1
|
Atukorala I, Hannan N, Hui L. Immersed in a reservoir of potential: amniotic fluid-derived extracellular vesicles. J Transl Med 2024; 22:348. [PMID: 38609955 PMCID: PMC11010396 DOI: 10.1186/s12967-024-05154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
This review aims to encapsulate the current knowledge in extracellular vesicles extracted from amniotic fluid and amniotic fluid derived stem/stromal cells. Amniotic fluid (AF) bathes the developing fetus, providing nutrients and protection from biological and mechanical dangers. In addition to containing a myriad of proteins, immunoglobulins and growth factors, AF is a rich source of extracellular vesicles (EVs). These vesicles originate from cells in the fetoplacental unit. They are biological messengers carrying an active cargo enveloped within the lipid bilayer. EVs in reproduction are known to play key roles in all stages of pregnancy, starting from fertilisation through to parturition. The intriguing biology of AF-derived EVs (AF-EVs) in pregnancy and their untapped potential as biomarkers is currently gaining attention. EV studies in numerous animal and human disease models have raised expectations of their utility as therapeutics. Amniotic fluid stem cell and mesenchymal stromal cell-derived EVs (AFSC-EVs) provide an established supply of laboratory-made EVs. This cell-free mode of therapy is popular as an alternative to stem cell therapy, revealing similar, if not better therapeutic outcomes. Research has demonstrated the successful application of AF-EVs and AFSC-EVs in therapy, harnessing their anti-inflammatory, angiogenic and regenerative properties. This review provides an overview of such studies and discusses concerns in this emerging field of research.
Collapse
Affiliation(s)
- Ishara Atukorala
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia.
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia.
| | - Natalie Hannan
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia
| | - Lisa Hui
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia
- Department of Perinatal Medicine, Mercy Hospital for Women, Mercy Health, Heidelberg, VIC, Australia
- Reproductive Epidemiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
2
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Russo E, Alberti G, Corrao S, Borlongan CV, Miceli V, Conaldi PG, Di Gaudio F, La Rocca G. The Truth Is Out There: Biological Features and Clinical Indications of Extracellular Vesicles from Human Perinatal Stem Cells. Cells 2023; 12:2347. [PMID: 37830562 PMCID: PMC10571796 DOI: 10.3390/cells12192347] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
The potential of perinatal tissues to provide cellular populations to be used in different applications of regenerative medicine is well established. Recently, the efforts of researchers are being addressed regarding the evaluation of cell products (secreted molecules or extracellular vesicles, EVs) to be used as an alternative to cellular infusion. The data regarding the effective recapitulation of most perinatal cells' properties by their secreted complement point in this direction. EVs secreted from perinatal cells exhibit key therapeutic effects such as tissue repair and regeneration, the suppression of inflammatory responses, immune system modulation, and a variety of other functions. Although the properties of EVs from perinatal derivatives and their significant potential for therapeutic success are amply recognized, several challenges still remain that need to be addressed. In the present review, we provide an up-to-date analysis of the most recent results in the field, which can be addressed in future research in order to overcome the challenges that are still present in the characterization and utilization of the secreted complement of perinatal cells and, in particular, mesenchymal stromal cells.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA;
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Francesca Di Gaudio
- Department of Health Promotion, Maternal-Infantile Care, Excellence Internal and Specialist Medicine “G. D’Alessandro” (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| |
Collapse
|
4
|
Ganji N, Li B, Lee C, Pierro A. Necrotizing enterocolitis: recent advances in treatment with translational potential. Pediatr Surg Int 2023; 39:205. [PMID: 37247104 DOI: 10.1007/s00383-023-05476-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/30/2023]
Abstract
Necrotizing enterocolitis (NEC) is one of the most prevalent and devastating gastrointestinal disorders in neonates. Despite advances in neonatal care, the incidence and mortality due to NEC remain high, highlighting the need to devise novel treatments for this disease. There have been a number of recent advancements in therapeutic approaches for the treatment of NEC; these involve remote ischemic conditioning (RIC), stem cell therapy, breast milk components (human milk oligosaccharides, exosomes, lactoferrin), fecal microbiota transplantation, and immunotherapy. This review summarizes the most recent advances in NEC treatment currently underway as well as their applicability and associated challenges and limitations, with the aim to provide new insight into the paradigm of care for NEC worldwide.
Collapse
Affiliation(s)
- Niloofar Ganji
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Bo Li
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Carol Lee
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
5
|
Effect of the Enrichment in c-Kit Stem Cell Potential of Foetal Human Amniotic Fluid Cells: Characterization from Single Cell Analysis to the Secretome Content. Biomedicines 2023; 11:biomedicines11020430. [PMID: 36830966 PMCID: PMC9953071 DOI: 10.3390/biomedicines11020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human amniotic fluid cells (hAFSCs) are a fascinating foetal cell-type that have important stem cell characteristics; however, they are a heterogeneous population that ranges from totally differentiated or progenitor cells to highly multipotent stem cells. There is no single approach to isolating the stem cell component, but the selection of a subpopulation of hAFSCs expressing c-Kit is widely employed, while a deep characterization of the two populations is still lacking. Here we performed single-cell and bulk RNAseq analysis to compare the gene expression profiles of adherent amniotic fluid cells and their subpopulation c-Kit+. Information deriving from this high throughput technology on the transcriptome was then confirmed for specific targets with protein expression experiments and functional analysis. In particular, transcriptome profiling identified changes in cellular distribution among the different clusters that correlated with significant differential expression in pathways related to stemness, proliferation, and cell cycle checkpoints. These differences were validated by RT-PCR, immunofluorescence, WB, and cell cycle assays. Interestingly, the two populations produced secretomes with different immune-modulating and pro-regenerative potentials. Indeed, the presence of TGFβ, HGF, IDO was higher in EVs deriving from c-Kit+ cells, unlike IL-6. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting c-Kit positive fractions with higher potential in regenerative medicine applications.
Collapse
|
6
|
Ren SW, Cao GQ, Zhu QR, He MG, Wu F, Kong SM, Zhang ZY, Wang Q, Wang F. Exosomes derived from human umbilical cord mesenchymal stem cells promote osteogenesis through the AKT signaling pathway in postmenopausal osteoporosis. Aging (Albany NY) 2022; 14:10125-10136. [PMID: 36575048 PMCID: PMC9831744 DOI: 10.18632/aging.204453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Postmenopausal osteoporosis (PMO) is a relatively common disease characterized by low bone mass and microstructural changes of trabecular bone. The reduced bone strength is caused a variety of complications, including fragility fracture and sarcopenia. We used CCK-8 and EdU assays to evaluate cell proliferation rates. The osteogenesis effect was detected using ALP staining, alizarin red staining, and q-PCR. In vivo, the effects of exosomes derived from HUC-MSCs were evaluated using HE staining, IHC staining and Masson staining. In addition, we explored the mechanism of exosomes and found that the AKT signaling pathway played an important role in osteogenesis and cell proliferation. This paper mainly explored the function of exosomes derived from human umbilical cord mesenchymal stem cells (HUC-MSCs) and provided a new strategy for the treatment of postmenopausal osteoporosis. In conclusion, exogenous administration of exosomes can contribute to the treatment postmenopausal osteoporosis to a certain extent.
