1
|
Perdomo SJ, Fajardo CE, Cardona-Mendoza A. Laminin 332 functionalized surface improve implant roughness and oral keratinocyte bioactivity. Heliyon 2024; 10:e34507. [PMID: 39170330 PMCID: PMC11336357 DOI: 10.1016/j.heliyon.2024.e34507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Objective The biological seal (BS) at the implant-tissue interface is essential for the success of dental implants (DIs), and the absence of a proper BS can lead to peri-implantitis. The basement membrane (BM) and junctional epithelium are critical for sealing the peri-implant mucosa, and laminin 332 is an important protein in binding the epithelium to the implant surface. The aim of this study was to evaluate the response of oral keratinocytes to titanium dental implant surfaces biofunctionalized with laminin 332. Design The dental implant surface was treated with a piranha solution to create hydroxyl (OH) groups, facilitating biofunctionalization with laminin 332. The modified surface underwent scanning electron microscopy, surface roughness evaluation, and chemical composition analysis. Human keratinocytes from the Cal-27 line were then cultured on the modified implants for 24 and 48 h to assess viability, morphology, cytokine secretion, and mRNA expression of tissue repair-associated genes. Results The results showed that laminin 332 biofunctionalization of the implant surface resulted in lower values of Ra, Rq and positive surface roughness parameters Rsk, Rku and Rv. The elemental composition showed an increase in nitrogen and carbon content corresponding to protein binding. The biofunctionalized surfaces did not affect cell viability and promoted cytokine secretion (IL-1a and IL-8) and a significant increase (p < 0.05) in MCP-1, EGF, FGF, TGF and VEGF gene expression compared to the control. Conclusion In conclusion, laminin 332 coating Ti implants was shown to be effective in promoting keratinocyte adhesion, spreading, and viability. This approach could be an alternative way to improve biocompatibility.
Collapse
Affiliation(s)
- Sandra J. Perdomo
- Grupo de Inmunología Cellular y Molecular de la Universidad El Bosque-INMUBO, Colombia
| | | | - Andrés Cardona-Mendoza
- Grupo de Inmunología Cellular y Molecular de la Universidad El Bosque-INMUBO, Colombia
- School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
2
|
Butler J, Morgan S, Jones L, Upton M, Besinis A. Evaluating the antibacterial efficacy of a silver nanocomposite surface coating against nosocomial pathogens as an antibiofilm strategy to prevent hospital infections. Nanotoxicology 2024; 18:410-436. [PMID: 39051684 DOI: 10.1080/17435390.2024.2379809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial nanocoatings may be a means of preventing nosocomial infections, which account for significant morbidity and mortality. The role of hospital sink traps in these infections is also increasingly appreciated. We describe the preparation, material characterization and antibacterial activity of a pipe cement-based silver nanocoating applied to unplasticized polyvinyl chloride, a material widely used in wastewater plumbing. Three-dimensional surface topography imaging and scanning electron microscopy showed increased roughness in all surface finishes versus control, with grinding producing the roughest surfaces. Silver stability within nanocoatings was >99.89% in deionized water and bacteriological media seeded with bacteria. The nanocoating exhibited potent antibiofilm (99.82-100% inhibition) and antiplanktonic (99.59-99.99% killing) activity against three representative bacterial species and a microbial community recovered from hospital sink traps. Hospital sink trap microbiota were characterized by sequencing the 16S rRNA gene, revealing the presence of opportunistic pathogens from genera including Pseudomonas, Enterobacter and Clostridioides. In a benchtop model sink trap system, nanocoating antibiofilm activity against this community remained significant after 11 days but waned following 25 days. Silver nanocoated disks in real-world sink traps in two university buildings had a limited antibiofilm effect, even though in vitro experiments using microbial communities recovered from the same traps demonstrated that the nanocoating was effective, reducing biofilm formation by >99.6% and killing >98% of planktonic bacteria. We propose that conditioning films forming in the complex conditions of real-world sink traps negatively impact nanocoating performance, which may have wider relevance to development of antimicrobial nanocoatings that are not tested in the real-world.
Collapse
Affiliation(s)
- James Butler
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Sian Morgan
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Lewis Jones
- Clinical Microbiology, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Alexandros Besinis
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
- Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
3
|
Hillig N, Schumann-Muck F, Hamedy A, Braun PG, Koethe M. Impact of nanoscale silicon dioxide coating of stainless-steel surfaces on Listeria monocytogenes. Folia Microbiol (Praha) 2024; 69:173-180. [PMID: 37688746 PMCID: PMC10876764 DOI: 10.1007/s12223-023-01089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
High resistance to environmental factors as well as the ability to form biofilms allow Listeria monocytogenes to persist for a long time in difficult-to-reach places in food-producing plants. L. monocytogenes enters final products from contaminated surfaces in different areas of plants and poses a health risk to consumer. Modified surfaces are already used in the food industry to prevent cross-contamination. In this study, stainless-steel surfaces were coated with nanoscale silicon dioxide and the effects on attachment, bacterial growth and detachment of L. monocytogenes were evaluated. Attachment was considered for three different ways of application to simulate different scenarios of contamination. Bacterial growth of L. monocytogenes on the surface was recorded over a period of up to 8 h. Detachment was tested after cleaning inoculated stainless-steel surfaces with heated distilled water or detergent. Coating stainless-steel surfaces with nanoscale silica tends to reduce adherence and increased detachment and does not influence the bacterial growth of L. monocytogenes. Further modifications of the coating are necessary for a targeted use in the reduction of L. monocytogenes in food-processing plants.
Collapse
Affiliation(s)
- Nadja Hillig
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany.
| | - Felicitas Schumann-Muck
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Ahmad Hamedy
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Peggy G Braun
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Martin Koethe
- Institute of Food Hygiene, Faculty of Veterinary Medicine , Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Guennec A, Balnois E, Augias A, Bangoura MA, Jaffry C, Simon-Colin C, Langlois V, Azemar F, Vignaud G, Linossier I, Faÿ F, Vallée-Réhel K. Investigating the anti-bioadhesion properties of short, medium chain length, and amphiphilic polyhydroxyalkanoate films. BIOFOULING 2024; 40:177-192. [PMID: 38465991 DOI: 10.1080/08927014.2024.2326038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Silicone materials are widely used in fouling release coatings, but developing eco-friendly protection via biosourced coatings, such as polyhydroxyalcanoates (PHA) presents a major challenge. Anti-bioadhesion properties of medium chain length PHA and short chain length PHA films are studied and compared with a reference Polydimethylsiloxane coating. The results highlight the best capability of the soft and low-roughness PHA-mcl films to resist bacteria or diatoms adsorption as compared to neat PDMS and PHBHV coatings. These parameters are insufficient to explain all the results and other properties related to PHA crystallinity are discussed. Moreover, the addition of a low amount of PEG copolymers within the coatings, to create amphiphilic coatings, boosts their anti-adhesive properties. This work reveals the importance of the physical or chemical ambiguity of surfaces in their anti-adhesive effectiveness and highlights the potential of PHA-mcl film to resist the primary adhesion of microorganisms.
