1
|
Gutierrez-Valdes N, Cunyat F, Balieu J, Walet-Balieu ML, Paul MJ, de Groot J, Blanco-Perera A, Carrillo J, Lerouge P, Seters MJV, Joensuu JJ, Bardor M, Ma J, Blanco J, Ritala A. Production and characterization of novel Anti-HIV Fc-fusion proteins in plant-based systems: Nicotiana benthamiana & tobacco BY-2 cell suspension. N Biotechnol 2024; 83:142-154. [PMID: 39142626 DOI: 10.1016/j.nbt.2024.08.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.
Collapse
Affiliation(s)
- Noemi Gutierrez-Valdes
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | - Francesc Cunyat
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Marie-Laure Walet-Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Matthew J Paul
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jonas de Groot
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | | | - Jorge Carrillo
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | | | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Julian Ma
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Julià Blanco
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland.
| |
Collapse
|
2
|
Verdú-Navarro F, Moreno-Cid JA, Weiss J, Egea-Cortines M. The advent of plant cells in bioreactors. FRONTIERS IN PLANT SCIENCE 2023; 14:1310405. [PMID: 38148861 PMCID: PMC10749943 DOI: 10.3389/fpls.2023.1310405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Ever since agriculture started, plants have been bred to obtain better yields, better fruits, or sustainable products under uncertain biotic and abiotic conditions. However, a new way to obtain products from plant cells emerged with the development of recombinant DNA technologies. This led to the possibility of producing exogenous molecules in plants. Furthermore, plant chemodiversity has been the main source of pharmacological molecules, opening a field of plant biotechnology directed to produce high quality plant metabolites. The need for different products by the pharma, cosmetics agriculture and food industry has pushed again to develop new procedures. These include cell production in bioreactors. While plant tissue and cell culture are an established technology, beginning over a hundred years ago, plant cell cultures have shown little impact in biotechnology projects, compared to bacterial, yeasts or animal cells. In this review we address the different types of bioreactors that are currently used for plant cell production and their usage for quality biomolecule production. We make an overview of Nicotiana tabacum, Nicotiana benthamiana, Oryza sativa, Daucus carota, Vitis vinifera and Physcomitrium patens as well-established models for plant cell culture, and some species used to obtain important metabolites, with an insight into the type of bioreactor and production protocols.
Collapse
Affiliation(s)
- Fuensanta Verdú-Navarro
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan A. Moreno-Cid
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
3
|
Coates RJ, Young MT, Scofield S. Optimising expression and extraction of recombinant proteins in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1074531. [PMID: 36570881 PMCID: PMC9773421 DOI: 10.3389/fpls.2022.1074531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are of paramount importance for research, industrial and medical use. Numerous expression chassis are available for recombinant protein production, and while bacterial and mammalian cell cultures are the most widely used, recent developments have positioned transgenic plant chassis as viable and often preferential options. Plant chassis are easily maintained at low cost, are hugely scalable, and capable of producing large quantities of protein bearing complex post-translational modification. Several protein targets, including antibodies and vaccines against human disease, have been successfully produced in plants, highlighting the significant potential of plant chassis. The aim of this review is to act as a guide to producing recombinant protein in plants, discussing recent progress in the field and summarising the factors that must be considered when utilising plants as recombinant protein expression systems, with a focus on optimising recombinant protein expression at the genetic level, and the subsequent extraction and purification of target proteins, which can lead to substantial improvements in protein stability, yield and purity.