Collapse
Affiliation(s)
- Shi-Wei Ren
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Guang-Qing Cao
- Department of Spine Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Qing-Run Zhu
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Min-Gang He
- Department of Gastrointestinal Surgery, Shandong Tumor Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Fang Wu
- Department of Health, 960th Hospital of PLA, Jinan 250031, Shandong, China
| | - Su-Mei Kong
- Department of Health, 960th Hospital of PLA, Jinan 250031, Shandong, China
| | - Zhao-Yan Zhang
- Department of Health, 960th Hospital of PLA, Jinan 250031, Shandong, China
| | - Qiang Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Feng Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| |
Collapse
|
7
|
Bowen CM, Ditmars FS, Gupta A, Reems JA, Fagg WS. Cell-Free Amniotic Fluid and Regenerative Medicine: Current Applications and Future Opportunities. Biomedicines 2022; 10:2960. [PMID: 36428527 PMCID: PMC9687956 DOI: 10.3390/biomedicines10112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Amniotic fluid (AF) provides critical biological and physical support for the developing fetus. While AF is an excellent source of progenitor cells with regenerative properties, recent investigations indicate that cell-free AF (cfAF), which consists of its soluble components and extracellular vesicles, can also stimulate regenerative and reparative activities. This review summarizes published fundamental, translational, and clinical investigations into the biological activity and potential use of cfAF as a therapeutic agent. Recurring themes emerge from these studies, which indicate that cfAF can confer immunomodulatory, anti-inflammatory, and pro-growth characteristics to the target cells/tissue with which they come into contact. Another common observation is that cfAF seems to promote a return of cells/tissue to a homeostatic resting state when applied to a model of cell stress or disease. The precise mechanisms through which these effects are mediated have not been entirely defined, but it is clear that cfAF can safely and effectively treat cutaneous wounds and perhaps orthopedic degenerative conditions. Additional applications are currently being investigated, but require further study to dissect the fundamental mechanisms through which its regenerative effects are mediated. By doing so, rational design can be used to fully unlock its potential in the biotechnology lab and in the clinic.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Frederick S. Ditmars
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Regenerative Orthopaedics, Noida 201301, UP, India
| | - Jo-Anna Reems
- Merakris Therapeutics, RTP Frontier 800 Park Offices Dr. Suite 3322, Research Triangle Park, NC 27709, USA
- Department of Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - William Samuel Fagg
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Regenerative Orthopaedics, Noida 201301, UP, India
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Luo H, Wang Z, Qi F, Wang D. Applications of human amniotic fluid stem cells in wound healing. Chin Med J (Engl) 2022; 135:2272-2281. [PMID: 36535008 PMCID: PMC9771343 DOI: 10.1097/cm9.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Complete wound regeneration preserves skin structure and physiological functions, including sensation and perception of stimuli, whereas incomplete wound regeneration results in fibrosis and scarring. Amniotic fluid stem cells (AFSCs) would be a kind of cell population with self-renewing and non-immunogenic ability that have a considerable role in wound generation. They are easy to harvest, culture, and store; moreover, they are non-tumorigenic and not subject to ethical restrictions. They can differentiate into different kinds of cells that replenish the skin, subcutaneous tissues, and accessory organs. Additionally, AFSCs independently produce paracrine effectors and secrete them in exosomes, thereby modulating local immune cell activity. They demonstrate anti-inflammatory and immunomodulatory properties, regulate the physicochemical microenvironment of the wound, and promote full wound regeneration. Thus, AFSCs are potential resources in stem cell therapy, especially in scar-free wound healing. This review describes the biological characteristics and clinical applications of AFSCs in treating wounds and provide new ideas for the treatment of wound healing.
Collapse
Affiliation(s)
- Han Luo
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
- Department of Plastic Surgery and Burns, Fuling Central Hospital, Chongqing 408000, China
| | - Zhen Wang
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| |
Collapse
|
9
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Dobre EG, Constantin C, Neagu M. Skin Cancer Research Goes Digital: Looking for Biomarkers within the Droplets. J Pers Med 2022; 12:jpm12071136. [PMID: 35887633 PMCID: PMC9323323 DOI: 10.3390/jpm12071136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Skin cancer, which includes the most frequent malignant non-melanoma carcinomas (basal cell carcinoma, BCC, and squamous cell carcinoma, SCC), along with the difficult to treat cutaneous melanoma (CM), pose important worldwide issues for the health care system. Despite the improved anti-cancer armamentarium and the latest scientific achievements, many skin cancer patients fail to respond to therapies, due to the remarkable heterogeneity of cutaneous tumors, calling for even more sophisticated biomarker discovery and patient monitoring approaches. Droplet digital polymerase chain reaction (ddPCR), a robust method for detecting and quantifying low-abundance nucleic acids, has recently emerged as a powerful technology for skin cancer analysis in tissue and liquid biopsies (LBs). The ddPCR method, being capable of analyzing various biological samples, has proved to be efficient in studying variations in gene sequences, including copy number variations (CNVs) and point mutations, DNA methylation, circulatory miRNome, and transcriptome dynamics. Moreover, ddPCR can be designed as a dynamic platform for individualized cancer detection and monitoring therapy efficacy. Here, we present the latest scientific studies applying ddPCR in dermato-oncology, highlighting the potential of this technology for skin cancer biomarker discovery and validation in the context of personalized medicine. The benefits and challenges associated with ddPCR implementation in the clinical setting, mainly when analyzing LBs, are also discussed.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Correspondence:
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
11
|
Song MK, Sun HJ, Cho SW. Conditioned medium of amniotic fluid-derived stromal cells exerts a bone anabolic effect by enhancing progenitor population and angiogenesis. J Tissue Eng Regen Med 2022; 16:923-933. [PMID: 35819750 DOI: 10.1002/term.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022]
Abstract
A cell-free approach utilizing the paracrine effects of mesenchymal stromal cells is receiving attention in regenerative medicine. In the present study, we evaluated the effects of a conditioned medium of amniotic fluid-derived stromal cells (AFSC-CM) on bone metabolism. In mice, intraperitoneal injections of AFSC-CM increased bone mass and enhanced bone turnover. The precursor populations of myeloid and mesenchymal lineages, as well as endothelial cells in bone marrow, were also augmented by AFSC-CM administration. In an in vitro culture experiment, AFSC-CM increased osteoclast differentiation of bone marrow-derived macrophages, but had no significant effect on the osteogenic differentiation of preosteoblasts. However, AFSC-CM administration dramatically accelerated the migration and tube formation of endothelial cells, and a cytokine array showed that AFSC-CM contained many angiogenic factors. These results indicate that AFSC-CM exerts a bone anabolic effect by changing the bone marrow microenvironment, including angiogenesis and precursor expansion. Therefore, ameliorating marrow angiogenesis is a potential therapeutic strategy for bone regeneration, for which AFSCs can be a good cellular source.
Collapse
Affiliation(s)
- Min-Kyoung Song
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Daehak-ro, Jongno-gu, Seoul, Korea
| | - Hyun Jin Sun
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| |
Collapse
|
12
|
Fan Z, Jiang C, Wang Y, Wang K, Marsh J, Zhang D, Chen X, Nie L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. NANOSCALE HORIZONS 2022; 7:682-714. [PMID: 35662310 DOI: 10.1039/d2nh00070a] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs), as natural carriers of bioactive cargo, have a unique micro/nanostructure, bioactive composition, and characteristic morphology, as well as fascinating physical, chemical and biochemical features, which have shown promising application in the treatment of a wide range of diseases. However, native EVs have limitations such as lack of or inefficient cell targeting, on-demand delivery, and therapeutic feedback. Recently, EVs have been engineered to contain an intelligent core, enabling them to (i) actively target sites of disease, (ii) respond to endogenous and/or exogenous signals, and (iii) provide treatment feedback for optimal function in the host. These advances pave the way for next-generation nanomedicine and offer promise for a revolution in drug delivery. Here, we summarise recent research on intelligent EVs and discuss the use of "intelligent core" based EV systems for the treatment of disease. We provide a critique about the construction and properties of intelligent EVs, and challenges in their commercialization. We compare the therapeutic potential of intelligent EVs to traditional nanomedicine and highlight key advantages for their clinical application. Collectively, this review aims to provide a new insight into the design of next-generation EV-based theranostic platforms for disease treatment.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), Taizhou 318000, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jade Marsh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Liming Nie
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
13
|
Zavatti M, Gatti M, Beretti F, Palumbo C, Maraldi T. Exosomes Derived from Human Amniotic Fluid Mesenchymal Stem Cells Preserve Microglia and Neuron Cells from Aβ. Int J Mol Sci 2022; 23:ijms23094967. [PMID: 35563358 PMCID: PMC9105787 DOI: 10.3390/ijms23094967] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neuroinflammation is involved in neuronal cell death that occurs in neurodegenerative diseases such as Alzheimer's disease (AD). Microglia play important roles in regulating the brain amyloid beta (Aβ) levels, so immunomodulatory properties exerted by mesenchymal stem cells may be exploited to treat this pathology. The evidence suggests that the mechanism of action of human amniotic fluid stem cells (hAFSCs) is through their secretome, which includes exosomes (exo). METHODS We examined the effect of exosomes derived from human amniotic fluid stem cells (hAFSCs-exo) on activated BV-2 microglia cells by lipopolysaccharide (LPS) as a neuroinflammation model. To investigate the exo effect on the interplay between AD neurons and microglia, SH-SY5Y neuroblastoma cells treated with Aβ were exposed to a conditioned medium (CM) obtained from activated BV-2 or co-culture systems. RESULTS We found that the upregulation of the markers of pro-inflammatory microglia was prevented when exposed to hAFSC-exo whereas the markers of the anti-inflammatory macrophage phenotype were not affected. Interestingly, the hAFSC-exo pretreatment significantly inhibited the oxidative stress rise and apoptosis occurring in the neurons in presence of both microglia and Aβ. CONCLUSION We demonstrated that hAFSC-exo mitigated an inflammatory injury caused by microglia and significantly recovered the neurotoxicity, suggesting that hAFSC-exo may be a potential therapeutic agent for inflammation-related neurological conditions, including AD.
