglutamine tract (polyQ) resulting in the form of an unstable Huntingtin protein commonly referred to as mutant Huntingtin. Mutant Huntingtin is the cause of the complex neurological metabolic alteration of Huntington's disease, resulting in both the loss of all the functions of normal Huntingtin and the genesis of abnormal interactions due to the presence of this mutation. One of the problems arising from the misfolded Huntingtin is the increase in oxidative stress, which is common in many neurological diseases such as Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis and Creutzfeldt-Jakob disease. In the last few years, the use of antioxidants had a strong incentive to find valid therapies for defence against neurodegenerations. Although further studies are needed, the use of antioxidant mixtures to counteract neuronal damages seems promising.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
12
|
Pinho BR, Reis SD, Hartley RC, Murphy MP, Oliveira JMA. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radic Biol Med 2019; 130:318-327. [PMID: 30389496 PMCID: PMC6340810 DOI: 10.1016/j.freeradbiomed.2018.10.446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
Abstract
Superoxide generation by mitochondria respiratory complexes is a major source of reactive oxygen species (ROS) which are capable of initiating redox signaling and oxidative damage. Current understanding of the role of mitochondrial ROS in health and disease has been limited by the lack of experimental strategies to selectively induce mitochondrial superoxide production. The recently-developed mitochondria-targeted redox cycler MitoParaquat (MitoPQ) overcomes this limitation, and has proven effective in vitro and in Drosophila. Here we present an in vivo study of MitoPQ in the vertebrate zebrafish model in the context of Parkinson's disease (PD), and in a human cell model of Huntington's disease (HD). We show that MitoPQ is 100-fold more potent than non-targeted paraquat in both cells and in zebrafish in vivo. Treatment with MitoPQ induced a parkinsonian phenotype in zebrafish larvae, with decreased sensorimotor reflexes, spontaneous movement and brain tyrosine hydroxylase (TH) levels, without detectable effects on heart rate or atrioventricular coordination. Motor phenotypes and TH levels were partly rescued with antioxidant or monoaminergic potentiation strategies. In a HD cell model, MitoPQ promoted mutant huntingtin aggregation without increasing cell death, contrasting with the complex I inhibitor rotenone that increased death in cells expressing either wild-type or mutant huntingtin. These results show that MitoPQ is a valuable tool for cellular and in vivo studies of the role of mitochondrial superoxide generation in redox biology, and as a trigger or co-stressor to model metabolic and neurodegenerative disease phenotypes.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|
13
|
Boros FA, Klivényi P, Toldi J, Vécsei L. Indoleamine 2,3-dioxygenase as a novel therapeutic target for Huntington’s disease. Expert Opin Ther Targets 2018; 23:39-51. [DOI: 10.1080/14728222.2019.1549231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fanni A. Boros
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Moretti M, Fraga DB, Rodrigues ALS. Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS Neurosci Ther 2017; 23:921-929. [PMID: 28980404 DOI: 10.1111/cns.12767] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the involvement of ascorbic acid in neurodegenerative diseases by presenting available evidence on the behavioral and biochemical effects of this compound in animal models of neurodegeneration as well as the use of ascorbic acid as a therapeutic approach to alleviate neurodegenerative progression in clinical studies. Ascorbate, a reduced form of vitamin C, has gained interest for its multiple functions and mechanisms of action, contributing to the homeostasis of normal tissues and organs as well as to tissue regeneration. In the brain, ascorbate exerts neuromodulatory functions and scavenges reactive oxygen species generated during synaptic activity and neuronal metabolism. These are important properties as redox imbalance and abnormal protein aggregation constitute central mechanisms implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, multiple sclerosis, and amyotrophic lateral sclerosis. Indeed, several studies have indicated an association between low serum ascorbate concentrations and neurodegeneration. Moreover, ascorbic acid is a suitable candidate for supplying either antioxidant defense or modulation of neuronal and astrocytic metabolism under neurodegenerative conditions. Ascorbic acid acts mainly by decreasing oxidative stress and reducing the formation of protein aggregates, which may contribute to the reduction of cognitive and/or motor impairments observed in neurodegenerative processes. Although several studies support a possible role of ascorbic acid administration against neurodegeneration, more researches are essential to substantiate the existing results and accelerate the knowledge in this field.
