1
|
Xue KH, Jiang YF, Bai JY, Zhang DZ, Chen YH, Ma JB, Zhu ZJ, Wang X, Guo P. Melatonin suppresses Akt/mTOR/S6K activity, induces cell apoptosis, and synergistically inhibits cell growth with sunitinib in renal carcinoma cells via reversing Warburg effect. Redox Rep 2023; 28:2251234. [PMID: 37642220 PMCID: PMC10472857 DOI: 10.1080/13510002.2023.2251234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Metabolic alteration drives renal cell carcinoma (RCC) development, while the impact of melatonin (MLT), a neurohormone secreted during darkness, on RCC cell growth and underlying mechanisms remains unclear. METHODS We detected concentration of metabolites through metabolomic analyses using UPLC-MS/MS, and the oxygen consumption rate was determined using the Seahorse Extracellular Flux analyzer. RESULTS We observed that MLT effectively inhibited RCC cell growth both in vitro and in vivo. Additionally, MLT increased ROS levels, suppressed antioxidant enzyme activity, and induced apoptosis. Furthermore, MLT treatment upregulated key TCA cycle metabolites while reducing aerobic glycolysis products, leading to higher oxygen consumption rate, ATP production, and membrane potential. Moreover, MLT treatment suppressed phosphorylation of Akt, mTOR, and p70 S6 Kinase as well as the expression of HIF-1α/VEGFA in RCC cells; these effects were reversed by NAC (ROS inhibitors). Conversely, MLT synergistically inhibited cell growth with sunitinib and counteracted the Warburg effect induced by sunitinib in RCC cells. CONCLUSIONS In conclusion, our results indicate that MLT treatment reverses the Warburg effect and promotes intracellular ROS production, which leads to the suppression of Akt/mTOR/S6K signaling pathway, induction of cell apoptosis, and synergistically inhibition of cell growth with sunitinib in RCC cells. Overall, this study provides new insights into the mechanisms underlying anti-tumor effect of MLT in RCC cells, and suggests that MLT might be a promising therapeutic for RCC.
Collapse
Affiliation(s)
- Kai-Hua Xue
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi-Fan Jiang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ji-Yu Bai
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Di-Ze Zhang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yu-Hang Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jian-Bin Ma
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zhi-Jing Zhu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an, People’s Republic of China
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, People’s Republic of China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an, People’s Republic of China
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, People’s Republic of China
| |
Collapse
|
2
|
Cruz-Gregorio A, Aranda-Rivera AK, Amador-Martinez I, Maycotte P. Mitochondrial transplantation strategies in multifaceted induction of cancer cell death. Life Sci 2023; 332:122098. [PMID: 37734433 DOI: 10.1016/j.lfs.2023.122098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Otto Warburg hypothesized that some cancer cells reprogram their metabolism, favoring glucose metabolism by anaerobic glycolysis (Warburg effect) instead of oxidative phosphorylation, mainly because the mitochondria of these cells were damaged or dysfunctional. It should be noted that mitochondrial apoptosis is decreased because of the dysfunctional mitochondria. Strategies like mitochondrial transplantation therapy, where functional mitochondria are transplanted to cancer cells, could increase cell death, such as apoptosis, because the intrinsic apoptosis mechanisms would be reactivated. In addition, mitochondrial transplantation is associated with the redox state, which could promote synergy with common anticancer treatments such as ionizing radiation, chemotherapy, or radiotherapy, increasing cell death due to the presence or decrease of oxidative stress. On the other hand, mitochondrial transfer, a natural process for sharing mitochondrial between cells, induces an increase in chemoresistance and invasiveness in cancer cells that receive mitochondria from cells of the tumor microenvironment (TME), which indicates an antitumor therapeutic target. This review focuses on understanding mitochondrial transplantation as a therapeutic outcome induced by a procedure in aspects including oxidative stress, metabolism shifting, mitochondrial function, auto-/mitophagy, invasiveness, and chemoresistance. It also explores how these mechanisms, such as apoptosis, necroptosis, and parthanatos, impact cell death pathways. Finally, it discusses the chemoresistance and invasiveness in cancer cells associated with mitochondria transfer, indicating an antitumor therapeutic target.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, 14080 Mexico City, Mexico.
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Isabel Amador-Martinez
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, 74360 Puebla, Mexico.
