1
|
Chen H, Meng H, Chen Z, Wang T, Chen C, Zhu Y, Jin J. Size-Based Sorting and In Situ Clonal Expansion of Single Cells Using Microfluidics. BIOSENSORS 2022; 12:1100. [PMID: 36551067 PMCID: PMC9775143 DOI: 10.3390/bios12121100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Separation and clonal culture and growth kinetics analysis of target cells in a mixed population is critical for pathological research, disease diagnosis, and cell therapy. However, long-term culture with time-lapse imaging of the isolated cells for clonal analysis is still challenging. This paper reports a microfluidic device with four-level filtration channels and a pneumatic microvalve for size sorting and in situ clonal culture of single cells. The valve was on top of the filtration channels and used to direct fluid flow by membrane deformation during separation and long-term culture to avoid shear-induced cell deformation. Numerical simulations were performed to evaluate the influence of device parameters affecting the pressure drop across the filtration channels. Then, a droplet model was employed to evaluate the impact of cell viscosity, cell size, and channel width on the pressure drop inducing cell deformation. Experiments showed that filtration channels with a width of 7, 10, 13, or 17 μm successfully sorted K562 cells into four different size ranges at low driving pressure. The maximum efficiency of separating K562 cells from media and whole blood was 98.6% and 89.7%, respectively. Finally, the trapped single cells were cultured in situ for 4-7 days with time-lapse imaging to obtain the lineage trees and growth curves. Then, the time to the first division, variation of cell size before and after division, and cell fusion were investigated. This proved that cells at the G1 and G2 phases were of significantly distinct sizes. The microfluidic device for size sorting and clonal expansion will be of tremendous application potential in single-cell studies.
Collapse
Affiliation(s)
- Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, Kowloon, City University of Hong Kong, Hong Kong, China
| | - Tong Wang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| |
Collapse
|
2
|
Glass NR, Takasako M, Er PX, Titmarsh DM, Hidalgo A, Wolvetang EJ, Little MH, Cooper-White JJ. Multivariate patterning of human pluripotent cells under perfusion reveals critical roles of induced paracrine factors in kidney organoid development. SCIENCE ADVANCES 2020; 6:eaaw2746. [PMID: 31934619 PMCID: PMC6949035 DOI: 10.1126/sciadv.aaw2746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Creating complex multicellular kidney organoids from pluripotent stem cells shows great promise. Further improvements in differentiation outcomes, patterning, and maturation of specific cell types are, however, intrinsically limited by standard tissue culture approaches. We describe a novel full factorial microbioreactor array-based methodology to achieve rapid interrogation and optimization of this complex multicellular differentiation process in a facile manner. We successfully recapitulate early kidney tissue patterning events, exploring more than 1000 unique conditions in an unbiased and quantitative manner, and define new media combinations that achieve near-pure renal cell type specification. Single-cell resolution identification of distinct renal cell types within multilayered kidney organoids, coupled with multivariate analysis, defined the definitive roles of Wnt, fibroblast growth factor, and bone morphogenetic protein signaling in their specification, exposed retinoic acid as a minimal effector of nephron patterning, and highlighted critical contributions of induced paracrine factors on cell specification and patterning.