Collapse
Affiliation(s)
| | | | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Singh AA, Pillay P, Naicker P, Alexandre K, Malatji K, Mach L, Steinkellner H, Vorster J, Chikwamba R, Tsekoa TL. Transient proteolysis reduction of Nicotiana benthamiana-produced CAP256 broadly neutralizing antibodies using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2022; 13:953654. [PMID: 36061808 PMCID: PMC9433777 DOI: 10.3389/fpls.2022.953654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The hypersensitive response is elicited by Agrobacterium infiltration of Nicotiana benthamiana, including the induction and accumulation of pathogenesis-related proteins, such as proteases. This includes the induction of the expression of several cysteine proteases from the C1 (papain-like cysteine protease) and C13 (legumain-like cysteine protease) families. This study demonstrates the role of cysteine proteases: NbVPE-1a, NbVPE-1b, and NbCysP6 in the proteolytic degradation of Nicotiana benthamiana (glycosylation mutant ΔXTFT)-produced anti-human immunodeficiency virus broadly neutralizing antibody, CAP256-VRC26.25. Three putative cysteine protease cleavage sites were identified in the fragment crystallizable region. We further demonstrate the transient coexpression of CAP256-VRC26.25 with CRISPR/Cas9-mediated genome editing vectors targeting the NbVPE-1a, NbVPE-1b, and NbCysP6 genes which resulted in a decrease in CAP256-VRC26.25 degradation. No differences in structural features were observed between the human embryonic kidney 293 (HEK293)-produced and ΔXTFT broadly neutralizing antibodies produced with and without the coexpression of genome-editing vectors. Furthermore, despite the presence of proteolytically degraded fragments of plant-produced CAP256-VRC26.25 without the coexpression of genome editing vectors, no influence on the in vitro functional activity was detected. Collectively, we demonstrate an innovative in planta strategy for improving the quality of the CAP256 antibodies through the transient expression of the CRISPR/Cas9 vectors.
Collapse
Affiliation(s)
- Advaita Acarya Singh
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Previn Naicker
- NextGen Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Kabamba Alexandre
- NextGen Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Kanyane Malatji
- NextGen Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Rachel Chikwamba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| |
Collapse
|
5
|
Geddes-McAlister J, Prudhomme N, Gutierrez Gongora D, Cossar D, McLean MD. The emerging role of mass spectrometry-based proteomics in molecular pharming practices. Curr Opin Chem Biol 2022; 68:102133. [DOI: 10.1016/j.cbpa.2022.102133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
6
|
Mandal MK, Kronenberger T, Zulka MI, Windshügel B, Schiermeyer A. Structure-based discovery of small molecules improving stability of human broadly-neutralizing anti-HIV antibody 2F5 in plant suspension cells. Biotechnol J 2022; 17:e2100266. [PMID: 35075794 DOI: 10.1002/biot.202100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
The production of biopharmaceuticals in engineered plant-based systems is a promising technology that has proven its suitability for the production of various recombinant glyco-proteins that are currently undergoing clinical trials. However, compared to mammalian cell lines, the productivity of plant-based systems still requires further improvement. A major obstacle is the proteolytic degradation of recombinant target proteins by endogenous plant proteases mainly from the subtilisin family of serine proteases. In the present study, the authors screened for putative small molecule inhibitors for subtilases that are secreted from tobacco BY-2 suspension cells using an in silico approach. The effectiveness of the substances identified in this screen was subsequently tested in degradation assays using the human broadly-neutralizing anti-HIV monoclonal antibody 2F5 (mAb2F5) and spent BY-2 culture medium as a model system. Among 16 putative inhibitors identified by in silico studies, three naphthalene sulfonic acid derivatives showed inhibitory activity in in vitro degradation assays and are similar to or even more effective than phenylmethylsulfonyl fluoride (PMSF), a classical inhibitor of serine proteases, which served as positive control.