Collapse
|
14
|
Wgealla MMAMA, Liang H, Chen R, Xie Y, Li F, Qin M, Zhang X. Amniotic fluid derived stem cells promote skin regeneration and alleviate scar formation through exosomal miRNA-146a-5p via targeting CXCR4. J Cosmet Dermatol 2022; 21:5026-5036. [PMID: 35364624 DOI: 10.1111/jocd.14956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Regenerative medicine is promising in wound healing. Exosomes derived from human amniotic fluid derived stem cells(hAFS) have become an important area of research for many diseases as a key paracrine factor,but its effects in wound healing remains unknown. In this study, we investigated the possible role and possible mechanisms of hAFS in skin wound healing. METHODS hAFS were isolated from human amniotic fluid via routine amniocentesis. The mice were randomly divided into 2 groups: control group and hAFS group treated with 1.25×106 hAFS cells. immunohistochemistry staining was performed for histological analysis and qRT-PCR for assessment of gene levels. Luciferase Reporter Assay was performed for verification of target gene. RESULTS Our results demonstrated that hAFS accelerated wound closure. hAFS alleviated scar formation via promoting ECM remodeling, upregulating molecular of immune response, enhancing anti-fibrotic activity and decreasing the secretion of inflammation-associated cytokines through exosomal miRNA-146a-5p via targeting CXCR4. CONCLUSIONS Taken together, hAFS was a promising cell source for wound healing. The findings in this study provide vital references and pave the way for future research.
Collapse
Affiliation(s)
- Mutwakil Mub Arak Mohammed Ali Wgealla
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Hansi Liang
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ruihua Chen
- The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China.,Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufei Xie
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Fang Li
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Mingde Qin
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Xueguang Zhang
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
15
|
The theranostic roles of extracellular vesicles in pregnancy disorders. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Pashaei-Asl R, Pashaiasl M, Ebrahimie E, Lale Ataei M, Paknejad M. Apoptotic effects of human amniotic fluid mesenchymal stem cells conditioned medium on human MCF-7 breast cancer cell line. BIOIMPACTS : BI 2022; 13:191-206. [PMID: 37431479 PMCID: PMC10329748 DOI: 10.34172/bi.2022.23813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 07/12/2023]
Abstract
Introduction Breast cancer, as the most common malignancy among women, is shown to have a high mortality rate and resistance to chemotherapy. Research has shown the possible inhibitory role of Mesenchymal stem cells in curing cancer. Thus, the present work used human amniotic fluid mesenchymal stem cell-conditioned medium (hAFMSCs-CM) as an apoptotic reagent on the human MCF-7 breast cancer cell line. Methods Conditioned medium (CM) was prepared from hAFMSCs. After treating MCF-7 cells with CM, a number of analytical procedures (MTT, real-time PCR, western blot, and flow cytometry) were recruited to evaluate the cell viability, Bax and Bcl-2 gene expression, P53 protein expression, and apoptosis, respectively. Human fibroblast cells (Hu02) were used as the negative control. In addition, an integrated approach to meta-analysis was performed. Results The MCF-7 cells' viability was decreased significantly after 24 hours (P < 0.0001) and 72 hours (P < 0.05) of treatment. Compared with the control cells, Bax gene's mRNA expression increased and Bcl-2's mRNA expression decreased considerably after treating for 24 hours with 80% hAFMSCs-CM (P = 0.0012, P < 0.0001, respectively); an increasing pattern in P53 protein expression could also be observed. The flow cytometry analysis indicated apoptosis. Results from literature mining and the integrated meta-analysis showed that hAFMSCs-CM is able to activate a molecular network where Bcl2 downregulation stands in harmony with the upregulation of P53, EIF5A, DDB2, and Bax, leading to the activation of apoptosis. Conclusion Our finding demonstrated that hAFMSCs-CM presents apoptotic effect on MCF-7 cells; therefore, the application of hAFMSCs-CM, as a therapeutic reagent, can suppress breast cancer cells' viabilities and induce apoptosis.
Collapse
Affiliation(s)
- Roghiyeh Pashaei-Asl
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Maryam Lale Ataei
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Morelli AE, Sadovsky Y. Extracellular vesicles and immune response during pregnancy: A balancing act. Immunol Rev 2022; 308:105-122. [PMID: 35199366 DOI: 10.1111/imr.13074] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying maternal tolerance of the semi- or fully-allogeneic fetus are intensely investigated. Across gestation, feto-placental antigens interact with the maternal immune system locally within the trophoblast-decidual interface and distantly through shed cells and soluble molecules that interact with maternal secondary lymphoid tissues. The discovery of extracellular vesicles (EVs) as local or systemic carriers of antigens and immune-regulatory molecules has added a new dimension to our understanding of immune modulation prior to implantation, during trophoblast invasion, and throughout the course of pregnancy. New data on immune-regulatory molecules, located on EVs or within their cargo, suggest a role for EVs in negotiating immune tolerance during gestation. Lessons from the field of transplant immunology also shed light on possible interactions between feto-placentally derived EVs and maternal lymphoid tissues. These insights illuminate a potential role for EVs in major obstetrical disorders. This review provides updated information on intensely studied, pregnancy-related EVs, their cargo molecules, and patterns of fetal-placental-maternal trafficking, highlighting potential immune pathways that might underlie immune suppression or activation in gestational health and disease. Our summary also underscores the likely need to broaden the definition of the maternal-fetal interface to systemic maternal immune tissues that might interact with circulating EVs.
Collapse
Affiliation(s)
- Adrian E Morelli
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Clark KC, Wang D, Kumar P, Mor S, Kulubya E, Lazar S, Wang A. The Molecular Mechanisms Through Which Placental Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Myelin Regeneration. Adv Biol (Weinh) 2022; 6:e2101099. [PMID: 35023637 PMCID: PMC9225676 DOI: 10.1002/adbi.202101099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is a debilitating degenerative disease characterized by an immunological attack on the myelin sheath leading to demyelination and axon degeneration. Mesenchymal stem/stromal cells (MSCs) and secreted extracellular vesicles (EVs) have become attractive targets as therapies to treat neurodegenerative diseases such as MS due to their potent immunomodulatory and regenerative properties. The placenta is a unique source of MSCs (PMSCs), demonstrates "fetomaternal" tolerance during pregnancy, and serves as a novel source of MSCs for the treatment of neurodegenerative diseases. PMSCs and PMSC-EVs have been shown to promote remyelination in animal models of MS, however, the molecular mechanisms by which modulation of autoimmunity and promotion of myelination occurs have not been well elucidated. The current review will address the molecular mechanisms by which PMSC-EVs can promote remyelination in MS.
Collapse
|
19
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
20
|
Balsamo F, Tian Y, Pierro A, Li B. Amniotic fluid stem cells: A novel treatment for necrotizing enterocolitis. Front Pediatr 2022; 10:1020986. [PMID: 36533245 PMCID: PMC9751649 DOI: 10.3389/fped.2022.1020986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a gastrointestinal disease frequently prevalent in premature neonates. Despite advances in research, there is a lack of accurate, early diagnoses of NEC and the current therapeutic approaches remain exhausted and disappointing. In this review, we have taken a close look at the regenerative medical literature available in the context of NEC treatment. Stem cells from amniotic fluid (AFSC) administration may have the greatest protective and restorative effects on NEC. This review summarizes the potential protection and restoration AFSCs have on NEC-induced intestinal injury while comparing various components within AFSCs like conditioned medium (CM) and extracellular vesicles (EVs). In addition to therapeutic interventions that focus on targeting intestinal epithelial damage and regeneration, a novel discovery that AFSCs act in a Wnt-dependent manner provides insight into this mechanism of protection. Finally, we have highlighted the most important aspects that remain unknown that should be considered to guide future research on the translational application of AFSC-based therapy. We hope that this will be a beneficial frame of reference for the guidance of future studies and towards the clinical application of AFSC and/or its derivatives as a treatment against NEC.