Collapse
Affiliation(s)
- Alexandra Guennec
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Eric Balnois
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université de Brest, Quimper, France
| | - Antoine Augias
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Mama Aïssata Bangoura
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Cédric Jaffry
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
- Institut de Recherche Dupuy de Lôme (IRDL), Université Bretagne Sud, UMR CNRS 6027, Lorient, France
| | - Christelle Simon-Colin
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Brest, IFREMER, CNRS, UMR BEEP 6197, Plouzané, France
| | - Valérie Langlois
- Institut de Chimie et des Matériaux Paris-Est (ICPME), Université Paris Est Créteil, UMR-CNRS 7182, Thiais, France
| | - Fabrice Azemar
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Guillaume Vignaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université Bretagne Sud, UMR CNRS 6027, Lorient, France
| | - Isabelle Linossier
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Fabienne Faÿ
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Karine Vallée-Réhel
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| |
Collapse
|
5
|
Georgakopoulos-Soares I, Papazoglou EL, Karmiris-Obratański P, Karkalos NE, Markopoulos AP. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Colloids Surf B Biointerfaces 2023; 231:113584. [PMID: 37837687 DOI: 10.1016/j.colsurfb.2023.113584] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
The spread of bacteria through contaminated surfaces is a major issue in healthcare, food industry, and other economic sectors. The widespread use of antibiotics is not a sustainable solution in the long term due to the development of antibiotic resistance. Therefore, surfaces with antibacterial properties have the potential to be a disruptive approach to combat microbial contamination. Different methods and approaches have been studied to impart or enhance antibacterial properties on surfaces. The surface roughness and texture are inherent parameters that significantly impact the antibacterial properties of a surface. They are also directly related to the previously employed machining and treatment methods. This review article discusses the correlation between surface roughness and antibacterial properties is presented and discussed. It begins with an introduction to the concepts of surface roughness and texture, followed by a description of the most commonly utilized machining methods and surface. A thorough analysis of bacterial adhesion and growth is then presented. Finally, the most recent studies in this research area are comprehensively reviewed. The studies are sorted and classified based on the utilized machining and treatment methods, which are divided into mechanical processes, surface treatments and coatings. Through the systematic review and record of the recent advances, the authors aim to assist and promote further research in this very promising and extremely important direction, by providing a systematic review of recent advances.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Emmanouil L Papazoglou
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Panagiotis Karmiris-Obratański
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Cracow, Poland.
| | - Nikolaos E Karkalos
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Angelos P Markopoulos
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| |
Collapse
|
6
|
Yuan L, Straub H, Shishaeva L, Ren Q. Microfluidics for Biofilm Studies. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:139-159. [PMID: 37314876 DOI: 10.1146/annurev-anchem-091522-103827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biofilms are multicellular communities held together by a self-produced extracellular matrix and exhibit a set of properties that distinguish them from free-living bacteria. Biofilms are exposed to a variety of mechanical and chemical cues resulting from fluid motion and mass transport. Microfluidics provides the precise control of hydrodynamic and physicochemical microenvironments to study biofilms in general. In this review, we summarize the recent progress made in microfluidics-based biofilm research, including understanding the mechanism of bacterial adhesion and biofilm development, assessment of antifouling and antimicrobial properties, development of advanced in vitro infection models, and advancement in methods to characterize biofilms. Finally, we provide a perspective on the future direction of microfluidics-assisted biofilm research.
Collapse
Affiliation(s)
- Lu Yuan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China;
| | - Hervé Straub
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| | - Liubov Shishaeva
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland;
| |
Collapse
|
7
|
Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS NANO 2023; 17:7064-7092. [PMID: 37027838 PMCID: PMC10134505 DOI: 10.1021/acsnano.2c12488] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the "One Health" agenda, appropriate legislation, and risk assessment.
Collapse
Affiliation(s)
- James Butler
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D. Handy
- School
of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Mathew Upton
- School
of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United
Kingdom
| | - Alexandros Besinis
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Peninsula
Dental School, Faculty of Health, University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
8
|
Arellano-Caicedo C, Ohlsson P, Bengtsson M, Beech JP, Hammer EC. Habitat complexity affects microbial growth in fractal maze. Curr Biol 2023; 33:1448-1458.e4. [PMID: 36933553 DOI: 10.1016/j.cub.2023.02.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
The great variety of earth's microorganisms and their functions are attributed to the heterogeneity of their habitats, but our understanding of the impact of this heterogeneity on microbes is limited at the microscale. In this study, we tested how a gradient of spatial habitat complexity in the form of fractal mazes influenced the growth, substrate degradation, and interactions of the bacterial strain Pseudomonas putida and the fungal strain Coprinopsis cinerea. These strains responded in opposite ways: complex habitats strongly reduced fungal growth but, in contrast, increased the abundance of bacteria. Fungal hyphae did not reach far into the mazes and forced bacteria to grow in deeper regions. Bacterial substrate degradation strongly increased with habitat complexity, even more than bacterial biomass, up to an optimal depth, while the most remote parts of the mazes showed both decreased biomass and substrate degradation. These results suggest an increase in enzymatic activity in confined spaces, where areas may experience enhanced microbial activity and resource use efficiency. Very remote spaces showing a slower turnover of substrates illustrate a mechanism which may contribute to the long-term storage of organic matter in soils. We demonstrate here that the sole effect of spatial microstructures affects microbial growth and substrate degradation, leading to differences in local microscale spatial availability. These differences might add up to considerable changes in nutrient cycling at the macroscale, such as contributing to soil organic carbon storage.
Collapse
Affiliation(s)
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Lund University, Ole Römers väg 3, 223 63 Lund, Sweden
| | - Martin Bengtsson
- Department of Biomedical Engineering, Lund University, Ole Römers väg 3, 223 63 Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Lund University, Sölvegatan 16, 223 63 Lund, Sweden
| | - Edith C Hammer
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; Centre for Environmental and Climate Science, CEC, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| |
Collapse
|
9
|
Antimicrobial surface processing of polymethyl methacrylate denture base resin using a novel silica-based coating technology. Clin Oral Investig 2023; 27:1043-1053. [PMID: 35969316 DOI: 10.1007/s00784-022-04670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study investigated the surface characteristics of denture base resin coatings prepared using a novel silica-based film containing hinokitiol and assessed the effect of this coating on Candida albicans adhesion and growth. METHODS Silica-based coating solutions (control solution; CS) and CS containing hinokitiol (CS-H) were prepared. C. albicans biofilm formed on denture base specimens coated with each solution and these uncoated specimens (control) were analyzed using colony-forming unit (CFU) assay, fluorescence microscopy, and scanning electron microscopy (SEM). Specimen surfaces were analyzed by measuring the surface roughness and wettability and with Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR). Stability of coated specimens was assessed via immersion in water for 1 week for each group (control-1w, CS-1w, and CS-H-1w) followed by CFU assay, measurement of surface roughness and wettability, and FT-IR. RESULTS CS-H and CS-H-1w contained significantly lower CFUs than those present in the control and control-1w, which was also confirmed via SEM. Fluorescence microscopy from the CS-H group identified several dead cells. The values of surface roughness from coating groups were significantly less than those from the control and control-1w. The surface wettability from all coating groups exhibited high hydrophobicity. FT-IR analyses demonstrated that specimens were successfully coated, and 1H NMR analyses showed that hinokitiol was incorporated inside CS-H. CONCLUSIONS A silica-based denture coating that incorporates hinokitiol inhibits C. albicans growth on denture. CLINICAL RELEVANCE We provide a novel antifungal denture coating which can be helpful for the treatment of denture stomatitis.
Collapse
|
10
|
The Influence of Patterned Surface Features on the Accumulation of Bovine Synovial Fluid-Induced Aggregates of Staphylococcus aureus. Appl Environ Microbiol 2022; 88:e0121722. [PMID: 36286507 PMCID: PMC9680626 DOI: 10.1128/aem.01217-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periprosthetic joint infections occurring after joint replacement are a major clinical problem requiring repeated surgeries and antibiotic interventions.
Staphylococcus aureus
is the most prominent bacterium causing most implant-related infections.
S. aureus
can form a biofilm, which is defined as a group of attached bacteria with the formation of an envelope that is resistant to antibiotics. The attachment and retention of these bacteria on implant surfaces are not clearly understood.
Collapse
|
11
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
12
|
Teutle-Coyotecatl B, Contreras-Bulnes R, Rodríguez-Vilchis LE, Scougall-Vilchis RJ, Velazquez-Enriquez U, Almaguer-Flores A, Arenas-Alatorre JA. Effect of Surface Roughness of Deciduous and Permanent Tooth Enamel on Bacterial Adhesion. Microorganisms 2022; 10:microorganisms10091701. [PMID: 36144302 PMCID: PMC9501044 DOI: 10.3390/microorganisms10091701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The adhesion of some bacteria has been attributed to critical levels of roughness in hard tissues, which increases the risk of developing caries. The objective of this work was to assess the effect of deciduous and permanent tooth enamel surface roughness on bacterial adhesion. One hundred and eight samples of deciduous and permanent enamel were divided into two groups (n = 54). G1_DE deciduous enamel and G2_PE permanent enamel. The surface roughness was measured by profilometry and atomic force microscopy (AFM). Subsequently, the evaluation of bacterial adherence was carried out in triplicate by means of the XTT cell viability test. Additionally, bacterial adhesion was observed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The average values of the micrometric roughness in both groups were similar; however, in the nanometric scale they presented significant differences. Additionally, the G1_DE group showed the highest amount of adhered S. mutans and S. sanguinis compared to the G2_EP group. Although the roughness of deciduous and permanent enamel showed contrasting results according to the evaluation technique (area and scale of analysis), bacterial adhesion was greater in deciduous enamel; hence, enamel roughness may not be a determining factor in the bacterial adhesion phenomenon.