| |
Collapse
|
3
|
Zhang C, Huang G, Yang J, Jiang Y, Huang R, Ye Z, Huang Y, Hu H, Xi X. Overexpression of DBT suppresses the aggressiveness of renal clear cell carcinoma and correlates with immune infiltration. Front Immunol 2023; 14:1197011. [PMID: 37383233 PMCID: PMC10293648 DOI: 10.3389/fimmu.2023.1197011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Conventional therapy for kidney renal clear cell carcinoma (KIRC) is unpromising. The tumor microenvironment (TME) is intimately linked to the invasiveness of a variety of tumor forms, including KIRC. The purpose of this research is to establish the prognostic and immune-related significance of dihydrolipoamide branched chain transacylase E2 (DBT) in individuals with KIRC. In this investigation, we discovered that DBT expression was down-regulated in a range of human malignancies, and low DBT expression in KIRC was linked to higher-level clinicopathological characteristics as well as a poor prognosis for KIRC patients. Based on the findings of univariate and multivariate Cox regression analyses, DBT might be employed as an independent prognostic factor in KIRC patients. Furthermore, we developed a nomogram to better investigate DBT's predictive usefulness. To confirm DBT expression, we examined KIRC cell lines using RT-qPCR and Western blotting. We also examined the role of DBT in KIRC using colony formation, CCK-8, EdU, transwell, and wound healing assays. We discovered that plasmid-mediated overexpression of DBT in KIRC cells slowed cell proliferation and decreased migration and invasion. Multiple enrichment analyses revealed that DBT may be involved in processes and pathways related to immunotherapy and drug metabolism. We computed the immune infiltration score and discovered that the immunological score and the ESTIMATE score were both greater in the DBT low expression group. According to the CIBERSORT algorithm, DBT seems to promote anti-cancer immune responses in KIRC by activating M1 macrophages, mast cells, and dendritic cells while inhibiting regulatory T cells. Finally, in KIRC, DBT expression was found to be highly linked to immunological checkpoints, targeted medicines, and immunotherapeutic agents. Our findings suggest that DBT is a distinct predictive biomarker for KIRC patients, playing a significant role in the TME of KIRC and serving as a reference for the selection of targeted treatment and immunotherapy.
Collapse
Affiliation(s)
- Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaomin Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiale Yang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Jiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfeng Ye
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yawei Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
He Y, Cao N, Tian Y, Wang X, Xiao Q, Tang X, Huang J, Zhu T, Hu C, Zhang Y, Deng J, Yu H, Duan P. Development and validation of two redox-related genes associated with prognosis and immune microenvironment in endometrial carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10339-10357. [PMID: 37322935 DOI: 10.3934/mbe.2023453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In recent studies, the tumourigenesis and development of endometrial carcinoma (EC) have been correlated significantly with redox. We aimed to develop and validate a redox-related prognostic model of patients with EC to predict the prognosis and the efficacy of immunotherapy. We downloaded gene expression profiles and clinical information of patients with EC from the Cancer Genome Atlas (TCGA) and the Gene Ontology (GO) dataset. We identified two key differentially expressed redox genes (CYBA and SMPD3) by univariate Cox regression and utilised them to calculate the risk score of all samples. Based on the median of risk scores, we composed low-and high-risk groups and performed correlation analysis with immune cell infiltration and immune checkpoints. Finally, we constructed a nomogram of the prognostic model based on clinical factors and the risk score. We verified the predictive performance using receiver operating characteristic (ROC) and calibration curves. CYBA and SMPD3 were significantly related to the prognosis of patients with EC and used to construct a risk model. There were significant differences in survival, immune cell infiltration and immune checkpoints between the low-and high-risk groups. The nomogram developed with clinical indicators and the risk scores was effective in predicting the prognosis of patients with EC. In this study, a prognostic model constructed based on two redox-related genes (CYBA and SMPD3) were proved to be independent prognostic factors of EC and associated with tumour immune microenvironment. The redox signature genes have the potential to predict the prognosis and the immunotherapy efficacy of patients with EC.
Collapse
Affiliation(s)
- Yan He
- Postgraduate Union Training Base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Nannan Cao
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Yanan Tian
- Postgraduate Union Training Base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Xuelin Wang
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Qiaohong Xiao
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Xiaojuan Tang
- Department of Radiography center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jiaolong Huang
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Tingting Zhu
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Chunhui Hu
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ying Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150000, China
| | - Jie Deng
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Han Yu
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- Department of Pathology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Peng Duan
- Affiliation Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| |
Collapse
|
5
|
Noser AA, Abdelmonsef AH, Salem MM. Design, synthesis and molecular docking of novel substituted azepines as inhibitors of PI3K/Akt/TSC2/mTOR signaling pathway in colorectal carcinoma. Bioorg Chem 2023; 131:106299. [PMID: 36493622 DOI: 10.1016/j.bioorg.2022.106299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
A series of novel substituted azepines (2-7) was synthesized using both traditional and ultrasonic techniques. The efficiency of the reaction rate and yield was improved by sonication technique. We identified the newly synthesized compounds based on their melting points, elemental analyses, and spectral data. Human cancers are regulated mainly by the phosphatidylinositol 3-kinase/protein kinases B (PI3K/Akt) pathway, and its abnormal activation is linked to carcinogenesis, and angiogenesis. Using in-silico studies, we evaluated the ability of all the novel substituted diazepines and oxazepines to prevent cancer growth and metastasis by targeting the PI3K/Akt signaling pathway. Based on our findings, compounds 4a and 7a were chosen for in-vitro testing as they ranked via molecular docking the highest binding energies of -10.9, -10.3, -10.6, and -10.4 kcal/mol respectively. Compounds 4a and 7a displayed significant cytotoxicity on Caco-2 colorectal cancer cells with IC50 values of 8.445 ± 2.26 and 33.04 ± 2.06 μM, respectively. Additionally, they considerably suppressed the PI3K/Akt proteins and generated reactive oxygen species (ROS), which increased p53 and Bax, decreased Bcl-2 levels, and arrested the cell cycle at sub-G0/G1 phase. We also observed a remarkable overexpression of the Tuberous Sclerosis Complex 2 (TSC2) gene, an inhibitor of the mammalian target of rapamycin (mTOR). These results showed that compounds 4a and 7a obeyed Lipinski's rule of five and might be potential cancer treatment scaffolds by preventing metastasis and proliferation via blocking the PI3K/Akt/TSC2/m-TOR signaling pathway. This supports our hypothesis that diazepine 4a and oxazepine 7a are promising drug candidates for colorectal cancer.