Collapse
Affiliation(s)
- Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daiane Bittencourt Fraga
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
16
|
Abstract
Ascorbate has critical roles in the central nervous system (CNS); it is a neuromodulator of glutamatergic, cholinergic, dopaminergic, and γ-aminobutyric acid (GABA)-ergic neurotransmission, provides support and structure to neurons, and participates in processes such as differentiation, maturation, and survival of neurons. Over the past decade, antioxidant properties of ascorbate have been extensively characterized and now it is known that this compound is highly concentrated in the brain and neuroendocrine tissues. All this information raised the hypothesis that ascorbate may be involved in neurological disorders. Indeed, the biological mechanisms of ascorbate in health and disease and its involvement in homeostasis of the CNS have been the subject of extensive research. In particular, evidence for an association of this vitamin with schizophrenia, major depressive disorder, and bipolar disorder has been provided. Considering that conventional pharmacotherapy for the treatment of these neuropathologies has important limitations, this review aims to explore basic and human studies that implicate ascorbic acid as a potential therapeutic strategy. Possible mechanisms involved in the beneficial effects of ascorbic acid for the management of psychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Daiane Bittencourt Fraga
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
17
|
Quinti L, Dayalan Naidu S, Träger U, Chen X, Kegel-Gleason K, Llères D, Connolly C, Chopra V, Low C, Moniot S, Sapp E, Tousley AR, Vodicka P, Van Kanegan MJ, Kaltenbach LS, Crawford LA, Fuszard M, Higgins M, Miller JRC, Farmer RE, Potluri V, Samajdar S, Meisel L, Zhang N, Snyder A, Stein R, Hersch SM, Ellerby LM, Weerapana E, Schwarzschild MA, Steegborn C, Leavitt BR, Degterev A, Tabrizi SJ, Lo DC, DiFiglia M, Thompson LM, Dinkova-Kostova AT, Kazantsev AG. KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients. Proc Natl Acad Sci U S A 2017; 114:E4676-E4685. [PMID: 28533375 PMCID: PMC5468652 DOI: 10.1073/pnas.1614943114] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.
Collapse
Affiliation(s)
- Luisa Quinti
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - Sharadha Dayalan Naidu
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Ulrike Träger
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Xiqun Chen
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - Kimberly Kegel-Gleason
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - David Llères
- Institute of Molecular Genetics of Montpellier, F-34293 Montpellier, France
| | - Colúm Connolly
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Vanita Chopra
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - Cho Low
- Department of Developmental, Molecular and Chemical Biology, Tufts University, Boston, MA 02111
| | - Sébastien Moniot
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ellen Sapp
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - Adelaide R Tousley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - Petr Vodicka
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - Michael J Van Kanegan
- Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Linda S Kaltenbach
- Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Lisa A Crawford
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467
| | - Matthew Fuszard
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Maureen Higgins
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - James R C Miller
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Ruth E Farmer
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Vijay Potluri
- Department of Medicinal Chemistry, Aurigene Discovery Technologies Limited, Bangalore 560 100, India
| | - Susanta Samajdar
- Department of Medicinal Chemistry, Aurigene Discovery Technologies Limited, Bangalore 560 100, India
| | - Lisa Meisel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ningzhe Zhang
- Buck Institute for Research on Aging, Novato, CA 94945
| | - Andrew Snyder
- Targanox, Cambridge Research Laboratories, Cambridge, MA 02139
| | - Ross Stein
- Targanox, Cambridge Research Laboratories, Cambridge, MA 02139
| | - Steven M Hersch
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | | | | | - Michael A Schwarzschild
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University, Boston, MA 02111
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Donald C Lo
- Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Marian DiFiglia
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114
| | - Leslie M Thompson
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Aleksey G Kazantsev
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114;
| |
Collapse
|
18
|
Resveratrol and Brain Mitochondria: a Review. Mol Neurobiol 2017; 55:2085-2101. [DOI: 10.1007/s12035-017-0448-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/24/2022]
|
19
|
de Oliveira MR, Peres A, Ferreira GC. Pinocembrin Attenuates Mitochondrial Dysfunction in Human Neuroblastoma SH-SY5Y Cells Exposed to Methylglyoxal: Role for the Erk1/2-Nrf2 Signaling Pathway. Neurochem Res 2016; 42:1057-1072. [PMID: 28000163 DOI: 10.1007/s11064-016-2140-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 01/03/2023]
Abstract