Collapse
Affiliation(s)
- Manoj K Mandal
- Fraunhofer Institute for Molecular Biotechnology and Applied Ecology IME, Aachen, Germany
| | - Thales Kronenberger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | - Marie I Zulka
- Fraunhofer Institute for Molecular Biotechnology and Applied Ecology IME, Aachen, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biotechnology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
7
|
Singh AA, Pillay P, Kwezi L, Tsekoa TL. A plant-biotechnology approach for producing highly potent anti-HIV antibodies for antiretroviral therapy consideration. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:180. [PMID: 34878628 PMCID: PMC8655037 DOI: 10.1186/s43141-021-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Despite a reduction in global HIV prevalence the development of a pipeline of new therapeutics or pre-exposure prophylaxis to control the HIV/AIDS epidemic are of high priority. Antibody-based therapies offer several advantages and have been shown to prevent HIV-infection. Plant-based production is efficient for several biologics, including antibodies. We provide a short review on the work by Singh et al., 2020 who demonstrated the transient production of potent CAP256-VRC26 broadly neutralizing antibodies. These antibodies have engineered posttranslational modifications, namely N-glycosylation in the fragment crystallizable region and O-sulfation of tyrosine residues in the complementary-determining region H3 loop. The glycoengineered Nicotiana benthamiana mutant (ΔXTFT) was used, with glycosylating structures lacking β1,2-xylose and/or α1,3-fucose residues, which is critical for enhanced effector activity. The CAP256-VRC26 antibody lineage targets the first and second variable region of the HIV-1 gp120 envelope glycoprotein. The high potency of this lineage is mediated by a protruding O-sulfated tyrosine in the CDR H3 loop. Nicotiana benthamiana lacks human tyrosyl protein sulfotransferase 1, the enzyme responsible for tyrosine O-sulfation. The transient coexpression of the CAP256-VRC26 antibodies with tyrosyl protein sulfotransferase 1 in planta had restored the efficacy of these antibodies through the incorporation of the O-sulfation modification. This approach demonstrates the strategic incorporation of posttranslational modifications in production systems, which may have not been previously considered. These plant-produced CAP256-VRC26 antibodies have therapeutic as well as topical and systemic pre-exposure prophylaxis potential in enabling the empowerment of young girls and women given that gender inequalities remain a major driver of the epidemic.
Collapse
Affiliation(s)
- Advaita Acarya Singh
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Priyen Pillay
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Lusisizwe Kwezi
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Tsepo Lebiletsa Tsekoa
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa.
| |
Collapse
|
8
|
Singh AA, Pillay P, Tsekoa TL. Engineering Approaches in Plant Molecular Farming for Global Health. Vaccines (Basel) 2021; 9:vaccines9111270. [PMID: 34835201 PMCID: PMC8623924 DOI: 10.3390/vaccines9111270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Since the demonstration of the first plant-produced proteins of medical interest, there has been significant growth and interest in the field of plant molecular farming, with plants now being considered a viable production platform for vaccines. Despite this interest and development by a few biopharmaceutical companies, plant molecular farming is yet to be embraced by ‘big pharma’. The plant system offers a faster alternative, which is a potentially more cost-effective and scalable platform for the mass production of highly complex protein vaccines, owing to the high degree of similarity between the plant and mammalian secretory pathway. Here, we identify and address bottlenecks in the use of plants for vaccine manufacturing and discuss engineering approaches that demonstrate both the utility and versatility of the plant production system as a viable biomanufacturing platform for global health. Strategies for improving the yields and quality of plant-produced vaccines, as well as the incorporation of authentic posttranslational modifications that are essential to the functionality of these highly complex protein vaccines, will also be discussed. Case-by-case examples are considered for improving the production of functional protein-based vaccines. The combination of all these strategies provides a basis for the use of cutting-edge genome editing technology to create a general plant chassis with reduced host cell proteins, which is optimised for high-level protein production of vaccines with the correct posttranslational modifications.
Collapse
|
9
|
Karki U, Fang H, Guo W, Unnold-Cofre C, Xu J. Cellular engineering of plant cells for improved therapeutic protein production. PLANT CELL REPORTS 2021; 40:1087-1099. [PMID: 33837823 PMCID: PMC8035600 DOI: 10.1007/s00299-021-02693-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
In vitro cultured plant cells, in particular the tobacco BY-2 cell, have demonstrated their potential to provide a promising bioproduction platform for therapeutic proteins by integrating the merits of whole-plant cultivation systems with those of microbial and mammalian cell cultures. Over the past three decades, substantial progress has been made in improving the plant cell culture system, resulting in a few commercial success cases, such as taliglucerase alfa (Elelyso®), the first FDA-approved recombinant pharmaceutical protein derived from plant cells. However, compared to the major expression hosts (bacteria, yeast, and mammalian cells), plant cells are still largely underutilized, mainly due to low productivity and non-human glycosylation. Modern molecular biology tools, in particular RNAi and the latest genome editing technology CRISPR/Cas9, have been used to modulate the genome of plant cells to create new cell lines that exhibit desired "traits" for producing therapeutic proteins. This review highlights the recent advances in cellular engineering of plant cells towards improved recombinant protein production, including creating cell lines with deficient protease levels or humanized glycosylation, and considers potential development in the future.