Collapse
Affiliation(s)
- Ahmed A Noser
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Aboubakr H Abdelmonsef
- Organic Chemistry, Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
6
|
GK-1 Induces Oxidative Stress, Mitochondrial Dysfunction, Decreased Membrane Potential, and Impaired Autophagy Flux in a Mouse Model of Breast Cancer. Antioxidants (Basel) 2022; 12:antiox12010056. [PMID: 36670920 PMCID: PMC9854788 DOI: 10.3390/antiox12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer worldwide in women. During the last decades, the mortality due to breast cancer has progressively decreased due to early diagnosis and the emergence of more effective new treatments. However, human epidermal growth factor receptor 2 (HER2) and triple-negative breast cancer (TNBC) remain with poor prognoses. In our research group, we are proposing the GK-1 immunomodulatory peptide as a new alternative for immunotherapy of these aggressive tumors. GK-1 reduced the growth rate of established tumors and effectively reduced lung metastasis in the 4T1 experimental murine model of breast cancer. Herein, the effect of GK-1 on the redox state, mitochondrial metabolism, and autophagy of triple-negative tumors that can be linked to cancer evolution was studied. GK-1 decreased catalase activity, reduced glutathione (GSH) content and GSH/oxidized glutathione (GSSG) ratio while increased hydrogen peroxide (H2O2) production, GSSG, and protein carbonyl content, inducing oxidative stress (OS) in tumoral tissues. This imbalance between reactive oxygen species (ROS) and antioxidants was related to mitochondrial dysfunction and uncoupling, characterized by reduced mitochondrial respiratory parameters and dissipation of mitochondrial membrane potential (ΔΨm), respectively. Furthermore, GK-1 likely affected autophagy flux, confirmed by elevated levels of p62, a marker of autophagy flux. Overall, the induction of OS, dysfunction, and uncoupling of the mitochondria and the reduction of autophagy could be molecular mechanisms that underlie the reduction of the 4T1 breast cancer induced by GK-1.
Collapse
|
7
|
Pontrello CG, McWhirt JM, Glabe CG, Brewer GJ. Age-Related Oxidative Redox and Metabolic Changes Precede Intraneuronal Amyloid-β Accumulation and Plaque Deposition in a Transgenic Alzheimer's Disease Mouse Model. J Alzheimers Dis 2022; 90:1501-1521. [PMID: 36278355 PMCID: PMC9789488 DOI: 10.3233/jad-220824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Many identified mechanisms could be upstream of the prominent amyloid-β (Aβ) plaques in Alzheimer's disease (AD). OBJECTIVE To profile the progression of pathology in AD. METHODS We monitored metabolic signaling, redox stress, intraneuronal amyloid-β (iAβ) accumulation, and extracellular plaque deposition in the brains of 3xTg-AD mice across the lifespan. RESULTS Intracellular accumulation of aggregated Aβ in the CA1 pyramidal cells at 9 months preceded extracellular plaques that first presented in the CA1 at 16 months of age. In biochemical assays, brain glutathione (GSH) declined with age in both 3xTg-AD and non-transgenic controls, but the decline was accelerated in 3xTg-AD brains from 2 to 4 months. The decline in GSH correlated exponentially with the rise in iAβ. Integrated metabolic signaling as the ratio of phospho-Akt (pAkt) to total Akt (tAkt) in the PI3kinase and mTOR pathway declined at 6, 9, and 12 months, before rising at 16 and 20 months. These pAkt/tAkt ratios correlated with both iAβ and GSH levels in a U-shaped relationship. Selective vulnerability of age-related AD-genotype-specific pAkt changes was greatest in the CA1 pyramidal cell layer. To demonstrate redox causation, iAβ accumulation was lowered in cultured middle-age adult 3xTg-AD neurons by treatment of the oxidized redox state in the neurons with exogenous cysteine. CONCLUSION The order of pathologic progression in the 3xTg-AD mouse was loss of GSH (oxidative redox shift) followed by a pAkt/tAkt metabolic shift in CA1, iAβ accumulation in CA1, and extracellular Aβ deposition. Upstream targets may prove strategically more effective for therapy before irreversible changes.
Collapse
Affiliation(s)
- Crystal G. Pontrello
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joshua M. McWhirt
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA,Correspondence to: Gregory J. Brewer, Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA. Tel.: +1 217 502 4511; E-mail:
| |
Collapse
|