Pinocembrin (PB; 5,7-dihydroxyflavanone) is found in propolis and exhibits antioxidant activity in several experimental models. The antioxidant capacity of PB is associated with the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. The Nrf2/ARE axis mediates the expression of antioxidant and detoxifying enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR), heme oxygenase-1 (HO-1), and the catalytic (GCLC) and regulatory (GCLM) subunits of the rate-limiting enzyme in the synthesis of glutathione (GSH), γ-glutamate-cysteine ligase (γ-GCL). Nonetheless, it is not clear how PB exerts mitochondrial protection in mammalian cells. Human neuroblastoma SH-SY5Y cells were pretreated (4 h) with PB (0-25 µM) and then exposed to methylglyoxal (MG; 500 µM) for further 24 h. Mitochondria were isolated by differential centrifugation. PB (25 µM) provided mitochondrial protection (decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes; decreased mitochondrial free radical production; enhanced the content of GSH in mitochondria; rescued mitochondrial membrane potential-MMP) and blocked MG-triggered cell death by a mechanism dependent on the activation of the extracellular-related kinase (Erk1/2) and consequent upregulation of Nrf2. PB increased the levels of GPx, GR, HO-1, and mitochondrial GSH. The PB-induced effects were suppressed by silencing of Nrf2 with siRNA. Therefore, PB activated the Erk1/2-Nrf2 signaling pathway resulting in mitochondrial protection in SH-SY5Y cells exposed to MG. Our work shows that PB is a strong candidate to figure among mitochondria-focusing agents with pharmacological potential.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT, Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| | - Alessandra Peres
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Centro de Pesquisa da Pós-Graduação, Centro Universitário Metodista IPA, Porto Alegre, Brazil
| | - Gustavo Costa Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. BIOLOGY 2016; 5:biology5040053. [PMID: 27983623 PMCID: PMC5192433 DOI: 10.3390/biology5040053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
Abstract
Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation.
Collapse
|
21
|
Abstract
Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rajiv R. Ratan
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
22
|
Ratovitski T, Chaerkady R, Kammers K, Stewart JC, Zavala A, Pletnikova O, Troncoso JC, Rudnicki DD, Margolis RL, Cole RN, Ross CA. Quantitative Proteomic Analysis Reveals Similarities between Huntington's Disease (HD) and Huntington's Disease-Like 2 (HDL2) Human Brains. J Proteome Res 2016; 15:3266-83. [PMID: 27486686 PMCID: PMC5555151 DOI: 10.1021/acs.jproteome.6b00448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogenesis of HD and HDL2, similar progressive neurodegenerative disorders caused by expansion mutations, remains incompletely understood. No systematic quantitative proteomics studies, assessing global changes in HD or HDL2 human brain, were reported. To address this deficit, we used a stable isotope labeling-based approach to quantify the changes in protein abundances in the cortex of 12 HD and 12 control cases and, separately, of 6 HDL2 and 6 control cases. The quality of the tissues was assessed to minimize variability due to post mortem autolysis. We applied a robust median sweep algorithm to quantify protein abundance and performed statistical inference using moderated test statistics. 1211 proteins showed statistically significant fold changes between HD and control tissues; the differences in selected proteins were verified by Western blotting. Differentially abundant proteins were enriched in cellular pathways previously implicated in HD, including Rho-mediated, actin cytoskeleton and integrin signaling, mitochondrial dysfunction, endocytosis, axonal guidance, DNA/RNA processing, and protein transport. The abundance of 717 proteins significantly differed between control and HDL2 brain. Comparative analysis of the disease-associated changes in the HD and HDL2 proteomes revealed that similar pathways were altered, suggesting the commonality of pathogenesis between the two disorders.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Raghothama Chaerkady
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21205, United States
| | - Kai Kammers
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Jacqueline C. Stewart
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Anialak Zavala
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Dobrila D. Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Russell L. Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21205, United States
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
23
|
Machiela E, Dues DJ, Senchuk MM, Van Raamsdonk JM. Oxidative stress is increased in C. elegans models of Huntington's disease but does not contribute to polyglutamine toxicity phenotypes. Neurobiol Dis 2016; 96:1-11. [PMID: 27544481 DOI: 10.1016/j.nbd.2016.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 01/16/2023] Open
Abstract
Huntington's disease (HD) is an adult onset neurodegenerative disorder for which there is currently no cure. While HD patients and animal models of the disease exhibit increased oxidative damage, it is currently uncertain to what extent oxidative stress contributes to disease pathogenesis. In this work, we use a genetic approach to define the role of oxidative stress in HD. We find that a C. elegans model of HD expressing a disease-length polyglutamine tract in the body wall muscle is hypersensitive to oxidative stress and shows an upregulation of antioxidant defense genes, indicating that the HD worm model has increased levels of oxidative stress. To determine whether this increase in oxidative stress contributes to the development of polyglutamine-toxicity phenotypes in this HD model, we examined the effect of deleting individual superoxide dismutase (sod) genes in the HD worm model. As predicted, we found that deletion of sod genes in the HD worm model resulted in a clear increase in sensitivity to oxidative stress. However, we found that increasing oxidative stress in the HD worm model did not exacerbate deficits caused by polyglutamine toxicity. We confirmed these observations in two worm models expressing disease-length polyglutamine tracts in neurons. Furthermore, we found that treatment with antioxidants failed to rescue movement deficits or decrease aggregation in HD worm models. Combined, this suggests that the increase in oxidative stress in worm models of HD does not contribute to the phenotypic deficits observed in these worms, and provides a possible explanation for the failure of antioxidants in HD clinical trials.