Collapse
Affiliation(s)
- Felicia Balsamo
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yina Tian
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
21
|
de Kroon RR, de Baat T, Senger S, van Weissenbruch MM. Amniotic Fluid: A Perspective on Promising Advances in the Prevention and Treatment of Necrotizing Enterocolitis. Front Pediatr 2022; 10:859805. [PMID: 35359891 PMCID: PMC8964040 DOI: 10.3389/fped.2022.859805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a common and potentially fatal disease that typically affects preterm (PIs) and very low birth weight infants (VLBWIs). Although NEC has been extensively studied, the current therapeutic approaches are unsatisfactory. Due to the similarities in the composition between human amniotic fluid (AF) and human breast milk (BM), which plays a protective role in the development of NEC in PIs and VLBWIs, it has been postulated that AF has similar effects on the outcome of NEC and potential therapeutic implications. AF has been long used for its diagnostic purposes and is often discarded after birth as "biological waste". However, researchers have started to elucidate its therapeutic potential. Experimental studies in animal models have shown that diseases of various organ systems can possibly benefit from AF-based therapy. Hence, we have identified three approaches which show promising results for future clinical application in the prevention and/or treatment of NEC: (1) administration of processed AF (PAF) isolated from donor mothers, (2) administration of AF stem cells (AFSCs), and (3) administration of simulated AF (SAF) formulated to mimic the composition of physiological AF. We have highlighted the most important aspects that should be taken into account to guide further research on the clinical application of AF-based therapy. We hope that this review can provide a framework to identify the challenges of AF-based therapy and help to design future studies to better evaluate AF-based approaches for the treatment and/or prevention of NEC in PIs and VLBWIs.
Collapse
Affiliation(s)
- Rimke Romee de Kroon
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tessa de Baat
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefania Senger
- Department of Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
22
|
Deng J, Zong Z, Su Z, Chen H, Huang J, Niu Y, Zhong H, Wei B. Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect. Front Pharmacol 2021; 12:772678. [PMID: 34887766 PMCID: PMC8649959 DOI: 10.3389/fphar.2021.772678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.
Collapse
Affiliation(s)
- Jinxia Deng
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhixian Zong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Su
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haicong Chen
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- College of Dentistry, Yonsei University, Seoul, South Korea.,Department of Stomatology, Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Huan Zhong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
23
|
Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:cells10081959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
|
24
|
Miao C, Zhou W, Wang X, Fang J. The Research Progress of Exosomes in Osteoarthritis, With Particular Emphasis on the Mediating Roles of miRNAs and lncRNAs. Front Pharmacol 2021; 12:685623. [PMID: 34093208 PMCID: PMC8176107 DOI: 10.3389/fphar.2021.685623] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a kind of degenerative disease, which is caused by many factors such as aging, obesity, strain, trauma, congenital joint abnormalities, joint deformities. Exosomes are mainly derived from the invagination of intracellular lysosomes, which are released into the extracellular matrix after fusion of the outer membrane of multi vesicles with the cell membrane. Exosomes mediate intercellular communication and regulate the biological activity of receptor cells by carrying non-coding RNA, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), proteins and lipids. Evidences show that exosomes are involved in the pathogenesis of OA. In view of the important roles of exosomes in OA, this paper systematically reviewed the roles of exosomes in the pathogenesis of OA, including the roles of exosomes in OA diagnosis, the regulatory mechanisms of exosomes in the pathogenesis, and the intervention roles of exosomes in the treatment of OA. Reviewing the roles of exosomes in OA will help to clarify the pathogenesis of OA and explore new diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China.,Institute of Prevention and Treatment of Rheumatoid Arthritis of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jihong Fang
- Department of Nursing, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China.,Department of Orthopedics, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Casciaro F, Zia S, Forcato M, Zavatti M, Beretti F, Bertucci E, Zattoni A, Reschiglian P, Alviano F, Bonsi L, Follo MY, Demaria M, Roda B, Maraldi T. Unravelling Heterogeneity of Amplified Human Amniotic Fluid Stem Cells Sub-Populations. Cells 2021; 10:cells10010158. [PMID: 33467440 PMCID: PMC7830644 DOI: 10.3390/cells10010158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) are broadly multipotent immature progenitor cells with high self-renewal and no tumorigenic properties. These cells, even amplified, present very variable morphology, density, intracellular composition and stemness potential, and this heterogeneity can hinder their characterization and potential use in regenerative medicine. Celector® (Stem Sel ltd.) is a new technology that exploits the Non-Equilibrium Earth Gravity Assisted Field Flow Fractionation principles to characterize and label-free sort stem cells based on their solely physical characteristics without any manipulation. Viable cells are collected and used for further studies or direct applications. In order to understand the intrapopulation heterogeneity, various fractions of hAFSCs were isolated using the Celector® profile and live imaging feature. The gene expression profile of each fraction was analysed using whole-transcriptome sequencing (RNAseq). Gene Set Enrichment Analysis identified significant differential expression in pathways related to Stemness, DNA repair, E2F targets, G2M checkpoint, hypoxia, EM transition, mTORC1 signalling, Unfold Protein Response and p53 signalling. These differences were validated by RT-PCR, immunofluorescence and differentiation assays. Interestingly, the different fractions showed distinct and unique stemness properties. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting certain cellular fractions with the highest potential to use in regenerative medicine.
Collapse
Affiliation(s)
- Francesca Casciaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (F.C.); (M.Z.); (F.B.); (T.M.)
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy;
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, 9713 Groningen, The Netherlands;
| | | | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Manuela Zavatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (F.C.); (M.Z.); (F.B.); (T.M.)
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (F.C.); (M.Z.); (F.B.); (T.M.)
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, 41124 Modena, Italy;
| | - Andrea Zattoni
- Department of Chemistry “G. Ciamician”, University of Bologna, 40125 Bologna, Italy; (A.Z.); (P.R.)
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, University of Bologna, 40125 Bologna, Italy; (A.Z.); (P.R.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40125 Bologna, Italy; (F.A.); (L.B.)
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40125 Bologna, Italy; (F.A.); (L.B.)
| | - Matilde Yung Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy;
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, 9713 Groningen, The Netherlands;
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40125 Bologna, Italy; (A.Z.); (P.R.)
- Correspondence: ; Tel.: +39-051-209-9450
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (F.C.); (M.Z.); (F.B.); (T.M.)
| |
Collapse
|
26
|
Gatti M, Beretti F, Zavatti M, Bertucci E, Ribeiro Luz S, Palumbo C, Maraldi T. Amniotic Fluid Stem Cell-Derived Extracellular Vesicles Counteract Steroid-Induced Osteoporosis In Vitro. Int J Mol Sci 2020; 22:ijms22010038. [PMID: 33375177 PMCID: PMC7792960 DOI: 10.3390/ijms22010038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Background—Osteoporosis is characterized by defects in both quality and quantity of bone tissue, which imply high susceptibility to fractures with limitations of autonomy. Current therapies for osteoporosis are mostly concentrated on how to inhibit bone resorption but give serious adverse effects. Therefore, more effective and safer therapies are needed that even encourage bone formation. Here we examined the effect of extracellular vesicles secreted by human amniotic fluid stem cells (AFSC) (AFSC-EV) on a model of osteoporosis in vitro. Methods—human AFSC-EV were added to the culture medium of a human pre-osteoblast cell line (HOB) induced to differentiate, and then treated with dexamethasone as osteoporosis inducer. Aspects of differentiation and viability were assessed by immunofluorescence, Western blot, mass spectrometry, and histological assays. Since steroids induce oxidative stress, the levels of reactive oxygen species and of redox related proteins were evaluated. Results—AFSC-EV were able to ameliorate the differentiation ability of HOB both in the case of pre-osteoblasts and when the differentiation process was affected by dexamethasone. Moreover, the viability was increased and parallelly apoptotic markers were reduced. The presence of EV positively modulated the redox unbalance due to dexamethasone. Conclusion—these findings demonstrated that EV from hAFSC have the ability to recover precursor cell potential and delay local bone loss in steroid-related osteoporosis.
Collapse
Affiliation(s)
- Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (F.B.); (M.Z.); (S.R.L.); (C.P.)