Collapse
Affiliation(s)
- Nick R. Glass
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Minoru Takasako
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
- Murdoch Children’s Research Institute, Flemington Rd., Parkville, VIC 3052, Australia
| | - Pei Xuan Er
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
- Murdoch Children’s Research Institute, Flemington Rd., Parkville, VIC 3052, Australia
| | - Drew M. Titmarsh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Alejandro Hidalgo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
- UQ Centre in Stem Cell and Regenerative Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Melissa H. Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
- Murdoch Children’s Research Institute, Flemington Rd., Parkville, VIC 3052, Australia
- Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Justin J. Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
- UQ Centre in Stem Cell and Regenerative Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
- Biomedical Manufacturing, Manufacturing Flagship, CSIRO, Clayton, VIC 3169, Australia
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Chadly DM, Oleksijew AM, Coots KS, Fernandez JJ, Kobayashi S, Kessler JA, Matsuoka AJ. Full Factorial Microfluidic Designs and Devices for Parallelizing Human Pluripotent Stem Cell Differentiation. SLAS Technol 2018; 24:41-54. [PMID: 29995450 DOI: 10.1177/2472630318783497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells (hPSCs) are promising therapeutic tools for regenerative therapies and disease modeling. Differentiation of cultured hPSCs is influenced by both exogenous factors added to the cultures and endogenously secreted molecules. Optimization of protocols for the differentiation of hPSCs into different cell types is difficult because of the many variables that can influence cell fate. We present microfluidic devices designed to perform three- and four-factor, two-level full factorial experiments in parallel for investigating and directly optimizing hPSC differentiation. These devices feature diffusion-isolated, independent culture wells that allow for control of both exogenous and endogenous cellular signals and that allow for immunocytochemistry (ICC) and confocal microscopy in situ. These devices are fabricated by soft lithography in conjunction with 3D-printed molds and are operable with a single syringe pump, eliminating the need for specialized equipment or cleanroom facilities. Their utility was demonstrated by on-chip differentiation of hPSCs into the auditory neuron lineage. More broadly, these devices enable multiplexing for experimentation with any adherent cell type or even multiple cell types, allowing efficient investigation of the effects of medium conditions, pharmaceuticals, or other soluble reagents.
Collapse
Affiliation(s)
- Duncan M Chadly
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew M Oleksijew
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kyle S Coots
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jose J Fernandez
- 2 Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Shun Kobayashi
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John A Kessler
- 3 Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Akihiro J Matsuoka
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,4 Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA.,5 Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
Seo J, Shin JY, Leijten J, Jeon O, Camci-Unal G, Dikina AD, Brinegar K, Ghaemmaghami AM, Alsberg E, Khademhosseini A. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 2018; 153:85-101. [PMID: 29079207 PMCID: PMC5702937 DOI: 10.1016/j.biomaterials.2017.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
The rapid development of new biomaterials and techniques to modify them challenge our capability to characterize them using conventional methods. In response, numerous high-throughput (HT) strategies are being developed to analyze biomaterials and their interactions with cells using combinatorial approaches. Moreover, these systematic analyses have the power to uncover effects of delivered soluble bioactive molecules on cell responses. In this review, we describe the recent developments in HT approaches that help identify cellular microenvironments affecting cell behaviors and highlight HT screening of biochemical libraries for gene delivery, drug discovery, and toxicological studies. We also discuss HT techniques for the analyses of cell secreted biomolecules and provide perspectives on the future utility of HT approaches in biomedical engineering.
Collapse
Affiliation(s)
- Jungmok Seo
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Biomaterials, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jung-Youn Shin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gulden Camci-Unal
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA, 01854-2827, USA
| | - Anna D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Katelyn Brinegar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
5
|
Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays. Sci Rep 2016; 6:24637. [PMID: 27097795 PMCID: PMC4838928 DOI: 10.1038/srep24637] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/29/2016] [Indexed: 01/25/2023] Open
Abstract
Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) – a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration.