Collapse
Affiliation(s)
- Bernardo Teutle-Coyotecatl
- Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Universidad Autónoma del Estado de México, Toluca, Estado de México C.P. 50130, Mexico
| | - Rosalía Contreras-Bulnes
- Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Universidad Autónoma del Estado de México, Toluca, Estado de México C.P. 50130, Mexico
- Correspondence:
| | - Laura Emma Rodríguez-Vilchis
- Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Universidad Autónoma del Estado de México, Toluca, Estado de México C.P. 50130, Mexico
| | - Rogelio José Scougall-Vilchis
- Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Universidad Autónoma del Estado de México, Toluca, Estado de México C.P. 50130, Mexico
| | - Ulises Velazquez-Enriquez
- Facultad de Odontología, Centro de Investigación y Estudios Avanzados en Odontología (CIEAO), Universidad Autónoma del Estado de México, Toluca, Estado de México C.P. 50130, Mexico
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, Facultad de Odontología, Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Jesús Angel Arenas-Alatorre
- Instituto de Física, Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
13
|
Ardhani R, Diana R, Pidhatika B. How Porphyromonas gingivalis Navigate the Map: The Effect of Surface Topography on the Adhesion of Porphyromonas gingivalis on Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4988. [PMID: 35888454 PMCID: PMC9318924 DOI: 10.3390/ma15144988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
The main purpose of this study is to develop an understanding of how Porphyromonas gingivalis responds to subperiosteal implant surface topography. A literature review was drawn from various electronic databases from 2000 to 2021. The two main keywords used were "Porphyromonas gingivalis" and "Surface Topography". We excluded all reviews and or meta-analysis articles, articles not published in English, and articles with no surface characterization process or average surface roughness (Ra) value. A total of 26 selected publications were then included in this study. All research included showed the effect of topography on Porphyromonas gingivalis to various degrees. It was found that topography features such as size and shape affected Porphyromonas gingivalis adhesion to subperiosteal implant materials. In general, a smaller Ra value reduces Porphyromonas gingivalis regardless of the type of materials, with a threshold of 0.3 µm for titanium.
Collapse
Affiliation(s)
- Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Rasda Diana
- Audy Dental Clinic, Jakarta 17214, Indonesia
| | - Bidhari Pidhatika
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia—PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia;
| |
Collapse
|
14
|
Biofilm Structural and Functional Features on Microplastic Surfaces in Greenhouse Agricultural Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14127024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microplastics (MPs) enter the soil through a variety of pathways, including plastic mulching, sludge, and organic manure application. In recent years, domestic and foreign experts and scholars have been concerned about the residues and contamination of MPs in the soil of greenhouse agriculture. In this investigation, five types of MPs including low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polypropylene (PP), and polyethylene terephthalate (PET), and two concentrations (1% and 5%, w/w) were used in a 30-day external exposure test. Evidence of microbial enrichment was found on the surface of the MPs. The total amount of biofilm on the surface of MPs increased dramatically with increasing exposure time and MP concentrations. The polysaccharide content of extracellular polymers (EPS) in biofilms was significantly different, and the maximum PS1 (1% (w/w) PS) concentration was 50.17 mg/L. However, EPS protein content did not change significantly. The dominant bacteria on the surface of MPs with different types and concentrations were specific, and the relative abundance of Patescibacteria was significantly changed at the phylum level. At the genus level, Methylophaga, Saccharimonadales, and Sphingomonas dominated the flora of LDPE1 (1% (w/w) LDPE), PS1, and PET5 (5% (w/w) PET). The dominant bacteria decompose organic materials and biodegrade organic contaminants. According to the FAPROTAX functional prediction study, chemoheterotrophy and aerobic chemoheterotrophyplay a role in ecosystem processes such as carbon cycle and climate regulation. The application of LDPE1 has a greater impact on the carbon cycle. Plant development and soil nutrients in greenhouse agriculture may be influenced by the interaction between MPs and microorganisms in the growing area, while MP biofilms have an impact on the surrounding environment and pose an ecological hazard.
Collapse
|
15
|
Doll PW, Doll K, Winkel A, Thelen R, Ahrens R, Stiesch M, Guber AE. Influence of the Available Surface Area and Cell Elasticity on Bacterial Adhesion Forces on Highly Ordered Silicon Nanopillars. ACS OMEGA 2022; 7:17620-17631. [PMID: 35664577 PMCID: PMC9161423 DOI: 10.1021/acsomega.2c00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Initial bacterial adhesion to solid surfaces is influenced by a multitude of different factors, e.g., roughness and stiffness, topography on the micro- and nanolevel, as well as chemical composition and wettability. Understanding the specific influences and possible interactive effects of all of these factors individually could lead to guidance on bacterial adhesion and prevention of unfavorable consequences like medically relevant biofilm formation. On this way, the aim of the present study was to identify the specific influence of the available surface area on the adhesion of clinically relevant bacterial strains with different membrane properties: Gram-positive Staphylococcus aureus and Gram-negative Aggregatibacter actinomycetemcomitans. As model surfaces, silicon nanopillar specimens with different spacings were fabricated using electron beam lithography and cryo-based reactive ion etching techniques. Characterization by scanning electron microscopy and contact angle measurement revealed almost defect-free highly ordered nanotopographies only varying in the available surface area. Bacterial adhesion forces to these specimens were quantified by means of single-cell force spectroscopy exploiting an atomic force microscope connected to a microfluidic setup (FluidFM). The nanotopographical features reduced bacterial adhesion strength by reducing the available surface area. In addition, the strain-specific interaction in detail depended on the bacterial cell's elasticity and deformability as well. Analyzed by confocal laser scanning microscopy, the obtained results on bacterial adhesion forces could be linked to the subsequent biofilm formation on the different topographies. By combining two cutting-edge technologies, it could be demonstrated that the overall bacterial adhesion strength is influenced by both the simple physical interaction with the underlying nanotopography and its available surface area as well as the deformability of the cell.
Collapse
Affiliation(s)
- Patrick W. Doll
- Institute
of Microstructure Technology (IMT), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Katharina Doll
- Department
of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower
Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Andreas Winkel
- Department
of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower
Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Richard Thelen
- Institute
of Microstructure Technology (IMT), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Ahrens
- Institute
of Microstructure Technology (IMT), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Meike Stiesch
- Department
of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower
Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Andreas E. Guber
- Institute
of Microstructure Technology (IMT), Karlsruhe
Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Wetting properties of dehydrated biofilms under different growth conditions. Colloids Surf B Biointerfaces 2021; 210:112245. [PMID: 34891062 DOI: 10.1016/j.colsurfb.2021.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/06/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022]
Abstract
Biofilms are resilient to environmental conditions and often resistant even to strong disinfectants. It is crucial to investigate their interfacial properties, which can be effectively characterized by wetting analysis. Wetting phenomena on biofilm surfaces have been poorly investigated in literature, in particular a systematic study of wetting on real biofilm-coated substrates including the application of external body forces (forced wetting, i.e.: centrifugal and gravitational forces) is missing. The aim of this work is to study the role of nutrient and shear flow conditions on wetting properties of Pseudomonas fluorescens dehydrated biofilms, grown on glass substrates. An innovative device (Kerberos®), capable to study spreading/sliding behavior under the application of external body forces, is used here for a systematic analysis of wetting/de-wetting liquid droplets on horizontal substrates under the action of tangential forces. Results prove that, under different growth conditions, (i.e., nutrients and imposed flow), biofilms exhibit different wetting properties. At lower nutrient/shear flow conditions, biofilms show spreading/sliding behavior close to that of pure glass. At higher nutrient and shear flow conditions, droplets on biofilms show spreading followed by imbibition soon after deposition, which leads to peculiar droplet depinning during the rotation test. Wetting properties are derived as a function of the rotation speed from both top and side views videoframes through a dedicated image analysis technique. A detailed analysis of biofilm formation and morphology/topography is also provided here.