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (F.B.); (M.Z.); (S.R.L.); (C.P.)
| | - Manuela Zavatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (F.B.); (M.Z.); (S.R.L.); (C.P.)
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Via Del Pozzo 71, 41124 Modena, Italy;
| | - Soraia Ribeiro Luz
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (F.B.); (M.Z.); (S.R.L.); (C.P.)
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (F.B.); (M.Z.); (S.R.L.); (C.P.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (F.B.); (M.Z.); (S.R.L.); (C.P.)
- Correspondence: ; Tel.: +39-05-9422-3178; Fax: +39-05-9422-4859
| |
Collapse
|
27
|
|
28
|
Oxidative Stress in Alzheimer's Disease: In Vitro Therapeutic Effect of Amniotic Fluid Stem Cells Extracellular Vesicles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2785343. [PMID: 33193997 PMCID: PMC7641262 DOI: 10.1155/2020/2785343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by abnormal protein aggregation, deposition of extracellular β-amyloid proteins (Aβ), besides an increase of oxidative stress. Amniotic fluid stem cells (AFSCs) should have a therapeutic potential for neurodegenerative disorders, mainly through a paracrine effect mediated by extracellular vesicles (EV). Here, we examined the effect of EV derived from human AFSCs (AFSC-EV) on the disease phenotypes in an AD neuron primary culture. We observed a positive effect of AFSC-EV on neuron morphology, viability, and Aβ and phospho-Tau levels. This could be due to the apoptotic and autophagic pathway modulation derived from the decrease in oxidative stress. Indeed, reactive oxygen species (ROS) were reduced, while GSH levels were enhanced. This modulation could be ascribed to the presence of ROS regulating enzymes, such as SOD1 present into the AFSC-EV themselves. This study describes the ROS-modulating effects of extracellular vesicles alone, apart from their deriving stem cell, in an AD in vitro model, proposing AFSC-EV as a therapeutic tool to stop the progression of AD.
Collapse
|
29
|
Li B, Lee C, O'Connell JS, Antounians L, Ganji N, Alganabi M, Cadete M, Nascimben F, Koike Y, Hock A, Botts SR, Wu RY, Miyake H, Minich A, Maalouf MF, Zani-Ruttenstock E, Chen Y, Johnson-Henry KC, De Coppi P, Eaton S, Maattanen P, Delgado Olguin P, Zani A, Sherman PM, Pierro A. Activation of Wnt signaling by amniotic fluid stem cell-derived extracellular vesicles attenuates intestinal injury in experimental necrotizing enterocolitis. Cell Death Dis 2020; 11:750. [PMID: 32929076 PMCID: PMC7490270 DOI: 10.1038/s41419-020-02964-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal disease primarily affecting preterm neonates and causing high morbidity, high mortality, and huge costs for the family and society. The treatment and the outcome of the disease have not changed in recent decades. Emerging evidence has shown that stimulating the Wnt/β-catenin pathway and enhancing intestinal regeneration are beneficial in experimental NEC, and that they could potentially be used as a novel treatment. Amniotic fluid stem cells (AFSC) and AFSC-derived extracellular vesicles (EV) can be used to improve intestinal injury in experimental NEC. However, the mechanisms by which they affect the Wnt/β-catenin pathway and intestinal regeneration are unknown. In our current study, we demonstrated that AFSC and EV attenuate NEC intestinal injury by activating the Wnt signaling pathway. AFSC and EV stimulate intestinal recovery from NEC by increasing cellular proliferation, reducing inflammation and ultimately regenerating a normal intestinal epithelium. EV administration has a rescuing effect on intestinal injury when given during NEC induction; however, it failed to prevent injury when given prior to NEC induction. AFSC-derived EV administration is thus a potential emergent novel treatment strategy for NEC.
Collapse
Affiliation(s)
- Bo Li
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Carol Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Joshua S O'Connell
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Niloofar Ganji
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Mashriq Alganabi
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Marissa Cadete
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Francesca Nascimben
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Yuhki Koike
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Alison Hock
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Steven R Botts
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Richard Y Wu
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Hiromu Miyake
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Adam Minich
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Michael F Maalouf
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Elke Zani-Ruttenstock
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Yong Chen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | | | - Paolo De Coppi
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Pekka Maattanen
- Biology Department, Burman University, Lacombe, AB, T4L 2E5, Canada
| | - Paul Delgado Olguin
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Heart & Stroke Richard Lewar Centre of Excellence, Toronto, ON, M5S 3H2, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Philip M Sherman
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Agostino Pierro
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
30
|
Zhang X, Sheng Y, Li B, Wang Q, Liu X, Han J. Ovarian cancer derived PKR1 positive exosomes promote angiogenesis by promoting migration and tube formation in vitro. Cell Biochem Funct 2020; 39:308-316. [PMID: 32876972 DOI: 10.1002/cbf.3583] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 12/15/2022]
Abstract
Cancer cell derived exosomes play important roles in cancer progression and modulation of the tumour microenvironment. This study aims to investigate the role of prokineticin receptor 1 (PKR1) positive exosomes on angiogenesis. In the present study, PKR1 expression in tumour samples from ovarian cancer patients were examined firstly. Then, two ovarian cancer cell lines, namely A2780 and HO-8910 cells, were used to isolate and obtain the PKR1 positive exosomes from the serum free medium. The function analysis of PKR1 positive exosomes on angiogenesis was conducted by cell proliferation and migration assay, tube formation analysis, and tumour volume assay. The results showed that PKR1 expression was down regulated in tumour samples of ovarian cancer patients compared with adjacent normal tissues. The intracellular expression of PKR1 could be detected in A2780 and HO-8910 cells. And, the isolated exosomes from the serum free medium were confirmed by transmission electron microscopic and NTA analysis, as well as the co-presence of PKR1 with exosome marker CD63. The function analysis of PKR1 positive exosomes on angiogenesis demonstrated the uptake of PKR1 positive exosomes by human umbilical vein endothelial cells through immunofluorescence staining. The angiogenesis assays in vitro indicated that PKR1 positive exosomes promoted migration and tube formation of HUVECs but not proliferation. The endogenous PKR1 was also verified to help to enhance migration and promote tube formation of vascular endothelial cells, which might involved in the phosphorylation of STAT3. Additionally, The tumour volume from exosomes treated A2780 tumour-bearing mice was significantly increased compared with the control group, accompanied with the induced PKR1 expression and phosphorylation of STAT3 level. SIGNIFICANCE OF THE STUDY: This study proved the important role of PKR1 positive exosomes released from ovarian cancer cells on promoting angiogenesis. The data indicated that PKR1 derived from ovarian cancer cells could act as an important tumour associated antigen and biomolecular factor for cellular communication in tumour microenvironment.
Collapse
Affiliation(s)
- XiaoYan Zhang
- Laboratory of Microvascular Biopathology, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - YouMing Sheng
- Microhemodynamics Laboratory, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - BingWei Li
- Laboratory of Microvascular Biopathology, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - Qin Wang
- Microhemodynamics Laboratory, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - XueTing Liu
- Laboratory of Microvascular Biopathology, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - JianQun Han
- Microhemodynamics Laboratory, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Abstract
Exosomes are small extracellular vesicles released by cells under physiological and pathological conditions. There is emerging evidence associating exosomes with tumorigenesis. They carry cargo (DNA, RNA, miRNA and protein) pertaining to the cell of origin and play a key role in intercellular communication, influencing several cellular processes. Moreover, exosomes can be shed and found in almost all body fluids, providing a source of biomarkers for tumor diagnosis and prognosis. In addition, the use of exosomes for cancer therapeutics is another research area that is gaining attention. This book chapter aims to explore the role of exosomes in tumor biogenesis, progression and clinical applications, comprehensively compiling the research for three tumor types, namely head and neck cancer, lung cancer and glioblastoma.