Collapse
|
6
|
Rasi Ghaemi S, Delalat B, Cetó X, Harding FJ, Tuke J, Voelcker NH. Synergistic influence of collagen I and BMP 2 drives osteogenic differentiation of mesenchymal stem cells: A cell microarray analysis. Acta Biomater 2016. [PMID: 26196081 DOI: 10.1016/j.actbio.2015.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell microarrays are a novel platform for the high throughput discovery of new biomaterials. By re-creating a multitude of cell microenvironments on a single slide, this approach can identify the optimal surface composition to drive a desired cell response. To systematically study the effects of molecular microenvironments on stem cell fate, we designed a cell microarray based on parallel exposure of mesenchymal stem cells (MSCs) to surface-immobilised collagen I (Coll I) and bone morphogenetic protein 2 (BMP 2). This was achieved by means of a reactive coating on a slide surface, enabling the covalent anchoring of Coll I and BMP 2 as microscale spots printed by a robotic contact printer. The surface between the printed protein spots was passivated using poly (ethylene glycol) bisamine 10,000Da (A-PEG). MSCs were then captured and cultured on array spots composed of binary mixtures of Coll I and BMP 2, followed by automated image acquisition and quantitative, multi-parameter analysis of cellular responses. Surface compositions that gave the highest osteogenic differentiation were determined using Runx2 expression and calcium deposition. Quantitative single cell analysis revealed subtle concentration-dependent effects of surface-immobilised proteins on the extent of osteogenic differentiation obscured using conventional analysis. In particular, the synergistic interaction of Coll I and BMP 2 in supporting osteogenic differentiation was confirmed. Our studies demonstrate the value of cell microarray platforms to decipher the combinatorial interactions at play in stem cell niche microenvironments.
Collapse
|
7
|
Afrimzon E, Botchkina G, Zurgil N, Shafran Y, Sobolev M, Moshkov S, Ravid-Hermesh O, Ojima I, Deutsch M. Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution. LAB ON A CHIP 2016; 16:1047-1062. [PMID: 26907542 DOI: 10.1039/c6lc00014b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.
Collapse
Affiliation(s)
- E Afrimzon
- Physics Department, The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome, Bar Ilan University, Bldg 214, 5290002, Ramat Gan, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Occhetta P, Glass N, Otte E, Rasponi M, Cooper-White JJ. Stoichiometric control of live cell mixing to enable fluidically-encoded co-culture models in perfused microbioreactor arrays. Integr Biol (Camb) 2016; 8:194-204. [DOI: 10.1039/c5ib00311c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A cell mixer microbioreactor array platform that permits the rapid establishment of perfused cell co-culture models in a high-throughput, programmable fashion.
Collapse
Affiliation(s)
- P Occhetta
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.
| | | | | | | | | |
Collapse
|
9
|
Silva M, Daheron L, Hurley H, Bure K, Barker R, Carr AJ, Williams D, Kim HW, French A, Coffey PJ, Cooper-White JJ, Reeve B, Rao M, Snyder EY, Ng KS, Mead BE, Smith JA, Karp JM, Brindley DA, Wall I. Generating iPSCs: translating cell reprogramming science into scalable and robust biomanufacturing strategies. Cell Stem Cell 2015; 16:13-7. [PMID: 25575079 DOI: 10.1016/j.stem.2014.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have the potential to transform drug discovery and healthcare in the 21(st) century. However, successful commercialization will require standardized manufacturing platforms. Here we highlight the need to define standardized practices for iPSC generation and processing and discuss current challenges to the robust manufacture of iPSC products.
Collapse
Affiliation(s)
- Marli Silva
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | | | - Hannah Hurley
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation, University of Oxford, Oxford, OX3 9DU, UK
| | - Kim Bure
- TAP Biosystems, Royston, Hertfordshire, SG8 5WY, UK
| | - Richard Barker
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew J Carr
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation, University of Oxford, Oxford, OX3 9DU, UK; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - David Williams
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center of Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University Graduate School, Cheonan 330-714, Republic of Korea; Department of Dental Biomaterials, School of Dentistry, Dankook University, Shinbu-dong, Cheonan 330-714, Republic of Korea
| | - Anna French
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Pete J Coffey
- Ocular Biology and Therapeutics, Institute of Ophthalmology, University College London, London, EC1V 9EL, UK; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA
| | - Justin J Cooper-White
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia; Materials Science and Engineering Division, CSIRO, Clayton, VIC 3169, Australia
| | - Brock Reeve
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Mahendra Rao