Collapse
Affiliation(s)
- Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA; Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Department of Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
24
|
Quinti L, Casale M, Moniot S, Pais TF, Van Kanegan MJ, Kaltenbach LS, Pallos J, Lim RG, Naidu SD, Runne H, Meisel L, Rauf NA, Leyfer D, Maxwell MM, Saiah E, Landers JE, Luthi-Carter R, Abagyan R, Dinkova-Kostova AT, Steegborn C, Marsh JL, Lo DC, Thompson LM, Kazantsev AG. SIRT2- and NRF2-Targeting Thiazole-Containing Compound with Therapeutic Activity in Huntington's Disease Models. Cell Chem Biol 2016; 23:849-861. [PMID: 27427231 DOI: 10.1016/j.chembiol.2016.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders.
Collapse
Affiliation(s)
- Luisa Quinti
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Sébastien Moniot
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Teresa F Pais
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Michael J Van Kanegan
- Department of Neurobiology, Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Linda S Kaltenbach
- Department of Neurobiology, Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Judit Pallos
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ryan G Lim
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Sharadha Dayalan Naidu
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Heike Runne
- Functional Neurogenomics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Lisa Meisel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Nazifa Abdul Rauf
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dmitriy Leyfer
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michele M Maxwell
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eddine Saiah
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ruth Luthi-Carter
- Functional Neurogenomics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093-0747, USA
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Donald C Lo
- Department of Neurobiology, Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Aleksey G Kazantsev
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
25
|
de Oliveira MR, Schuck PF, Bosco SMD. Tanshinone I Induces Mitochondrial Protection through an Nrf2-Dependent Mechanism in Paraquat-TreatedHuman Neuroblastoma SH-SY5Y Cells. Mol Neurobiol 2016; 54:4597-4608. [PMID: 27389776 DOI: 10.1007/s12035-016-0009-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
Abstract
Tanshinone I (T-I; 1,6-Dimethylnaphtho[1,2-g][1]benzofuran-10,11-dione; C18H12O3), which may be found in Salvia miltiorrhiza Bunge (Danshen), is a potent anti-inflammatory, antioxidant, and anti-cancer agent. At least in part, T-I exerts antioxidant activity by activating signaling pathways associated with the maintenance of the redox state in mammalian cells. In this context, the upregulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has received attention regarding the role of this transcription factor in modulating the expression of antioxidant enzymes and the metabolism of glutathione (GSH). Even though there is a growing body of evidence suggesting that T-I mediates protection against several pro-oxidant challenges in both in vitro and in vivo experimental models, it remains to be examined whether and how T-I would modulate mitochondrial function during redox disturbances. Therefore, we aimed to reveal whether T-I would exhibit protective effects on mitochondria of SH-SY5Y cells treated with paraquat (PQ), a well-known mitochondrial toxic agent. We found that T-I pretreatment significantly protected mitochondria against PQ-induced redox impairment through an Nrf2-dependent mechanism involving upregulation of antioxidant enzymes, such as Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx), and both catalytic and modifier subunits of γ-glutamate-cysteine ligase (γ-GCL). T-I prevented complex I and mitochondrial membrane potential (MMP) impairments elicited by PQ. Thus, T-I may be viewed as a new mitochondrial protective agent whose complete mechanism of action needs to be investigated, but it seems to involve mitochondriotropic aspects related to the chemistry of this molecule.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Programa de Pós-Graduação em Química, Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP, Cuiabá, MT, 78060-900, Brazil.
| | - Patrícia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Programa de Pós-Graduação em Ciências da Saúde, Criciúma, SC, Brazil
| | - Simone Morelo Dal Bosco
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Johansson I, Monsen VT, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, Schønberg S, Bjørkøy G. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy 2016; 11:1636-51. [PMID: 26237736 PMCID: PMC4590664 DOI: 10.1080/15548627.2015.1061170] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.