Collapse
|
17
|
Richter AM, Buchberger G, Stifter D, Duchoslav J, Hertwig A, Bonse J, Heitz J, Schwibbert K. Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3000. [PMID: 34835763 PMCID: PMC8624992 DOI: 10.3390/nano11113000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different sub-micrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here.
Collapse
Affiliation(s)
- Anja M. Richter
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (A.H.); (J.B.); (K.S.)
| | - Gerda Buchberger
- Institute of Applied Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (J.H.)
| | - David Stifter
- Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (D.S.); (J.D.)
| | - Jiri Duchoslav
- Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (D.S.); (J.D.)
| | - Andreas Hertwig
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (A.H.); (J.B.); (K.S.)
| | - Jörn Bonse
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (A.H.); (J.B.); (K.S.)
| | - Johannes Heitz
- Institute of Applied Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (J.H.)
| | - Karin Schwibbert
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (A.H.); (J.B.); (K.S.)
| |
Collapse
|
18
|
Khalid S, Gao A, Wang G, Chu PK, Wang H. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci 2021; 8:6840-6857. [PMID: 32812537 DOI: 10.1039/d0bm00845a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial contamination and subsequent formation of biofilms frequently cause failure of surgical implants and a good understanding of the bacteria-surface interactions is vital to the design and safety of biomaterials. In this review, the physical and chemical factors that are involved in the various stages of implant-associated bacterial infection are described. In particular, topographical modification strategies that have been employed to mitigate bacterial adhesion via topographical mechanisms are summarized and discussed comprehensively. Recent advances have improved our understanding about bacteria-surface interactions and have enabled biomedical engineers and researchers to develop better and more effective antibacterial surfaces. The related interdisciplinary efforts are expected to continue in the quest for next-generation medical devices to attain the ultimate goal of improved clinical outcomes and reduced number of revision surgeries.
Collapse
Affiliation(s)
- Saud Khalid
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | |
Collapse
|
19
|
Grimberg AW, Grupp TM, Elliott J, Melsheimer O, Jansson V, Steinbrück A. Ceramic Coating in Cemented Primary Total Knee Arthroplasty is Not Associated With Decreased Risk of Revision due to Early Prosthetic Joint Infection. J Arthroplasty 2021; 36:991-997. [PMID: 33012599 DOI: 10.1016/j.arth.2020.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Prosthetic joint infection (PJI) is one of the most frequent and devastating causes of short-term revision total knee arthroplasty (TKA). In vitro evidence suggests ceramic surfaces demonstrate resistance to biofilm, but the clinical effect of bearing surface modifications on the risk of PJI remains unclear. This premier registry-based study examines the influence of ceramic bearing surface coatings on the outcome in cemented primary TKA. METHODS In total, 117,660 cemented primary TKAs in patients with primary osteoarthritis recorded in the German arthroplasty registry since 2012 were followed up for a maximum of 3 years. The primary endpoint was risk of revision for PJI on ceramic coated and uncoated cobalt-chromium-molybdenum femoral components. Propensity score matching for age, gender, obesity, diabetes mellitus, depression and Elixhauser comorbidity index, and substratification on common design twins with and without coating was performed. RESULTS In total, 4637 TKAs (85.1% female) with a ceramic-coated femoral component were identified, 42 had been revised for PJI and 122 for other reasons at 3 years. No survival advantage due to the risk of revision for PJI could be determined for ceramic-coated components. Revision for all other reasons demonstrated a significant higher rate for TKAs with ceramic-coated components. However, the results of this were confounded by a strong prevalence (20.7% vs 0.3%) of metal sensitivity in the ceramic-coated group. CONCLUSION No evidence of reduced risk for PJI due to ceramic-coated implants in cemented primary TKA was found. Further analysis for revision reasons other than PJI is required.
Collapse
Affiliation(s)
- Alexander W Grimberg
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany; German Arthroplasty Registry (EPRD Deutsche Endoprothesenregister gGmbH), Berlin, Germany
| | - Thomas M Grupp
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany; German Arthroplasty Registry (EPRD Deutsche Endoprothesenregister gGmbH), Berlin, Germany
| | - Johanna Elliott
- German Arthroplasty Registry (EPRD Deutsche Endoprothesenregister gGmbH), Berlin, Germany; Department of Orthopaedic Surgery and Traumatology, St Vinzenz Hospital, Dinslaken, Germany
| | - Oliver Melsheimer
- German Arthroplasty Registry (EPRD Deutsche Endoprothesenregister gGmbH), Berlin, Germany
| | - Volkmar Jansson
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany; German Arthroplasty Registry (EPRD Deutsche Endoprothesenregister gGmbH), Berlin, Germany
| | - Arnd Steinbrück
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany; German Arthroplasty Registry (EPRD Deutsche Endoprothesenregister gGmbH), Berlin, Germany; Orthopaedic Surgical Competence Center Augsburg (OCKA), Augsburg, Germany
| |
Collapse
|
20
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
21
|
Effects of Various Polishing Techniques on the Surface Characteristics of the Ti-6Al-4V Alloy and on Bacterial Adhesion. COATINGS 2020. [DOI: 10.3390/coatings10111057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ti-6Al-4V, although widely used in dental materials, causes peri-implant inflammation due to the long-term accumulation of bacteria around the implant, resulting in bone loss and eventual failure of the implant. This study aims to overcome the problem of dental implant infection by analyzing the influence of Ti-6Al-4V surface characteristics on the quantity of accumulated bacteria. Ti-6Al-4V specimens, each with different surface roughness are produced by mechanical, chemical, and electrolytic polishing. The surface roughness, surface contact angle, surface oxygen content, and surface structure were measured via atomic force microscopy (AFM), laser scanning confocal microscopy (LSCM), drop shape analysis (using sessile drop), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The micro and macro surface roughness are 10.33–120.05 nm and 0.68–2.34 μm, respectively. The surface X direction and Y direction contact angle are 21.38°–96.44° and 18.37°–92.72°, respectively. The surface oxygen content is 47.36–59.89 at.%. The number of colonies and the optical density (OD) are 7.87 × 106–17.73 × 106 CFU/mL and 0.189–0.245, respectively. The bacterial inhibition were the most effective under the electrolytic polishing of Ti-6Al-4V. The electrolytic polishing of Ti-6Al-4V exhibited the best surface characteristics: the surface roughness of 10 nm, surface contact angle of 92°, and surface oxygen content of 54 at.%, respectively. This provides the best surface treatment of Ti-6Al-4V in dental implants.
Collapse
|
22
|
Voegel C, Durban N, Bertron A, Landon Y, Erable B. Evaluation of microbial proliferation on cementitious materials exposed to biogas systems. ENVIRONMENTAL TECHNOLOGY 2020; 41:2439-2449. [PMID: 30624151 DOI: 10.1080/09593330.2019.1567610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Understanding the interactions between biofilm and cementitious materials in biogas production systems is an essential step toward the development of durable concrete for this expanding sector. Although the action of the liquid phase medium on the material has been the subject of several research studies, the possible impact of the material's properties on biofilm formation and composition has been little investigated, if at all. The aim of this paper is to evaluate the characteristics of the biofilm according to the surface properties of the materials. Four cementitious materials with different chemical and mineralogical compositions, and various topological surface characteristics (pastes of CEM I, CEM III/C and CAC, and CEM I paste treated with oxalic acid) were exposed to the liquid phase of a fermenting biowaste for 10 weeks. The steps of biofilm formation were observed using SEM. Even though all the cementitious material surfaces were intensely colonized at the end of the experiments, the establishment of the biofilm seems to have been delayed on the oxalate-treated CEM I and on CAC coupons. Roughness and surface pH effects were not of prime importance for the biofilm development. The analysis of bacterial population diversity using 16S rDNA sequencing showed a less diversified microbial flora in the biofilm than in the reaction medium.