- New York Stem Cell Foundation, New York, NY 10023, USA
| | - Evan Y Snyder
- Burnham Medical Research Institute, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Kelvin S Ng
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Benjamin E Mead
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - James A Smith
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation, University of Oxford, Oxford, OX3 9DU, UK
| | - Jeffrey M Karp
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - David A Brindley
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation, University of Oxford, Oxford, OX3 9DU, UK; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK; Centre for Behavioural Medicine, UCL School of Pharmacy, University College London, London WC1H 9JP, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center of Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University Graduate School, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
10
|
Floren M, Tan W. Three-dimensional, soft neotissue arrays as high throughput platforms for the interrogation of engineered tissue environments. Biomaterials 2015; 59:39-52. [PMID: 25956850 PMCID: PMC4444363 DOI: 10.1016/j.biomaterials.2015.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022]
Abstract
Local signals from tissue-specific extracellular matrix (ECM) microenvironments, including matrix adhesive ligand, mechanical elasticity and micro-scale geometry, are known to instruct a variety of stem cell differentiation processes. Likewise, these signals converge to provide multifaceted, mechanochemical cues for highly-specific tissue morphogenesis or regeneration. Despite accumulated knowledge about the individual and combined roles of various mechanochemical ECM signals in stem cell activities on 2-dimensional matrices, the understandings of morphogenetic or regenerative 3-dimenstional tissue microenvironments remain very limited. To that end, we established high-throughput platforms based on soft, fibrous matrices with various combinatorial ECM proteins meanwhile highly-tunable in elasticity and 3-dimensional geometry. To demonstrate the utility of our platform, we evaluated 64 unique combinations of 6 ECM proteins (collagen I, collagen III, collagen IV, laminin, fibronectin, and elastin) on the adhesion, spreading and fate commitment of mesenchymal stem cell (MSCs) under two substrate stiffness (4.6 kPa, 20 kPa). Using this technique, we identified several neotissue microenvironments supporting MSC adhesion, spreading and differentiation toward early vascular lineages. Manipulation of the matrix properties, such as elasticity and geometry, in concert with ECM proteins will permit the investigation of multiple and distinct MSC environments. This paper demonstrates the practical application of high through-put technology to facilitate the screening of a variety of engineered microenvironments with the aim to instruct stem cell differentiation.
Collapse
Affiliation(s)
- Michael Floren
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
11
|
Occhetta P, Centola M, Tonnarelli B, Redaelli A, Martin I, Rasponi M. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes. Sci Rep 2015; 5:10288. [PMID: 25983217 PMCID: PMC4650750 DOI: 10.1038/srep10288] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/09/2015] [Indexed: 01/16/2023] Open
Abstract
The development of in vitro models to screen the effect of different concentrations, combinations and temporal sequences of morpho-regulatory factors on stem/progenitor cells is crucial to investigate and possibly recapitulate developmental processes with adult cells. Here, we designed and validated a microfluidic platform to (i) allow cellular condensation, (ii) culture 3D micromasses of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) under continuous flow perfusion, and (ii) deliver defined concentrations of morphogens to specific culture units. Condensation of hBM-MSCs was obtained within 3 hours, generating micromasses in uniform sizes (56.2 ± 3.9 μm). As compared to traditional macromass pellet cultures, exposure to morphogens involved in the first phases of embryonic limb development (i.e. Wnt and FGF pathways) yielded more uniform cell response throughout the 3D structures of perfused micromasses (PMMs), and a 34-fold higher percentage of proliferating cells at day 7. The use of a logarithmic serial dilution generator allowed to identify an unexpected concentration of TGFβ3 (0.1 ng/ml) permissive to hBM-MSCs proliferation and inductive to chondrogenesis. This proof-of-principle study supports the described microfluidic system as a tool to investigate processes involved in mesenchymal progenitor cells differentiation, towards a 'developmental engineering' approach for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matteo Centola
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Beatrice Tonnarelli
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Ivan Martin
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
12
|
Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 2015; 84:107-22. [PMID: 25174307 DOI: 10.1016/j.addr.2014.08.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.