Collapse
Affiliation(s)
- Ida Johansson
- a Department of Laboratory Medicine ; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway.,b Department of Technology ; University College of Sør-Trøndelag ; Trondheim , Norway.,c Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine ; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Vivi Talstad Monsen
- a Department of Laboratory Medicine ; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Kristine Pettersen
- a Department of Laboratory Medicine ; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway.,b Department of Technology ; University College of Sør-Trøndelag ; Trondheim , Norway.,c Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine ; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Jennifer Mildenberger
- b Department of Technology ; University College of Sør-Trøndelag ; Trondheim , Norway.,c Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine ; Norwegian University of Science and Technology ; Trondheim , Norway.,d Department of Cancer Research and Molecular Medicine ; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Kristine Misund
- d Department of Cancer Research and Molecular Medicine ; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway.,e KG Jebsen Center for Myeloma Research; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Kai Kaarniranta
- f Department of Ophthalmology ; Institute of Clinical Medicine; University of Eastern Finland ; Kuopio , Finland.,g Department of Ophthalmology ; Kuopio University Hospital ; Kuopio , Finland
| | - Svanhild Schønberg
- a Department of Laboratory Medicine ; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Geir Bjørkøy
- b Department of Technology ; University College of Sør-Trøndelag ; Trondheim , Norway.,c Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine ; Norwegian University of Science and Technology ; Trondheim , Norway
| |
Collapse
|
27
|
Sorolla MA, Rodríguez-Colman MJ, Vall-Llaura N, Vived C, Fernández-Nogales M, Lucas JJ, Ferrer I, Cabiscol E. Impaired PLP-dependent metabolism in brain samples from Huntington disease patients and transgenic R6/1 mice. Metab Brain Dis 2016; 31:579-86. [PMID: 26666246 DOI: 10.1007/s11011-015-9777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 11/25/2022]
Abstract
Oxidative stress has been described as important to Huntington disease (HD) progression. In a previous HD study, we identified several carbonylated proteins, including pyridoxal kinase and antiquitin, both of which are involved in the metabolism of pyridoxal 5´-phosphate (PLP), the active form of vitamin B6. In the present study, pyridoxal kinase levels were quantified and showed to be decreased both in HD patients and a R6/1 mouse model, compared to control samples. A metabolomic analysis was used to analyze metabolites in brain samples of HD patients and R6/1 mice, compared to control samples using mass spectrometry. This technique allowed detection of increased concentrations of pyridoxal, the substrate of pyridoxal kinase. In addition, PLP, the product of the reaction, was decreased in striatum from R6/1 mice. Furthermore, glutamate and cystathionine, both substrates of PLP-dependent enzymes were increased in HD. This reinforces the hypothesis that PLP synthesis is impaired, and could explain some alterations observed in the disease. Together, these results identify PLP as a potential therapeutic agent.
Collapse
Affiliation(s)
- M Alba Sorolla
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
| | - María José Rodríguez-Colman
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Núria Vall-Llaura
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Celia Vived
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Marta Fernández-Nogales
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| |
Collapse
|
28
|
Marques NF, Stefanello ST, Froeder ALF, Busanello A, Boligon AA, Athayde ML, Soares FAA, Fachinetto R. Centella asiatica and Its Fractions Reduces Lipid Peroxidation Induced by Quinolinic Acid and Sodium Nitroprusside in Rat Brain Regions. Neurochem Res 2015; 40:1197-210. [PMID: 25903808 DOI: 10.1007/s11064-015-1582-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 12/23/2022]
Abstract
Oxidative stress has been implicated in several pathologies including neurological disorders. Centella asiatica is a popular medicinal plant which has long been used to treat neurological disturbances in Ayurvedic medicine. In the present study, we quantified of compounds by high performance liquid chromatography (HPLC) and examined the phenolic content of infusion, ethyl acetate, n-butanolic and dichloromethane fractions. Furthermore, we analyzed the ability of the extracts from C. asiatica to scavenge the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) radical as well as total antioxidant activity through the reduction of molybdenum (VI) (Mo(6+)) to molybdenum (V) (Mo(5+)). Finally, we examined the antioxidant effect of extracts against oxidant agents, quinolinic acid (QA) and sodium nitroprusside (SNP), on homogenates of different brain regions (cerebral cortex, striatum and hippocampus). The HPLC analysis revealed that flavonoids, triterpene glycoside, tannins, phenolic acids were present in the extracts of C. asiatica and also the phenolic content assay demonstrated that ethyl acetate fraction is rich in these compounds. Besides, the ethyl acetate fraction presented the highest antioxidant effect by decreasing the lipid peroxidation in brain regions induced by QA. On the other hand, when the pro-oxidant agent was SNP, the potency of infusion, ethyl acetate and dichloromethane fractions was equivalent. Ethyl acetate fraction from C. asiatica also protected against thiol oxidation induced by SNP and QA. Thus, the therapeutic potential of C. asiatica in neurological diseases could be associated to its antioxidant activity.