Collapse
|
32
|
Kluszczyńska K, Czernek L, Cypryk W, Pęczek Ł, Düchler M. Methods for the Determination of the Purity of Exosomes. Curr Pharm Des 2020; 25:4464-4485. [PMID: 31808383 DOI: 10.2174/1381612825666191206162712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exosomes open exciting new opportunities for advanced drug transport and targeted release. Furthermore, exosomes may be used for vaccination, immunosuppression or wound healing. To fully utilize their potential as drug carriers or immune-modulatory agents, the optimal purity of exosome preparations is of crucial importance. METHODS Articles describing the isolation and purification of exosomes were retrieved from the PubMed database. RESULTS Exosomes are often separated from biological fluids containing high concentrations of proteins, lipids and other molecules that keep vesicle purification challenging. A great number of purification protocols have been published, however, their outcome is difficult to compare because the assessment of purity has not been standardized. In this review, we first give an overview of the generation and composition of exosomes, as well as their multifaceted biological functions that stimulated various medical applications. Finally, we describe various methods that have been used to purify small vesicles and to assess the purity of exosome preparations and critically compare the quality of these evaluation protocols. CONCLUSION Combinations of various techniques have to be applied to reach the required purity and quality control of exosome preparations.
Collapse
Affiliation(s)
- Katarzyna Kluszczyńska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| | - Liliana Czernek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| | - Wojciech Cypryk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| | - Łukasz Pęczek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| | - Markus Düchler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Lodz, Poland
| |
Collapse
|
33
|
iTRAQ-based proteomics and in vitro experiments reveals essential roles of ACE and AP-N in the renin-angiotensin system-mediated congenital ureteropelvic junction obstruction. Exp Cell Res 2020; 393:112086. [PMID: 32416091 DOI: 10.1016/j.yexcr.2020.112086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Ureteropelvic junction obstruction (UPJO) is a common renal obstructive disorder, but its pathogenic mechanisms remain largely unclear. We aimed to investigate the potential involvement of the renin-angiotensin system in congenital UPJO pathogenesis. METHODS Differentially expressed proteins in exosomes isolated from amniotic fluid of patients with congenital UPJO were characterized using iTRAQ (isobaric tags for relative and absolute quantification)-based proteomics. The expressions of angiotensin-converting enzyme (ACE) and aminopeptidase N (AP-N) in HK2 cells were inhibited by quinapril and siRNA, respectively. Cell proliferation and reactive oxygen species were measured by EdU staining and flow cytometry, respectively. Gene expression was detected by Western blot or qRT-PCR. The inflammatory factors were measured through ELISA. Mice that underwent unilateral ureteral obstruction were used as the animal model. RESULTS The identity of exosomes from amniotic fluids was confirmed by the expression of CD9 and CD26. In total, 633 differentially expressed proteins were identified in the amniotic fluid-derived exosomes from patients with UPJO, including 376 up- and 257 down-regulated proteins associated with multiple biological processes. Of them, ACE and AP-N were significantly decreased in the amniotic fluid exosomes. Inhibition of ACE and AP-N resulted in suppressed cell proliferation; repressed IARP, AT1R, and MAS1 expression; elevated ROS production; and increased IL-1β, TNF-α, and IL-6 levels in HK2 cells. Decreased ACE expression and elevated IL-1β levels were also observed in the mouse model. CONCLUSION Suppression of ACE and AP-N expression mediates congenital UPJO pathogenesis by repressing renal tubular epithelial proliferation, promoting ROS production, and enhancing inflammatory factor expression.
Collapse
|
34
|
Lee H, He X, Le T, Carnino JM, Jin Y. Single-step RT-qPCR for detection of extracellular vesicle microRNAs in vivo: a time- and cost-effective method. Am J Physiol Lung Cell Mol Physiol 2020; 318:L742-L749. [PMID: 32073880 DOI: 10.1152/ajplung.00430.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence suggests that extracellular vesicle (EV)-associated microRNAs (miRNAs) are a potential diagnostic tool for liquid biopsy in various human diseases. However, the experimental procedure for the detection of EV-associated miRNAs (EV-miRNAs) from body fluids is relatively complex and not cost-effective. Due to the limited amount of EVs and EV-RNAs, a column-based RNA purification, which is an expensive approach, is often used to detect EV-miRNAs via reverse transcription-quantitative real-time PCR (RT-qPCR). Here, we developed and validated a simple and cost-effective method (single-step RT-qPCR) in which we directly detect EV-miRNAs without RNA purification from the EVs. We validated this protocol using the EVs isolated from mouse broncho-alveolar lavage fluid (BALF) and serum. The obtained EVs were first lysed in the EV-lysis buffer, followed by RT-qPCR without isolation and purification of RNAs. We successfully detected the designated miRNAs from lysed EVs; 106 to 107 EVs were optimal to detect the EV-miRNAs using the single-step RT-qPCR. In our previously published work, using the conventional RT-qPCR method, we have reported that miR-142 and -223 are dramatically upregulated in both BALF and serum EVs after lung infection. Hence, we reassessed and confirmed the level of EV-miR-142/223 using the newly developed single-step RT-qPCR. Notably, inhibition of RNase activity in the lysed EVs remains crucial for the detection of EV-miRNAs. Moreover, repeated freeze-thaw cycling significantly interferes the EV-miRNA quantification. Collectively, the single-step RT-qPCR for the detection of EV-miRNAs in vivo will potentially provide a fast, accurate, and convenient way to quantify circulating and/or body fluid-derived EV-miRNAs. This method may potentially be applied to the diagnostic blood testing used in the medical centers or research laboratories.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts.,Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Xue He
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Trung Le
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts
| |
Collapse
|
35
|
Bhatti G, Romero R, Rice GE, Fitzgerald W, Pacora P, Gomez-Lopez N, Kavdia M, Tarca AL, Margolis L. Compartmentalized profiling of amniotic fluid cytokines in women with preterm labor. PLoS One 2020; 15:e0227881. [PMID: 31945128 PMCID: PMC6964819 DOI: 10.1371/journal.pone.0227881] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Amniotic fluid cytokines have been implicated in the mechanisms of preterm labor and birth. Cytokines can be packaged within or on the surface of extracellular vesicles. The main aim of this study was to test whether the protein abundance internal to and on the surface of extracellular vesicles changes in the presence of sterile intra-amniotic inflammation and proven intra-amniotic infection in women with preterm labor as compared to the women with preterm labor without either intra-amniotic inflammation or proven intra-amniotic infection. Study design Women who had an episode of preterm labor and underwent an amniocentesis for the diagnosis of intra-amniotic infection or intra-amniotic inflammation were classified into three groups: 1) preterm labor without either intra-amniotic inflammation or proven intra-amniotic infection, 2) preterm labor with sterile intra-amniotic inflammation, and 3) preterm labor with intra-amniotic infection. The concentrations of 38 proteins were determined on the extracellular vesicle surface, within the vesicles, and in the soluble fraction of amniotic fluid. Results 1) Intra-amniotic inflammation, regardless of detected microbes, was associated with an increased abundance of amniotic fluid cytokines on the extracellular vesicle surface, within vesicles, and in the soluble fraction. These changes were most prominent in women with proven intra-amniotic infection. 2) Cytokine changes on the surface of extracellular vesicles were correlated with those determined in the soluble fraction; yet the magnitude of the increase was significantly different between these compartments. 3) The performance of prediction models of early preterm delivery based on measurements on the extracellular vesicle surface was equivalent to those based on the soluble fraction. Conclusions Differential packaging of amniotic fluid cytokines in extracellular vesicles during preterm labor with sterile intra-amniotic inflammation or proven intra-amniotic infection is reported herein for the first time. The current study provides insights into the biology of the intra-amniotic fluid ad may aid in the development of biomarkers for obstetrical disease.
Collapse
Affiliation(s)
- Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Detroit Medical Center, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, United States of America
- * E-mail: (RR); (GER); (ALT)
| | - Gregory Edward Rice
- Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
- * E-mail: (RR); (GER); (ALT)
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- * E-mail: (RR); (GER); (ALT)
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, United States of America
| |
Collapse
|
36
|
Zavatti M, Beretti F, Casciaro F, Bertucci E, Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis. Biofactors 2020; 46:106-117. [PMID: 31625201 DOI: 10.1002/biof.1576] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022]
Abstract
The cartilage tissue engineering associated with stem cell-related therapies is becoming very interesting since adult articular cartilage has limited intrinsic capacity for regeneration upon injury. Amniotic fluid stem cells (AFSC) have been shown to produce exosomes with growth factors and immunomodulating molecules that could stop tissue degradation and induce cartilage repair. Based on this state of the art, the main aim of this study was to explore the efficacy of the secreted exosomes, compared to their AFSC source, in MIA-induced animal model of osteoarthritis mimicking a chronic and degenerative process, where inflammation is also involved and lead to irreversible joint damage. Exosomes, obtained by the use of a commercial kit, prior to the injection in animal knee joints, were characterized for the presence of typical markers and HGF, TGFβ, and IDO. Then, analyses were performed by histology, immunohistochemistry, and behavioral scoring up to 3 weeks after the treatment. Exosome-treated defects showed enhanced pain tolerance level and improved histological scores than the AFSC-treated defects. Indeed by 3 weeks, TGFβ-rich exosome samples induced an almost complete restoration of cartilage with good surface regularity and with the characteristic of hyaline cartilage. Moreover, cells positive for resolving macrophage marker were more easily detectable into exosome-treated joints. Therefore, a modulating role for exosomes on macrophage polarization is conceivable, as demonstrated also by experiments performed on THP1 macrophages. In conclusion, this study demonstrates for the first time the efficacy of human AFSC exosomes in counteract cartilage damage, showing a positive correlation with their TGFβ content.