Collapse
|
13
|
Chen H, Sun J, Wolvetang E, Cooper-White J. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices. LAB ON A CHIP 2015; 15:1072-83. [PMID: 25519528 DOI: 10.1039/c4lc01176g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the design and validation of a two-layered microfluidic device platform for single cell capture, culture and clonal expansion. Under manual injection of a cell suspension, deterministic trapping of hundreds to thousands of single cells (adherent and non-adherent) in a high throughput manner and at high trapping efficiency was achieved simply through the incorporation of a U-shaped hydrodynamic trap into the downstream wall of each micro-well. Post single cell trapping, we confirmed that these modified micro-wells permit the attachment, spreading and proliferation of the trapped single cells for multiple generations over extended periods of time (>7 days) under media perfusion. Due to its a) low cost, b) simplicity in fabrication and operation, c) high trapping efficiency, d) reliable and repeatable trapping mechanism, e) cell size selection and f) capability to provide perfused long-term culture and continuous time-lapse imaging, the microfluidic device developed and validated in this study is seen to have significant potential application in high-throughput single cell quality assessment and clonal analysis.
Collapse
Affiliation(s)
- Huaying Chen
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
14
|
Davies SG, Kennewell PD, Russell AJ, Seden PT, Westwood R, Wynne GM. Stemistry: the control of stem cells in situ using chemistry. J Med Chem 2015; 58:2863-94. [PMID: 25590360 DOI: 10.1021/jm500838d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new paradigm for drug research has emerged, namely the deliberate search for molecules able to selectively affect the proliferation, differentiation, and migration of adult stem cells within the tissues in which they exist. Recently, there has been significant interest in medicinal chemistry toward the discovery and design of low molecular weight molecules that affect stem cells and thus have novel therapeutic activity. We believe that a successful agent from such a discover program would have profound effects on the treatment of many long-term degenerative disorders. Among these conditions are examples such as cardiovascular decay, neurological disorders including Alzheimer's disease, and macular degeneration, all of which have significant unmet medical needs. This perspective will review evidence from the literature that indicates that discovery of such agents is achievable and represents a worthwhile pursuit for the skills of the medicinal chemist.
Collapse
Affiliation(s)
- Stephen G Davies
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Peter D Kennewell
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Angela J Russell
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K.,‡Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, U.K
| | - Peter T Seden
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Robert Westwood
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Graham M Wynne
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
15
|
Ahadian S, Ostrovidov S, Fujie T, Parthiban SP, Kaji H, Sampathkumar K, Ramalingam M, Khademhosseini A. Microfabrication and Nanofabrication Techniques. STEM CELL BIOLOGY AND TISSUE ENGINEERING IN DENTAL SCIENCES 2015:207-219. [DOI: 10.1016/b978-0-12-397157-9.00017-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Titmarsh DM, Ovchinnikov DA, Wolvetang EJ, Cooper-White JJ. Full factorial screening of human embryonic stem cell maintenance with multiplexed microbioreactor arrays. Biotechnol J 2014; 8:822-34. [PMID: 23813764 DOI: 10.1002/biot.201200375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/09/2013] [Accepted: 06/03/2013] [Indexed: 11/07/2022]
Abstract
Use of human pluripotent stem cells (hPSCs) in regenerative medicine applications relies on control of cell fate decisions by exogenous factors. This control can be hindered by the use of undefined culture components, poorly understood autocrine/paracrine effects, spatiotemporal variations in microenvironmental composition inherent to static culture formats, and signal cross-talk between multiple factors. We recently described microbioreactor arrays that provide a full factorial spectrum of exogenous factors, and allow gradual accumulation of paracrine factors through serial culture chambers. We combined these with defined biochemical conditions, and in situ reporter gene- and immunofluorescence-based readouts to create an hPSC screening platform with enhanced data throughput and microenvironmental control. HES3-EOS-C(3+)-EiP reporter hESCs were screened against FGF-2, TGF-β1, and retinoic acid in a modified mTeSR-1 medium background. Differential pluripotency marker expression reflected mTeSR-1's maintenance capacity, and differentiation in response to removal of maintenance factors or addition of retinoic acid. Interestingly, pluripotency marker expression was downregulated progressively through serial chambers. Since downstream chambers are exposed to greater levels of paracrine factors under continuous flow, this effect is thought to result from secreted factors that negatively influence pluripotency. The microbioreactor array platform decodes factor interplay, and has a broad application in deciphering microenvironmental control of cell fate.