Collapse
Affiliation(s)
- Naiani Ferreira Marques
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Trnková L, Dršata J, Boušová I. Oxidation as an important factor of protein damage: Implications for Maillard reaction. J Biosci 2015; 40:419-39. [DOI: 10.1007/s12038-015-9523-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Nayak A, Salt G, Verma SK, Kishore U. Proteomics Approach to Identify Biomarkers in Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:59-86. [DOI: 10.1016/bs.irn.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Selenium-Functionalized Molecules (SeFMs) as Potential Drugs and Nutritional Supplements. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
32
|
Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014; 130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post-mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.
Collapse
Affiliation(s)
- Michelle Muller
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
33
|
Rubio N, Verrax J, Dewaele M, Verfaillie T, Johansen T, Piette J, Agostinis P. p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radic Biol Med 2014; 67:292-303. [PMID: 24269898 DOI: 10.1016/j.freeradbiomed.2013.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/13/2013] [Accepted: 11/12/2013] [Indexed: 12/30/2022]
Abstract
Emerging evidence indicates that oxidative stress instigates the formation of ubiquitin (Ub) aggregates, substrates of autophagy, through a process requiring the ubiquitin binding adaptors p62/SQSTM1 and NBR1. Here, we have investigated the role of p62 and NBR1 in cell survival after hypericin-mediated photodynamic therapy (Hyp-PDT), a procedure known to incite robust reactive oxygen species (ROS)-based endoplasmic reticulum stress and autophagy pathways. We found that Hyp-PDT stimulated the formation of p62- and NBR1-associated Ub aggregates in normal and cancer cells, which were ultimately removed by autophagy, through a mechanism partially regulated by p38(MAPK). In line with this, genetic or pharmacological p38(MAPK) inhibition reduced p62 and NBR1 levels and aggregate formation and impaired Nrf2 activation, thus increasing photo-oxidative stress and cell death. p62-deficient cells, or cells lacking p62 and with reduced levels of NBR1 (through siRNA knockdown), also displayed reduced aggregate formation but exhibited attenuated ROS levels, reduced caspase activation, and improved survival after Hyp-PDT. The increased resistance to photo-oxidative stress exhibited by cells lacking p62 and/or NBR1 was overruled by the inhibition of p38(MAPK), which restored cytotoxic ROS levels, thus indicating the relevance of this signal in the control of cell viability. Taken together these findings provide evidence that in photodynamically treated cells a p38(MAPK)-regulated pathway coordinates the p62/NBR1-mediated clearance of cytosolic aggregates and mitigates PDT-induced proteotoxicity. They also reveal that a functional p38(MAPK)-Nrf2 signal is required to keep ROS levels in check and protect against PDT-induced proteotoxicity, independent of aggregate formation.
Collapse
Affiliation(s)
- Noemí Rubio
- Cell Death Research & Therapy Laboratory, Cellular and Molecular Medicine Department, KU Leuven - University of Leuven, 3000 Leuven, Belgium; Virology and Immunology Unit, GiGA-R, GiGA B34, University of Liège, 4000 Liège, Belgium
| | - Julien Verrax
- Cell Death Research & Therapy Laboratory, Cellular and Molecular Medicine Department, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Michael Dewaele
- Cell Death Research & Therapy Laboratory, Cellular and Molecular Medicine Department, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Tom Verfaillie
- Cell Death Research & Therapy Laboratory, Cellular and Molecular Medicine Department, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Jacques Piette
- Virology and Immunology Unit, GiGA-R, GiGA B34, University of Liège, 4000 Liège, Belgium.
| | - Patrizia Agostinis
- Cell Death Research & Therapy Laboratory, Cellular and Molecular Medicine Department, KU Leuven - University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
34
|
Cabiscol E, Tamarit J, Ros J. Protein carbonylation: proteomics, specificity and relevance to aging. MASS SPECTROMETRY REVIEWS 2014; 33:21-48. [PMID: 24114980 DOI: 10.1002/mas.21375] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 06/02/2023]
Abstract
Detection and quantification of protein carbonyls present in biological samples has become a popular, albeit indirect, method to determine the existence of oxidative stress. Moreover, the rise of proteomics has allowed the identification of the specific proteins targeted by protein carbonylation. This review discusses these methodologies and proteomic strategies and then focuses on the relationship between protein carbonylation and aging and the parameters that may explain the increased sensitivity of certain proteins to protein carbonylation.