Collapse
Affiliation(s)
- Célestine Voegel
- LMDC, Université de Toulouse, UPS, Toulouse, France
- LGC, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Nadège Durban
- LMDC, Université de Toulouse, UPS, Toulouse, France
- LGC, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Yann Landon
- ICA, Université de Toulouse, UPS/INSA/Mines Albi/ISAE, Toulouse, France
| | - Benjamin Erable
- LGC, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
23
|
Richards C, Slaimi A, O’Connor NE, Barrett A, Kwiatkowska S, Regan F. Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. Int J Mol Sci 2020; 21:ijms21145063. [PMID: 32709068 PMCID: PMC7404281 DOI: 10.3390/ijms21145063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023] Open
Abstract
The imitation of natural systems to produce effective antifouling materials is often referred to as “biomimetics”. The world of biomimetics is a multidisciplinary one, needing careful understanding of “biological structures”, processes and principles of various organisms found in nature and based on this, designing nanodevices and nanomaterials that are of commercial interest to industry. Looking to the marine environment for bioinspired surfaces offers researchers a wealth of topographies to explore. Particular attention has been given to the evaluation of textures based on marine organisms tested in either the laboratory or the field. The findings of the review relate to the numbers of studies on textured surfaces demonstrating antifouling potential which are significant. However, many of these are only tested in the laboratory, where it is acknowledged a very different response to fouling is observed.
Collapse
Affiliation(s)
- Chloe Richards
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Asma Slaimi
- Insight Centre for Data Analytics, Dublin City University, Dublin 9, Ireland; (A.S.); (N.E.O.)
| | - Noel E. O’Connor
- Insight Centre for Data Analytics, Dublin City University, Dublin 9, Ireland; (A.S.); (N.E.O.)
| | - Alan Barrett
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Sandra Kwiatkowska
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
- Correspondence:
| |
Collapse
|
24
|
Abstract
Ceramic water filters (CWFs) are point-of-use drinking water treatment systems that are manufactured and used in under-served communities around the world. The clayey material (CM) used to manufacture CWFs is a locally sourced mixture of clay, sand, slit and amorphous material (usually dug near the CWF factory). CM varies in composition and purity depending on the geographical location and geological setting. In this study, a set of 13 CM samples collected from around the world were analyzed using grain size analysis, as well as liquid and plastic limit tests. Mineralogical composition was determined using X-ray diffraction. A selection of three CM samples (Guatemala, Canada, and Guinea Bissau) with a range of compositions were used to study biofilm growth on CM before and after firing. Biofilm coverage was studied on CM (before firing) and CWF material (after firing) using Pseudomonas fluorescens Migula. The average biofilm coverages for Guatemala, Canada, and Guinea Bissau CM were 20.03 ± 2.80%, 19.28 ± 0.91%, and 9.88 ± 4.02%, respectively. The average biofilm formation coverages for Guatemala, Canada, and Guinea Bissau CWF were 13.08 ± 1.74%, 10.36 ± 3.41%, and 8.66 ± 0.13%, respectively. The results presented here suggest that CM can be manipulated to manufacture better performing CWFs by engineering the soil characteristics, such as grain size, liquid and plastic limits, and mineralogy. This could improve the durability and biofilm resistance of CWFs.
Collapse
|
25
|
Tamayo L, Melo F, Caballero L, Hamm E, Díaz M, Leal MS, Guiliani N, Urzúa MD. Does Bacterial Elasticity Affect Adhesion to Polymer Fibers? ACS APPLIED MATERIALS & INTERFACES 2020; 12:14507-14517. [PMID: 32118396 DOI: 10.1021/acsami.9b21060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The factors governing bacterial adhesion to substrates with different topographies are still not fully identified. The present work seeks to elucidate for the first time and with quantitative data the roles of bacterial elasticity and shape and substrate topography in bacterial adhesion. With this aim, populations of three bacterial species, P. aeruginosa DSM 22644, B. subtilis DSM 10, and S. aureus DSM 20231 adhered on flat substrates covered with electrospun polycaprolactone fibers of different diameters ranging from 0.4 to 5.5 μm are counted. Populations of bacterial cells are classified according to the preferred binding sites of the bacteria to the substrate. The colloidal probe technique was used to assess the stiffness of the bacteria and bacteria-polymer surface adhesion energy. A theoretical model is developed to interpret the observed populations in terms of a balance between stiffness and adhesion energy of the bacteria. The model, which also incorporates the radius of the fiber and the size and shape of the bacteria, predicts increased adhesion for a low level of stiffness and for a larger number of available bacteria-fiber contact points. Te adhesive propensity of bacteria depends in a nontrivial way on the radius of the fibers due to the random arrangement of fibers.
Collapse
Affiliation(s)
- Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| | - Francisco Melo
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
- Center for Soft Matter Research, SMAT-C, Avenida Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Leonardo Caballero
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
- Center for Soft Matter Research, SMAT-C, Avenida Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Eugenio Hamm
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
| | - M Díaz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago 3425, Chile
| | - M S Leal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| | - N Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago 3425, Chile
| | - M D Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| |
Collapse
|
26
|
Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8020078] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial biofilms are biological structures composed of surface-attached microbial communities embedded in an extracellular polymeric matrix. In aquatic environments, the microbial colonization of submerged surfaces is a complex process involving several factors, related to both environmental conditions and to the physical-chemical nature of the substrates. Several studies have addressed this issue; however, more research is still needed on microbial biofilms in marine ecosystems. After a brief report on environmental drivers of biofilm formation, this study reviews current knowledge of microbial community attached to artificial substrates, as obtained by experiments performed on several material types deployed in temperate and extreme polar marine ecosystems. Depending on the substrate, different microbial communities were found, sometimes highlighting the occurrence of species-specificity. Future research challenges and concluding remarks are also considered. Emphasis is given to future perspectives in biofilm studies and their potential applications, related to biofouling prevention (such as cell-to-cell communication by quorum sensing or improved knowledge of drivers/signals affecting biological settlement) as well as to the potential use of microbial biofilms as sentinels of environmental changes and new candidates for bioremediation purposes.
Collapse
|
27
|
Ghilini F, Pissinis DE, Miñán A, Schilardi PL, Diaz C. How Functionalized Surfaces Can Inhibit Bacterial Adhesion and Viability. ACS Biomater Sci Eng 2019; 5:4920-4936. [DOI: 10.1021/acsbiomaterials.9b00849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fiorela Ghilini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Diego E. Pissinis
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Alejandro Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Patricia L. Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Carolina Diaz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| |
Collapse
|
28
|
Morozov IA, Kamenetskikh AS, Beliaev AY, Scherban MG, Lemkina LM, Eroshenko DV, Korobov VP. The Effect of Damage of a Plasma-Treated Polyurethane Surface on Bacterial Adhesion. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091903014x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Hulander M, Valen-Rukke H, Sundell G, Andersson M. Influence of Fibrinogen on Staphylococcus epidermidis Adhesion Can Be Reversed by Tuning Surface Nanotopography. ACS Biomater Sci Eng 2019; 5:4323-4330. [DOI: 10.1021/acsbiomaterials.9b00450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mats Hulander
- Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
- Nordic Institute of Dental Materials, Sognsveien 70 A, 0855 Oslo, Norway
| | - Håkon Valen-Rukke
- Nordic Institute of Dental Materials, Sognsveien 70 A, 0855 Oslo, Norway
| | - Gustav Sundell
- Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
| | - Martin Andersson
- Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
| |
Collapse
|
30
|
Tran PA, O'Brien-Simpson N, Palmer JA, Bock N, Reynolds EC, Webster TJ, Deva A, Morrison WA, O'Connor AJ. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int J Nanomedicine 2019; 14:4613-4624. [PMID: 31308651 PMCID: PMC6616172 DOI: 10.2147/ijn.s197737] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/16/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Bacterial infection is a common and serious complication in orthopedic implants following traumatic injury, which is often associated with extensive soft tissue damage and contaminated wounds. Multidrug-resistant bacteria have been found in these infected wounds, especially in patients who have multi trauma and prolonged stay in intensive care units.Purpose: The objective of this study was to develop a coating on orthopedic implants that is effective against drug-resistant bacteria. Methods and results: We applied nanoparticles (30-70nm) of the trace element selenium (Se) as a coating through surface-induced nucleation-deposition on titanium implants and investigated the antimicrobial activity against drug resistant bacteria including Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-resistant Staphylococcus epidermidis (MRSE) in vitro and in an infected femur model in rats.The nanoparticles were shown in vitro to have antimicrobial activity at concentrations as low as 0.5ppm. The nanoparticle coatings strongly inhibited biofilm formation on the implants and reduced the number of viable bacteria in the surrounding tissue following inoculation of implants with biofilm forming doses of bacteria. Conclusion: This study shows a proof of concept for a selenium nanoparticle coatings as a potential anti-infective barrier for orthopedic medical devices in the setting of contamination with multi-resistant bacteria. It also represents one of the few (if only) in vivo assessment of selenium nanoparticle coatings on reducing antibiotic-resistant orthopedic implant infections.