Collapse
Affiliation(s)
- Drew M Titmarsh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | | |
Collapse
|
17
|
Titmarsh DM, Chen H, Glass NR, Cooper-White JJ. Concise review: microfluidic technology platforms: poised to accelerate development and translation of stem cell-derived therapies. Stem Cells Transl Med 2013; 3:81-90. [PMID: 24311699 DOI: 10.5966/sctm.2013-0118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction.
Collapse
Affiliation(s)
- Drew M Titmarsh
- Australian Institute for Bioengineering and Nanotechnology and
| | | | | | | |
Collapse
|
18
|
Beckwith KM, Sikorski P. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication 2013; 5:045009. [DOI: 10.1088/1758-5082/5/4/045009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Abstract
Nanobio versus Bionano--what's in a name? This special Issue of Biotechnology Journal includes two sections, one featuring articles on nanobio, the other articles on bionano. The editors of the issue, François Baneyx and Je-Kyun Park, discuss the similarities and differences between the two in their editorial.
Collapse
|
20
|
|
21
|
Occhetta P, Sadr N, Piraino F, Redaelli A, Moretti M, Rasponi M. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication 2013; 5:035002. [DOI: 10.1088/1758-5082/5/3/035002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Titmarsh DM, Hudson JE, Hidalgo A, Elefanty AG, Stanley EG, Wolvetang EJ, Cooper-White JJ. Microbioreactor arrays for full factorial screening of exogenous and paracrine factors in human embryonic stem cell differentiation. PLoS One 2012; 7:e52405. [PMID: 23300662 PMCID: PMC3530582 DOI: 10.1371/journal.pone.0052405] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
Timed exposure of pluripotent stem cell cultures to exogenous molecules is widely used to drive differentiation towards desired cell lineages. However, screening differentiation conditions in conventional static cultures can become impractical in large parameter spaces, and is intrinsically limited by poor spatiotemporal control of the microenvironment that also makes it impossible to determine whether exogenous factors act directly or through paracrine-dependent mechanisms. We detail here the development of a continuous flow microbioreactor array platform that combines full-factorial multiplexing of input factors with progressive accumulation of paracrine factors through serially-connected culture chambers, and further, the use of this system to explore the combinatorial parameter space of both exogenous and paracrine factors involved in human embryonic stem cell (hESC) differentiation to a MIXL1-GFP(+) primitive streak-like population. We show that well known inducers of primitive streak (BMP, Activin and Wnt signals) do not simply act directly on hESC to induce MIXL1 expression, but that this requires accumulation of surplus, endogenous factors; and, that conditioned medium or FGF-2 supplementation is able to offset this. Our approach further reveals the presence of a paracrine, negative feedback loop to the MIXL1-GFP(+) population, which can be overcome with GSK-3β inhibitors (BIO or CHIR99021), implicating secreted Wnt inhibitory signals such as DKKs and sFRPs as candidate effectors. Importantly, modulating paracrine effects identified in microbioreactor arrays by supplementing FGF-2 and CHIR in conventional static culture vessels resulted in improved differentiation outcomes. We therefore demonstrate that this microbioreactor array platform uniquely enables the identification and decoding of complex soluble factor signalling hierarchies, and that this not only challenges prevailing strategies for extrinsic control of hESC differentiation, but also is translatable to conventional culture systems.
Collapse
Affiliation(s)
- Drew M. Titmarsh
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - James E. Hudson
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alejandro Hidalgo
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andrew G. Elefanty
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Edouard G. Stanley
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Justin J. Cooper-White
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|