Collapse
Affiliation(s)
- Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | | | | |
Collapse
|
35
|
Deciphering the roles of trehalose and Hsp104 in the inhibition of aggregation of mutant huntingtin in a yeast model of Huntington's disease. Neuromolecular Med 2013; 16:280-91. [PMID: 24248470 DOI: 10.1007/s12017-013-8275-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Despite the significant amount of experimental data available on trehalose, the molecular mechanism responsible for its intracellular stabilising properties has not emerged yet. The repair of cellular homeostasis in many protein-misfolding diseases by trehalose is credited to the disaccharide being an inducer of autophagy, a mechanism by which aggregates of misfolded proteins are cleared by the cell. In this work, we expressed the pathogenic N-terminal fragment of huntingtin in Δnth1 mutant (unable to degrade trehalose) of Saccharomyces cerevisiae BY4742 strain. We show that the presence of trehalose resulted in the partitioning of the mutant huntingtin in the soluble fraction of the cell. This led to reduced oxidative stress and improved cell survival. The beneficial effect was independent of the expression of the major cellular antioxidant enzyme, superoxide dismutase. Additionally, trehalose led to the overexpression of the heat shock protein, Hsp104p, in mutant huntingtin-expressing cells, and resulted in rescue of the endocytotic defect in the yeast cell. We propose that at least in the initial stages of aggregation, trehalose functions as a stabiliser, increasing the level of monomeric mutant huntingtin protein, with its concomitant beneficial effects, in addition to its role as an inducer of autophagy.
Collapse
|
36
|
Venkataraman K, Khurana S, Tai TC. Oxidative stress in aging--matters of the heart and mind. Int J Mol Sci 2013; 14:17897-925. [PMID: 24002027 PMCID: PMC3794759 DOI: 10.3390/ijms140917897] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023] Open
Abstract
Oxidative damage is considered to be the primary cause of several aging associated disease pathologies. Cumulative oxidative damage tends to be pervasive among cellular macromolecules, impacting proteins, lipids, RNA and DNA of cells. At a systemic level, events subsequent to oxidative damage induce an inflammatory response to sites of oxidative damage, often contributing to additional oxidative stress. At a cellular level, oxidative damage to mitochondria results in acidification of the cytoplasm and release of cytochrome c, causing apoptosis. This review summarizes findings in the literature on oxidative stress and consequent damage on cells and tissues of the cardiovascular system and the central nervous system, with a focus on aging-related diseases that have well-documented evidence of oxidative damage in initiation and/or progression of the disease. The current understanding of the cellular mechanisms with a focus on macromolecular damage, impacted cellular pathways and gross morphological changes associated with oxidative damage is also reviewed. Additionally, the impact of calorific restriction with its profound impact on cardiovascular and neuronal aging is addressed.
Collapse
Affiliation(s)
- Krishnan Venkataraman
- Department of Gerontology, Huntington University, Sudbury, ON P3E 2C6, Canada; E-Mail:
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; E-Mail:
| | - T. C. Tai
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; E-Mail:
- Department of Biology, Department of Chemistry and Biochemistry, Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-705-662-7239; Fax: +1-705-675-4858
| |
Collapse
|
37
|
Ciccone S, Maiani E, Bellusci G, Diederich M, Gonfloni S. Parkinson's disease: a complex interplay of mitochondrial DNA alterations and oxidative stress. Int J Mol Sci 2013; 14:2388-409. [PMID: 23348931 PMCID: PMC3587993 DOI: 10.3390/ijms14022388] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common age-related neurodegenerative diseases. This pathology causes a significant loss of dopaminergic neurons in the Substantia Nigra. Several reports have claimed a role of defective nuclear and mitochondrial DNA repair pathways in PD etiology, in particular, of the Base Excision Repair (BER) system. In addition, recent findings, related to PD progression, indicate that oxidative stress pathways involving c-Abl and GST could also be implicated in this pathology. This review focuses on recently described networks most likely involved in an integrated manner in the course of PD.