Collapse
Affiliation(s)
- Phong A Tran
- School of Chemistry, Physics and Mechanical Engeneering, Faculty of Science and Engeneering, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia.,Interface Science and Materials Engineering Group, School of Chemistry, Physics & Mechanical Engineering, QUT, Brisbane, Queensland 4000, Australia.,Departments of Chemical and Biomedical Engineering, The Particulate Fluid Processing Centre, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Neil O'Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jason A Palmer
- O' Brien Institute, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Nathalie Bock
- School of Chemistry, Physics and Mechanical Engeneering, Faculty of Science and Engeneering, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia.,School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Translational Research Institute, QUT, Brisbane, QLD, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Anand Deva
- Surgical Infection Research Group, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Wayne A Morrison
- O' Brien Institute, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Andrea J O'Connor
- Departments of Chemical and Biomedical Engineering, The Particulate Fluid Processing Centre, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Barnes M, Feit C, Grant TA, Brisbois EJ. Antimicrobial polymer modifications to reduce microbial bioburden on endotracheal tubes and ventilator associated pneumonia. Acta Biomater 2019; 91:220-234. [PMID: 31022549 DOI: 10.1016/j.actbio.2019.04.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
Hospital associated infections (HAIs), infections acquired by patients during care in a hospital, remain a prevalent issue in the healthcare field. These infections often occur with the use of indwelling medical devices, such as endotracheal tubes (ETTs), that can result in ventilator-associated pneumonia (VAP). When examining the various routes of infection, VAP is associated with the highest incidence, rate of morbidity, and economic burden. Although ETTs are essential for the survival of patients requiring mechanical ventilation, their use comes with complications. The presence of an ETT in the airway impairs physiological host defense mechanisms for clearance of pathogens and provides a platform for oropharynx microorganism transport to the sterile tracheobronchial network. Antibiotics are administered to treat lower respiratory infections; however, they are not always effective and consequently can result in increased antibiotic resistance. Prophylactic approaches by altering the surface of ETTs to prevent the establishment and growth of bacteria have exhibited promising results. In addition, passive surface modifications that prevent bacterial establishment and growth, or active coatings that possess a bactericidal effect have also proven effective. In this review we aim to highlight the importance of preventing biofilm establishment on indwelling medical devices, focusing on ETTs. We will investigate successful antimicrobial modifications to ETTs and the future avenues that will ultimately decrease HAIs and improve patient care. STATEMENT OF SIGNIFICANCE: Infections that occur with indwelling medicals devices remain a constant concern in the medical field and can result in hospital-acquired infections. Specifically, ventilator associated pneumonia (VAP) occurs with the use of an endotracheal tube (ETT). Infections often require use of antibiotics and can result in patient mortality. Our review includes a summary of the recent collective work of antimicrobial ETT modifications and potential avenues for further investigations in an effort to reduce VAP associated with ETTs. Polymer modifications with antibacterial nature have been developed and tested; however, a focus on ETTs is lacking and clinical availability of new antimicrobial ETT devices is limited. Our collective work shows the successful and prospective applications to the surfaces of ETTs that can support researchers and physicians to create safer medical devices.
Collapse
|
32
|
Reed JH, Gonsalves AE, Román JK, Oh J, Cha H, Dana CE, Toc M, Hong S, Hoffman JB, Andrade JE, Jo KD, Alleyne M, Miljkovic N, Cropek DM. Ultrascalable Multifunctional Nanoengineered Copper and Aluminum for Antiadhesion and Bactericidal Applications. ACS APPLIED BIO MATERIALS 2019; 2:2726-2737. [DOI: 10.1021/acsabm.8b00765] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Julian H. Reed
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), 2902 Newmark Drive, Champaign, Illinois 61822, United States
| | - Andrew E. Gonsalves
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), 2902 Newmark Drive, Champaign, Illinois 61822, United States
| | - Jessica K. Román
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), 2902 Newmark Drive, Champaign, Illinois 61822, United States
| | - Junho Oh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana−Champaign, 1206 West Green Street, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 8190395, Japan
| | - Hyeongyun Cha
- Department of Mechanical Science and Engineering, University of Illinois at Urbana−Champaign, 1206 West Green Street, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 8190395, Japan
| | - Catherine E. Dana
- Department of Entomology, University of Illinois at Urbana−Champaign, 505 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Marco Toc
- Department of Food Science and Human Nutrition, University of Illinois at Urbana−Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Sungmin Hong
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), 2902 Newmark Drive, Champaign, Illinois 61822, United States
| | - Jacob B. Hoffman
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), 2902 Newmark Drive, Champaign, Illinois 61822, United States
| | - Juan E. Andrade
- Department of Food Science and Human Nutrition, University of Illinois at Urbana−Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Kyoo D. Jo
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), 2902 Newmark Drive, Champaign, Illinois 61822, United States
| | - Marianne Alleyne
- Department of Entomology, University of Illinois at Urbana−Champaign, 505 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana−Champaign, 1206 West Green Street, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, 1206 West Green Street, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana−Champaign, 104 South Goodwin Avenue, MC-230, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 8190395, Japan
| | - Donald M. Cropek
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL), 2902 Newmark Drive, Champaign, Illinois 61822, United States
| |
Collapse
|
33
|
Fernandez-Moure JS, Mydlowska A, Shin C, Vella M, Kaplan LJ. Nanometric Considerations in Biofilm Formation. Surg Infect (Larchmt) 2019; 20:167-173. [DOI: 10.1089/sur.2018.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Anna Mydlowska
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Michael Vella
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lewis J. Kaplan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Elbourne A, Chapman J, Gelmi A, Cozzolino D, Crawford RJ, Truong VK. Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. J Colloid Interface Sci 2019; 546:192-210. [PMID: 30921674 DOI: 10.1016/j.jcis.2019.03.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The attachment of single-celled organisms, namely bacteria and fungi, to abiotic surfaces is of great interest to both the scientific and medical communities. This is because the interaction of such cells has important implications in a range of areas, including biofilm formation, biofouling, antimicrobial surface technologies, and bio-nanotechnologies, as well as infection development, control, and mitigation. While central to many biological phenomena, the factors which govern microbial surface attachment are still not fully understood. This lack of understanding is a direct consequence of the complex nature of cell-surface interactions, which can involve both specific and non-specific interactions. For applications involving micro- and nano-structured surfaces, developing an understanding of such phenomenon is further complicated by the diverse nature of surface architectures, surface chemistry, variation in cellular physiology, and the intended technological output. These factors are extremely important to understand in the emerging field of antibacterial nanostructured surfaces. The aim of this perspective is to re-frame the discussion surrounding the mechanism of nanostructured-microbial surface interactions. Broadly, the article reviews our current understanding of these phenomena, while highlighting the knowledge gaps surrounding the adhesive forces which govern bacterial-nanostructure interactions and the role of cell membrane rigidity in modulating surface activity. The roles of surface charge, cell rigidity, and cell-surface adhesion force in bacterial-surface adsorption are discussed in detail. Presently, most studies have overlooked these areas, which has left many questions unanswered. Further, this perspective article highlights the numerous experimental issues and misinterpretations which surround current studies of antibacterial nanostructured surfaces.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia.
| | - James Chapman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Amy Gelmi
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Daniel Cozzolino
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
35
|
Wandiyanto JV, Cheeseman S, Truong VK, Kobaisi MA, Bizet C, Juodkazis S, Thissen H, Crawford RJ, Ivanova EP. Outsmarting superbugs: bactericidal activity of nanostructured titanium surfaces against methicillin- and gentamicin-resistantStaphylococcus aureusATCC 33592. J Mater Chem B 2019. [DOI: 10.1039/c9tb00102f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The colonisation of biomaterial surfaces by pathogenic bacteria is a significant issue of concern, particularly in light of the rapid rise of antibiotic resistance.