Collapse
Affiliation(s)
- Manuela Zavatti
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Casciaro
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Cellular Signalling Laboratory Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Tullia Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Maraldi T, Beretti F, Anselmi L, Franchin C, Arrigoni G, Braglia L, Mandrioli J, Vinceti M, Marmiroli S. Influence of selenium on the emergence of neuro tubule defects in a neuron-like cell line and its implications for amyotrophic lateral sclerosis. Neurotoxicology 2019; 75:209-220. [PMID: 31585128 DOI: 10.1016/j.neuro.2019.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
Impairment of the axonal transport system mediated by intracellular microtubules (MTs) is known to be a major drawback in neurodegenerative processes. Due to a growing interest on the neurotoxic effects of selenium in environmental health, our study aimed to assess the relationship between selenium and MTs perturbation, that may favour disease onset over a genetic predisposition to amyotrophic lateral sclerosis. We treated a neuron-like cell line with sodium selenite, sodium selenate and seleno-methionine and observed that the whole cytoskeleton was affected. We then investigated the protein interactome of cells overexpressing αTubulin-4A (TUBA4A) and found that selenium increases the interaction of TUBA4A with DNA- and RNA-binding proteins. TUBA4A ubiquitination and glutathionylation were also observed, possibly due to a selenium-dependent increase of ROS, leading to perturbation and degradation of MTs. Remarkably, the TUBA4A mutants R320C and A383 T, previously described in ALS patients, showed the same post-translational modifications to a similar extent. In conclusion this study gives insights into a specific mechanism characterizing selenium neurotoxicity.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy.
| | - Francesca Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy.
| | - Laura Anselmi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, via G. Basso 58/B, 35131, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129, Padova, Italy.
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, via G. Basso 58/B, 35131, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129, Padova, Italy.
| | - Luca Braglia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Jessica Mandrioli
- Neurology Unit, Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy.
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States.
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
38
|
Konečná B, Tóthová Ľ, Repiská G. Exosomes-Associated DNA-New Marker in Pregnancy Complications? Int J Mol Sci 2019; 20:ijms20122890. [PMID: 31200554 PMCID: PMC6627934 DOI: 10.3390/ijms20122890] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a large number of studies, the etiology of pregnancy complications remains unknown. The involvement of cell-free DNA or fetal cell-free DNA in the pathogenesis of pregnancy complications is currently being hypothesized. Cell-free DNA occurs in different forms-free; part of neutrophil extracellular traps; or as recently discovered, carried by extracellular vesicles. Cell-free DNA is believed to activate an inflammatory pathway, which could possibly cause pregnancy complications. It could be hypothesized that DNA in its free form could be easily degraded by nucleases to prevent the inflammatory activation. However, recently, there has been a growing interest in the role of exosomes, potential protectors of cell-free DNA, in pregnancy complications. Most of the interest from recent years is directed towards the micro RNA carried by exosomes. However, exosome-associated DNA in relation to pregnancy complications has not been truly studied yet. DNA, as an important cargo of exosomes, has been so far studied mostly in cancer research. This review collects all the known information on the topic of not only exosome-associated DNA but also some information on vesicles-associated DNA and the studies regarding the role of exosomes in pregnancy complications from recent years. It also suggests possible analysis of exosome-associated DNA in pregnancy from plasma and emphasizes the importance of such analysis for future investigations of pregnancy complications. A major obstacle to the advancement in this field is the proper uniformed technique for exosomes isolation. Similarly, the sensitivity of methods analyzing a small fraction of DNA, potentially fetal DNA, carried by exosomes is variable.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81108, Slovakia.
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81108, Slovakia.
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81372, Slovakia.
| |
Collapse
|
39
|
Balbi C, Lodder K, Costa A, Moimas S, Moccia F, van Herwaarden T, Rosti V, Campagnoli F, Palmeri A, De Biasio P, Santini F, Giacca M, Goumans MJ, Barile L, Smits AM, Bollini S. Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. Int J Cardiol 2019; 287:87-95. [PMID: 30987834 DOI: 10.1016/j.ijcard.2019.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The adult mammalian heart retains residual regenerative capability via endogenous cardiac progenitor cell (CPC) activation and cardiomyocyte proliferation. We previously reported the paracrine cardioprotective capacity of human amniotic fluid-derived stem cells (hAFS) following ischemia or cardiotoxicity. Here we analyse the potential of hAFS secretome fractions for cardiac regeneration and future clinical translation. METHODS hAFS were isolated from amniotic fluid leftover samples from prenatal screening. hAFS conditioned medium (hAFS-CM) was obtained following hypoxic preconditioning. Anti-apoptotic, angiogenic and proliferative effects were evaluated on rodent neonatal cardiomyocytes (r/mNVCM), human endothelial colony forming cells (hECFC) and human CPC. Mice undergoing myocardial infarction (MI) were treated with hAFS-CM, hAFS-extracellular vesicles (hAFS-EV), or EV-depleted hAFS-CM (hAFS-DM) by single intra-myocardial administration and evaluated in the short and long term. RESULTS hAFS-CM improved mNVCM survival under oxidative and hypoxic damage, induced Ca2+-dependent angiogenesis in hECFC and triggered hCPC and rNVCM proliferation. hAFS-CM treatment after MI counteracted scarring, supported cardiac function, angiogenesis and cardiomyocyte cell cycle progression in the long term. hAFS-DM had no effect. hAFS-CM and hAFS-EV equally induced epicardium WT1+ CPC reactivation. Although no CPC cardiovascular differentiation was observed, our data suggests contribution to local angiogenesis by paracrine modulation. hAFS-EV alone were able to recapitulate all the beneficial effects exerted by hAFS-CM, except for stimulation of vessel formation. CONCLUSIONS hAFS-CM and hAFS-EV can improve cardiac repair and trigger cardiac regeneration via paracrine modulation of endogenous mechanisms. While both formulations are effective in sustaining myocardial renewal, hAFS-CM retains higher pro-angiogenic potential, while hAFS-EV particularly enhances cardiac function.
Collapse
Affiliation(s)
- Carolina Balbi
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy; Molecular and Cell Cardiology Laboratory, CardioCentro Ticino, Lugano, Switzerland
| | - Kirsten Lodder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ambra Costa
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Silvia Moimas
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesco Moccia
- General Physiology Laboratory, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Tessa van Herwaarden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, IRCCS Ospedale Policlinico San Matteo, Pavia, Italy
| | - Francesca Campagnoli
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Agnese Palmeri
- Dept. of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pierangela De Biasio
- Dept. of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Santini
- Division of Cardiac Surgery, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lucio Barile
- Molecular and Cell Cardiology Laboratory, CardioCentro Ticino, Lugano, Switzerland
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy.
| |
Collapse
|
40
|
The Regenerative Potential of Amniotic Fluid Stem Cell Extracellular Vesicles: Lessons Learned by Comparing Different Isolation Techniques. Sci Rep 2019; 9:1837. [PMID: 30755672 PMCID: PMC6372651 DOI: 10.1038/s41598-018-38320-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs) mediate anti-apoptotic, pro-angiogenic, and immune-modulatory effects in multiple disease models, such as skeletal muscle atrophy and Alport syndrome. A source of potential variability in EV biological functions is how EV are isolated from parent cells. Currently, a comparative study of different EV isolation strategies using conditioned medium from AFSCs is lacking. Herein, we examined different isolation strategies for AFSC-EVs, using common techniques based on differential sedimentation (ultracentrifugation), solubility (ExoQuick, Total Exosome Isolation Reagent, Exo-PREP), or size-exclusion chromatography (qEV). All techniques isolated AFSC-EVs with typical EV morphology and protein markers. In contrast, AFSC-EV size, protein content, and yield varied depending on the method of isolation. When equal volumes of the different AFSC-EV preparations were used as treatment in a model of lung epithelial injury, we observed a significant variation in how AFSC-EVs were able to protect against cell death. AFSC-EV enhancement of cell survival appeared to be dose dependent, and largely uninfluenced by variation in EV-size distributions, relative EV-purity, or their total protein content. The variation in EV-mediated cell survival obtained with different isolation strategies emphasizes the importance of testing alternative isolation techniques in order to maximize EV regenerative capacity.