Collapse
Affiliation(s)
- Sarah Ciccone
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; E-Mails: (S.C.); (E.M.); (G.B.)
| | - Emiliano Maiani
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; E-Mails: (S.C.); (E.M.); (G.B.)
| | - Giovanna Bellusci
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; E-Mails: (S.C.); (E.M.); (G.B.)
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Kirchberg Hospital, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail:
- College of Pharmacy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Stefania Gonfloni
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; E-Mails: (S.C.); (E.M.); (G.B.)
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Kirchberg Hospital, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-06-72594319; Fax: +39-06-2023500
| |
Collapse
|
38
|
Höhn A, König J, Grune T. Protein oxidation in aging and the removal of oxidized proteins. J Proteomics 2013; 92:132-59. [PMID: 23333925 DOI: 10.1016/j.jprot.2013.01.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are generated constantly within cells at low concentrations even under physiological conditions. During aging the levels of ROS can increase due to a limited capacity of antioxidant systems and repair mechanisms. Proteins are among the main targets for oxidants due to their high rate constants for several reactions with ROS and their abundance in biological systems. Protein damage has an important influence on cellular viability since most protein damage is non-repairable, and has deleterious consequences on protein structure and function. In addition, damaged and modified proteins can form cross-links and provide a basis for many senescence-associated alterations and may contribute to a range of human pathologies. Two proteolytic systems are responsible to ensure the maintenance of cellular functions: the proteasomal (UPS) and the lysosomal system. Those degrading systems provide a last line of antioxidative protection, removing irreversible damaged proteins and recycling amino acids for the continuous protein synthesis. But during aging, both systems are affected and their proteolytic activity declines significantly. Here we highlight the recent advantages in the understanding of protein oxidation and the fate of these damaged proteins during aging. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Annika Höhn
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
39
|
The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue. Neurochem Int 2013; 62:796-802. [PMID: 23333339 DOI: 10.1016/j.neuint.2013.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/22/2012] [Accepted: 01/08/2013] [Indexed: 11/23/2022]
Abstract
Thiamine (vitamin B1) deficiency, the underlying cause of Wernicke-Korsakoff syndrome, is associated with the development of focal neuronal loss in vulnerable areas of the brain. Although the actual mechanism(s) that lead to the selective histological lesions characteristic of this disorder remain unresolved, oxidative stress has been shown to play a major role in its pathophysiology. In this review, the multifactorial influence of oxidative stress on a variety of processes known to take part in the development of structural lesions in TD including excitotoxicity, neuroinflammation, blood-brain barrier integrity, mitochondrial integrity, apoptosis, nucleic acid function, and neural stem cells will be discussed, and therapeutic strategies undertaken for treating neurodegeneration examined which may have an impact on the future treatment of this important vitamin deficiency.
Collapse
|
40
|
Colín-González AL, Maldonado PD, Santamaría A. 3-Hydroxykynurenine: an intriguing molecule exerting dual actions in the central nervous system. Neurotoxicology 2012; 34:189-204. [PMID: 23219925 DOI: 10.1016/j.neuro.2012.11.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022]
Abstract
Kynurenine pathway is gaining attention due to the many metabolic processes in which it has been involved. The tryptophan conversion into several other metabolites through this pathway provides neuronal and redox modulators useful for maintenance of major functions in the brain. However, when physiopathological conditions prevail - i.e. oxidative stress, excitotoxicity, and inflammation - preferential formation and accumulation of toxic metabolites could trigger factors for degeneration in neurological disorders. 3-Hydroxykynurenine has been largely described as one of these toxic metabolites capable of inducing oxidative damage and cell death; consequently, this metabolite has been hypothesized to play a pivotal role in different neurological and psychiatric disorders. Supporting evidence has shown altered 3-hydroxykynurenine levels in samples of patients from several disorders. In contrast, some experimental studies have provided evidence of antioxidant and scavenging properties inherent to this molecule. In this review, we explored most of literature favoring one or the other concept, in order to provide an accurate vision on the real participation of this tryptophan metabolite in both experimental paradigms and human brain pathologies. Through this collected evidence, we provide an integrative hypothesis on how 3-hydroxykynurenine is exerting its dual actions in the central nervous system and what will be the course of investigations in this field for the next years.
Collapse
Affiliation(s)
- Ana Laura Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, Mexico City 14269, Mexico
| | | | | |
Collapse
|