Collapse
Affiliation(s)
- Jason V. Wandiyanto
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122 VIC
| | - Samuel Cheeseman
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne 3000 VIC
| | - Vi Khanh Truong
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne 3000 VIC
| | - Mohammad Al Kobaisi
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122 VIC
| | | | - Saulius Juodkazis
- Centre for Micro-Photonics
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122 VIC
| | | | - Russell J. Crawford
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne 3000 VIC
| | - Elena P. Ivanova
- School of Science
- College of Science
- Engineering and Health
- RMIT University
- Melbourne 3000 VIC
| |
Collapse
|
36
|
Elbourne A, Truong VK, Cheeseman S, Rajapaksha P, Gangadoo S, Chapman J, Crawford RJ. The use of nanomaterials for the mitigation of pathogenic biofilm formation. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Choi SW, Kim J. Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1125. [PMID: 29966397 PMCID: PMC6073408 DOI: 10.3390/ma11071125] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
The eye has many barriers with specific anatomies that make it difficult to deliver drugs to targeted ocular tissues, and topical administration using eye drops or ointments usually needs multiple instillations to maintain the drugs’ therapeutic concentration because of their low bioavailability. A drug-eluting contact lens is one of the more promising platforms for controllable ocular drug delivery, and, among various manufacturing methods for drug-eluting contact lenses, incorporation of novel polymeric vehicles with versatile features makes it possible to deliver the drugs in a sustained and extended manner. Using the diverse physicochemical properties of polymers for nanoparticles or implants that are selected according to the characteristics of drugs, enhancement of encapsulation efficiency and prolonged drug release are possible. Even though therapeutic contact lenses with polymeric vehicles allow us to achieve sustained ocular drug delivery, drug leaching during storage and distribution and the possibility of problems related to surface roughness due to the incorporated vehicles still need to be discussed before application in a real clinic. This review highlights the overall trends in methodology to develop therapeutic contact lenses with polymeric vehicles and discusses the limitations including comparison to cosmetically tinted soft contact lenses.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| |
Collapse
|
38
|
Madanat R, Laaksonen I, Graves SE, Lorimer M, Muratoglu O, Malchau H. Ceramic bearings for total hip arthroplasty are associated with a reduced risk of revision for infection. Hip Int 2018; 28:222-226. [PMID: 30165763 DOI: 10.1177/1120700018776464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Periprosthetic joint infection (PJI) is a serious complication after total hip arthroplasty (THA) and bearing material's associations to PJI prevalence is largely unknown. The main purposes of this study were to determine if revision for infection varied depending on the type of bearing surface used in primary THA and to study whether patient or implant related factors had an effect on this variation. METHODS A total of 177,237 primary THA procedures from the Australian Registry (AOANJRR) were analysed. 3 bearing surfaces were compared. Metal-on-highly cross-linked polyethylene (MoXP) bearing had been used in 95,129 hips, ceramic-on-highly cross-linked polyethylene (CoXP) in 24,269 hips, and ceramic-on-ceramic (CoC) in 57,839 hips. Revision rates for infection were compared between the 3 groups. RESULTS Both MoXP and CoXP had a higher revision rate for infection compared to CoC hips (hazard ratio [HR] 1.46 (1.25, 1.72), p < 0.001) and HR 1.42 (1.15, 1.75), p = 0.001 respectively). Patients aged 70 years or less had a lower revision rate for infection when a CoC bearing was used. This difference was independent of sex, and prostheses selection. No difference was evident if the femoral component was cemented or a head size of 28 mm was used. DISCUSSION In this registry-based material, use of a CoC bearing was associated with a lower risk of revision for infection in patients younger than 70 years when cementless femoral components were used. Further studies are needed to verify this finding.
Collapse
Affiliation(s)
- Rami Madanat
- 1 Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA, USA
- 2 Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
- 3 Harvard Medical School, Boston, MA, USA
| | - Inari Laaksonen
- 1 Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA, USA
- 3 Harvard Medical School, Boston, MA, USA
| | - Stephen E Graves
- 4 Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR), Adelaide, SA, Australia
| | - Michelle Lorimer
- 5 South Australia Health and Medical Research Institution (SAHMRI), Adelaide, SA, Australia
| | - Orhun Muratoglu
- 1 Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA, USA
- 2 Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - Henrik Malchau
- 1 Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, MA, USA
- 2 Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
39
|
Zhang J, Huang J, Say C, Dorit RL, Queeney KT. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates. J Colloid Interface Sci 2018; 519:203-213. [PMID: 29500992 DOI: 10.1016/j.jcis.2018.02.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (<100 nm) features. However, determining the role of topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. EXPERIMENTS Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. FINDINGS The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied.
Collapse
Affiliation(s)
- Jing Zhang
- Biochemistry Program, Smith College, Northampton, MA 01063, USA.
| | - Jinglin Huang
- Picker Engineering Program, Smith College, Northampton, MA 01063, USA.
| | - Carmen Say
- Biochemistry Program, Smith College, Northampton, MA 01063, USA.
| | - Robert L Dorit
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | - K T Queeney
- Department of Chemistry, Smith College, Northampton, MA 01063, USA.
| |
Collapse
|
40
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
41
|
Boden A, Bhave M, Wang PY, Jadhav S, Kingshott P. Binary Colloidal Crystal Layers as Platforms for Surface Patterning of Puroindoline-Based Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2264-2274. [PMID: 29281884 DOI: 10.1021/acsami.7b10392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability of bacteria to form biofilms and the emergence of antibiotic-resistant strains have prompted the need to develop the next generation of antibacterial coatings. Antimicrobial peptides (AMPs) are showing promise as molecules that can address these issues, especially if used when immobilized as a surface coating. We present a method that explores how surface patterns together with the selective immobilization of an AMP called PuroA (FPVTWRWWKWWKG-NH2) can be used to both kill bacteria and also as a tool to study bacterial attachment mechanisms. Surface patterning is achieved using stabilized self-assembled binary colloidal crystal (BCC) layers, allowing selective PuroA immobilization to carboxylated particles using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide (EDC) hydrochloride/N-hydroxysuccinimide (NHS) coupling chemistry. Covalent immobilization of PuroA was compared with physical adsorption (i.e., without the addition of EDC/NHS). The AMP-functionalized colloids and BCC layers were characterized by X-ray photoelectron spectroscopy, ζ potentials, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surface antimicrobial activity was assessed by viability assays using Escherichia coli. MALDI-TOF MS analysis revealed that although not all of PuroA was successfully covalently immobilized, a relatively low density of PuroA (1.93 × 1013 molecules/cm2 and 7.14 × 1012 molecules/cm2 for covalent and physical immobilization, respectively) was found to be sufficient at significantly decreasing the viability of E. coli by 70% when compared to that of control samples. The findings provide a proof of concept that BCC layers are a suitable platform for the patterned immobilization of AMPs and the importance of ascertaining the success of small-molecule grafting reactions using surface-MALDI, something that is often assumed to be successful in the field.
Collapse
Affiliation(s)
- Andrew Boden
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Snehal Jadhav
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| |
Collapse
|
42
|
Dewald C, Lüdecke C, Firkowska-Boden I, Roth M, Bossert J, Jandt KD. Gold nanoparticle contact point density controls microbial adhesion on gold surfaces. Colloids Surf B Biointerfaces 2017; 163:201-208. [PMID: 29304434 DOI: 10.1016/j.colsurfb.2017.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/27/2022]
Abstract
Surface structures in the nanometer range emerge as the next evolutionary breakthrough in the design of biomaterials with antimicrobial properties. However, in order to advance the application of surface nanostructuring strategies in medical implants, the very nature of the microbial repealing mechanism has yet to be understood. Herein, we demonstrate that the random immobilization of gold nanoparticles (AuNPs) on a material's surface generates the possibility to explore microbial adhesion in dependence of contact point densities at the biointerface between the microbe, i.e., Escherichia coli and the material's surface. By optimizing the contact point density defined by individual AuNPs, yet keeping the surface chemistry unchanged as evidenced by X-ray photoelectron spectroscopy, we show that the initial microbial adhesion can be successfully reduced up to 50%, compared to control (unstructured) surfaces. Furthermore, we observed a decrease in the size of microbial cells adhered to nanostructured surfaces. The results show that the spatial distance between the contact points plays a crucial role in regulating microbial adhesion, thus advancing our understanding of the microbial adhesion mechanism on nanostructured surfaces. We suggest that the introduced strategy for nanostructuring materials surfaces opens a research direction for highly microbial-resistant biomaterials.