Collapse
|
41
|
Kumar P, Becker JC, Gao K, Carney RP, Lankford L, Keller BA, Herout K, Lam KS, Farmer DL, Wang A. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes. FASEB J 2019; 33:5836-5849. [PMID: 30753093 DOI: 10.1096/fj.201800972r] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have established early-gestation chorionic villus-derived placenta mesenchymal stromal cells (PMSCs) as a potential treatment for spina bifida (SB), a neural tube defect. Our preclinical studies demonstrated that PMSCs have the potential to cure hind limb paralysis in the fetal lamb model of SB via a paracrine mechanism. PMSCs exhibit neuroprotective function by increasing cell number and neurites, as shown by indirect coculture and direct addition of PMSC-conditioned medium to the staurosporine-induced apoptotic human neuroblastoma cell line, SH-SY5Y. PMSC-conditioned medium suppressed caspase activity in apoptotic SH-SY5Y cells, suggesting that PMSC secretome contributes to neuronal survival after injury. As a part of PMSC secretome, PMSC exosomes were isolated and extensively characterized; their addition to apoptotic SH-SY5Y cells mediated an increase in neurites, suggesting that they exhibit neuroprotective function. Proteomic and RNA sequencing analysis revealed that PMSC exosomes contain several proteins and RNAs involved in neuronal survival and development. Galectin 1 was highly expressed on the surface of PMSCs and PMSC exosomes. Preincubation of exosomes with anti-galectin 1 antibody decreased their neuroprotective effect, suggesting that PMSC exosomes likely impart their effect via binding of galectin 1 to cells. Future studies will include in-depth analyses of the role of PMSC exosomes on neuroprotection and their clinical applications.-Kumar, P., Becker, J. C., Gao, K., Carney, R. P., Lankford, L., Keller, B. A., Herout, K., Lam, K. S., Farmer, D. L., Wang, A. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - James C Becker
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Kewa Gao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA.,Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Randy P Carney
- Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Benjamin A Keller
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Kyle Herout
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, California, USA
| | - Diana L Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, California, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, California, USA
| |
Collapse
|
42
|
Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immunopharmacol 2018; 67:268-280. [PMID: 30572251 DOI: 10.1016/j.intimp.2018.12.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/12/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease caused by central nervous system (CNS) inflammation and immune dysfunction, which often leaves patients with severe physical disabilities. Microglia function in the surveillance of the CNS, and an imbalance in the M1/M2 phenotypes of microglia contribute to the progression of MS. Recent studies indicate that exosomes secreted by bone marrow mesenchymal stem cells (BMSCs) play therapeutic roles in many autoimmune diseases and aid in tissue repair. However, it is not clear whether BMSC-derived exosomes can attenuate MS-associated inflammation and immune dysfunction, or how BMSC exosomes protect neurons. The experimental autoimmune encephalomyelitis (EAE) rat model was used to investigate the effect of exosomes on microglia polarization and inflammation in CNS. The results showed that exosome treatment significantly decreased neural behavioral scores, reduced the infiltration of inflammatory cells into the CNS, and decreased demyelination in comparison to untreated EAE rats. In addition, exosome treatment resulted in significant increases in the levels of M2-related cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β, whereas M1-related tumor necrosis factor (TNF)-α and IL-12 levels decreased significantly. Moreover, compared with the untreated EAE group, the exosome group displayed significantly increased protein and mRNA expression levels of M2 phenotype markers, whereas M1 marker expression decreased. Our findings were further confirmed in an in vitro HAPI microglia cell line model. In conclusion, these findings indicate that BMSC-derived exosomes can attenuate inflammation and demyelination of the CNS in the EAE rat model by regulating the polarization of microglia. Therefore, the use of BMSC-derived exosomes may be a potential therapeutic approach for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Fei Liu
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang, Liaoning 110122, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
43
|
Combination of Epigallocatechin Gallate and Sulforaphane Counteracts In Vitro Oxidative Stress and Delays Stemness Loss of Amniotic Fluid Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5263985. [PMID: 30647811 PMCID: PMC6311758 DOI: 10.1155/2018/5263985] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/30/2022]
Abstract
Amniotic fluid stem cells (AFSCs) are characterized in vivo by a unique niche guarantying their homeostatic role in the body. Maintaining the functionality of stem cells ex vivo for clinical applications requires a continuous improvement of cell culture conditions. Cellular redox status plays an important role in stem cell biology as long as reactive oxygen species (ROS) concentration is finely regulated and their adverse effects are excluded. The aim of this study was to investigate the protective effect of two antioxidants, sulforaphane (SF) and epigallocatechin gallate (EGCG), against in vitro oxidative stress due to hyperoxia and freeze-thawing cycles in AFSCs. Human AFSCs were isolated and characterized from healthy subjects. Assays of metabolic function and antioxidant activity were performed to investigate the effect of SF and EGCG cotreatment on AFSCs. Real-time PCR was used to investigate the effect of the cotreatment on pluripotency, senescence, osteogenic and adipogenic markers, and antioxidant enzymes. Alkaline phosphatase assays and Alizarin Red staining were used to confirm osteogenic differentiation. The cotreatment with SF and EGCG was effective in reducing ROS production, increasing GSH levels, and enhancing the endogenous antioxidant defences through the upregulation of glutathione reductase, NAD(P)H:quinone oxidoreductase-1, and thioredoxin reductase. Intriguingly, the cotreatment sustained the stemness state by upregulating pluripotency markers such as OCT4 and NANOG. Moreover, the cotreatment influenced senescence-associated gene markers in respect to untreated cells. The cotreatment upregulated osteogenic gene markers and promoted osteogenic differentiation in vitro. SF and EGCG can be used in combination in AFSC culture as a strategy to preserve stem cell functionality.
Collapse
|
44
|
Bollini S, Smits AM, Balbi C, Lazzarini E, Ameri P. Triggering Endogenous Cardiac Repair and Regeneration via Extracellular Vesicle-Mediated Communication. Front Physiol 2018; 9:1497. [PMID: 30405446 PMCID: PMC6206049 DOI: 10.3389/fphys.2018.01497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
A variety of paracrine signals create networks within the myocardium and mediate intercellular communications. Indeed, paracrine stimulation of the endogenous regenerative program of the heart, mainly based on resident cardiac progenitor cell (CPC) activation together with cardiomyocyte proliferation, has become increasingly relevant for future cardiac medicine. In the last years, it has been shown that extracellular vesicles (EV), including exosomes (Ex), are powerful conveyors of relevant biological effects. EV have been proposed not only as promising therapeutic tool for triggering cardiac regeneration and improving repair, but also as means of better understanding the physiological and pathological relationships between specific cardiac components, including cardiomyocytes and fibroblasts. Actually, EV from different kinds of exogenous stem cells have been shown to mediate beneficial effects on the injured myocardium. Moreover, endogenous cells, like CPC can instruct cardiovascular cell types, including cardiomyocytes, while cardiac stromal cells, especially fibroblasts, secrete EV that modulate relevant aspects of cardiomyocyte biology, such as hypertrophy and electrophysiological properties. Finally, cardiomyocytes too may release EV influencing the function of other cardiac cell types. Therefore, EV-based crosstalk is thought to be important in both physiology and pathology, being involved in the responses of the heart to noxious stimuli. In this review we will discuss the role of EV in both regulating cardiac homeostasis and driving heart regeneration. In particular, we will address their role in: (i) providing cardio-protection and enhancing cardiac repair mechanisms; (ii) CPC biology; and (iii) influencing adult cardiomyocyte behavior.
Collapse
Affiliation(s)
- Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Anke M Smits
- Laboratory of Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Carolina Balbi
- Laboratory of Molecular and Cellular Cardiology, CardioCentro Ticino, Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genoa, Italy.,Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|