Collapse
Affiliation(s)
- Carolin Dewald
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Bio Pilot Plant, Adolf-Reichwein-Straße 23, 07745, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany
| | - Claudia Lüdecke
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany
| | - Izabela Firkowska-Boden
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Martin Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Bio Pilot Plant, Adolf-Reichwein-Straße 23, 07745, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany.
| |
Collapse
|
43
|
Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci 2017; 508:603-616. [DOI: 10.1016/j.jcis.2017.07.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
|
44
|
Abstract
OBJECTIVES During the last decades, several changes of paradigm have modified our view on how biomaterials' surface characteristics influence the bioresponse. After becoming aware of the role of a certain microroughness for improved cellular contact and osseointegration of dental titanium implants, the likewise important role of surface energy and wettability was increasingly strengthened. Very recently, synergistic effects of nanoscaled topographical features and hydrophilicity at the implant/bone interface have been reported. METHODS Questions arise about which surface roughness and wetting data are capable to predict the bioresponse and, ultimately, the clinical performance. Current methods and approaches applied for topographical, wetting and surface energetic analyses are highlighted. Current knowledge of possible mechanisms explaining the influence of roughness and hydrophilicity at the biological interface is presented. RESULTS Most marketed and experimental surfaces are based on commonly available additive or subtractive surface modifying methods such as blasting, etching or anodizing. Different height, spatial, hybrid and functional roughness parameters have been identified as possible candidates able to predict the outcome at hard and soft tissue interfaces. Likewise, hydrophilic implants have been proven to improve the initial blood contact, to support the wound healing and thereby accelerating the osseointegration. SIGNIFICANCE There is clear relevance for the influence of topographical and wetting characteristics on a macromolecular and cellular level at endosseous implant/biosystem interfaces. However, we are still far away from designing sophisticated implant surfaces with the best possible, selective functionality for each specific tissue or cavity interface. Firstly, because our knowledge of the respective surface related reactions is at best fragmentary. Secondly, because manufacturing of multi-scaled complex surfaces including distinct nanotopographies, wetting properties, and stable cleanliness is still a technical challenge and far away from being reproducibly transferred to implant surfaces.
Collapse
|
45
|
Ban GH, Lee J, Choi CH, Li Y, Jun S. Nano-patterned aluminum surface with oil-impregnation for improved antibacterial performance. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Zhao H. Retracted: Controlled synthesis of magnetic block copolymers for anti-microbial purpose. J Appl Polym Sci 2017. [DOI: 10.1002/app.44598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongjian Zhao
- School of Materials Science & Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
47
|
Arena MP, Capozzi V, Spano G, Fiocco D. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl Microbiol Biotechnol 2017; 101:2641-2657. [PMID: 28213732 DOI: 10.1007/s00253-017-8182-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/23/2022]
Abstract
Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria that comprise several species which have evolved in close association with humans (food and lifestyle). While their use to ferment food dates back to very ancient times, in the last decades, LAB have attracted much attention for their documented beneficial properties and for potential biomedical applications. Some LAB are commensal that colonize, stably or transiently, host mucosal surfaces, inlcuding the gut, where they may contribute to host health. In this review, we present and discuss the main factors enabling LAB adaptation to such lifestyle, including the gene reprogramming accompanying gut colonization, the specific bacterial components involved in adhesion and interaction with host, and how the gut niche has shaped the genome of intestine-adapted species. Moreover, the capacity of LAB to colonize abiotic surfaces by forming structured communities, i.e., biofilms, is briefly discussed, taking into account the main bacterial and environmental factors involved, particularly in relation to food-related environments. The vast spread of LAB surface-associated communities and the ability to control their occurrence hold great potentials for human health and food safety biotechnologies.
Collapse
Affiliation(s)
- Mattia Pia Arena
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| |
Collapse
|
48
|
Lee JH, Jeong WS, Seo SJ, Kim HW, Kim KN, Choi EH, Kim KM. Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration. Dent Mater 2017; 33:257-270. [PMID: 28088458 DOI: 10.1016/j.dental.2016.11.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/06/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Even though roughened titanium (Ti) and Ti alloys have been clinically used as dental implant, they encourage bacterial adhesion, leading to failure of the initial stability. Here, the non-thermal atmospheric pressure plasma jet (NTAPPJ) functionalized Ti and Ti alloy were investigated to promote cellular activities but inhibit the initial attachment of the adherent pioneer bacterium, Streptococcus sanguinis, without topographical changes. METHODS After the produced radicals from NTAPPJ were characterized, bacterial adhesion to specimens was assessed by PrestoBlue assay and live-dead staining with or without the NTAPPJ functionalizing. After the surface was characterized using optical profilometry, X-ray photoelectron spectroscopy and contact angle analysis, the ions released from the specimens were investigated. In vitro initial cell attachment (4h or 24h) with adhesion images and alkaline phosphatase activity (ALP, 14 days) measurements were performed using rat bone marrow-derived mesenchymal stem cells. RESULTS The initial bacterial adhesion to the Ti and Ti alloy was significantly inhibited after NTAPPJ functionalizing (p<0.05) compared to those without NTAPPJ functionalizing. The bacterial adhesion-resistance effect was induced by carbon cleaning, which was dependent on the working gas used on the Ti specimens (nitrogen>ammonia and air, p<0.05). The initial cell adhesion with well-developed vinculin localization and consequent ALP activity at 14days to the NTAPPJ-functionalized specimens were superior to the non-treated specimens. SIGNIFICANCE For the promising success of dental implants, NTAPPJ functionalizing is suggested as a novel surface modification technique; this technique can help ensure the success of integration between the dental implants and bone tissues with less concern of inflammation.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea; The Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Won-Seok Jeong
- Department and Research Institute of Dental Biomaterials and Bioengineering, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Seog-Jin Seo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyoung-Nam Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Kwangwoon-ro 20, Seoul 01897, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea.
| |
Collapse
|
49
|
Junkar I, Kulkarni M, Humpolíček P, Capáková Z, Burja B, Mazare A, Schmuki P, Mrak-Poljšak K, Flašker A, Žigon P, Čučnik S, Mozetič M, Tomšič M, Iglič A, Sodin-Semrl S. Could Titanium Dioxide Nanotubes Represent a Viable Support System for Appropriate Cells in Vascular Implants? ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2017. [DOI: 10.1016/bs.abl.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
Kumar R, Griffin M, Butler P. A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage. Open Orthop J 2016; 10:862-876. [PMID: 28217211 PMCID: PMC5299562 DOI: 10.2174/1874325001610010862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cartilage is an important tissue found in a variety of anatomical locations. Damage to cartilage is particularly detrimental, owing to its intrinsically poor healing capacity. Current reconstructive options for cartilage repair are limited, and alternative approaches are required. Biomaterial science and Tissue engineering are multidisciplinary areas of research that integrate biological and engineering principles for the purpose of restoring premorbid tissue function. Biomaterial science traditionally focuses on the replacement of diseased or damaged tissue with implants. Conversely, tissue engineering utilizes porous biomimetic scaffolds, containing cells and bioactive molecules, to regenerate functional tissue. However, both paradigms feature several disadvantages. Faced with the increasing clinical burden of cartilage defects, attention has shifted towards the incorporation of Nanotechnology into these areas of regenerative medicine. METHODS Searches were conducted on Pubmed using the terms "cartilage", "reconstruction", "nanotechnology", "nanomaterials", "tissue engineering" and "biomaterials". Abstracts were examined to identify articles of relevance, and further papers were obtained from the citations within. RESULTS The content of 96 articles was ultimately reviewed. The literature yielded no studies that have progressed beyond in vitro and in vivo experimentation. Several limitations to the use of nanomaterials to reconstruct damaged cartilage were identified in both the tissue engineering and biomaterial fields. CONCLUSION Nanomaterials have unique physicochemical properties that interact with biological systems in novel ways, potentially opening new avenues for the advancement of constructs used to repair cartilage. However, research into these technologies is in its infancy, and clinical translation remains elusive.
Collapse
Affiliation(s)
- R. Kumar
- Medicine, UCL Division of Surgery & Interventional Science, London, UK
| | - M. Griffin
- Medicine, UCL Division of Surgery & Interventional Science, London, UK
| | - P.E. Butler
- Medicine, UCL Division of Surgery & Interventional Science, London, UK
- Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK
| |
Collapse
|