Collapse
Affiliation(s)
- Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Hong Fang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Wenzheng Guo
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Carmela Unnold-Cofre
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA.
- College of Agriculture, Arkansas State University, Jonesboro, AR, 72401, USA.
| |
Collapse
|
10
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as “plant molecular farming” (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose “chassis” for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany. .,Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
11
|
Wang X, Karki U, Abeygunaratne H, UnnoldCofre C, Xu J. Plant cell-secreted stem cell factor stimulates expansion and differentiation of hematopoietic stem cells. Process Biochem 2020; 100:39-48. [PMID: 33071562 DOI: 10.1016/j.procbio.2020.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ex vivo generation of red blood cells (RBCs) from hematopoietic stem cells (HSCs) used for blood transfusion represents one of the focuses in current regenerative medicine. However, massive production of HSCs-based RBCs requires a significant quantity of erythropoietic growth factors, making manufacturing at large scale cost prohibitive. Plant cell culture is proposed to be a promising bioproduction platform for functional human proteins in a safe and cost-efficient manner. This study exploited a proprietary technology, named HypGP engineering technology, for high-yield production of one of the key erythropoietic growth factors--stem cell factor (SCF)--in plant cell culture. Specifically, a designer hydroxyproline (Hyp)-O-glycosylated peptide (HypGP) comprised of 20 tandem repeats of the "Ser-Pro" motif, or (SP)20, was engineered at either the N-terminus or C-terminus of SCF in tobacco BY-2 cells. The (SP)20 tag dramatically increased the secreted yields of SCF up to 2.5 μg/ml. The (SP)20-tagged SCF showed bioactivity in promoting the proliferation of the TF-1 cell line, although the SCF-(SP)20 was 8.4-fold more potent than the (SP)20-SCF. Both the (SP)20-SCF and SCF-(SP)20 exhibited desired function in stimulating the expansion and differentiation of human umbilical cord blood CD34+ cells towards RBCs.
Collapse
Affiliation(s)
- Xiaoting Wang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Hasara Abeygunaratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Carmela UnnoldCofre
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.,College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
12
|
Puchol Tarazona AA, Lobner E, Taubenschmid Y, Paireder M, Torres Acosta JA, Göritzer K, Steinkellner H, Mach L. Steric Accessibility of the Cleavage Sites Dictates the Proteolytic Vulnerability of the Anti-HIV-1 Antibodies 2F5, 2G12, and PG9 in Plants. Biotechnol J 2020; 15:e1900308. [PMID: 31657528 DOI: 10.1002/biot.201900308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Indexed: 12/26/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) to human immunodeficiency virus type 1 (HIV-1) hold great promise for immunoprophylaxis and the suppression of viremia in HIV-positive individuals. Several studies have demonstrated that plants as Nicotiana benthamiana are suitable hosts for the generation of protective anti-HIV-1 antibodies. However, the production of the anti-HIV-1 bNAbs 2F5 and PG9 in N. benthamiana is associated with their processing by apoplastic proteases in the complementarity-determining-region (CDR) H3 loops of the heavy chains. Here, it is shown that apoplastic proteases can also cleave the CDR H3 loop of the bNAb 2G12 when the unusual domain exchange between its heavy chains is prevented by the replacement of Ile19 with Arg. It is demonstrated that CDR H3 proteolysis leads to a strong reduction of the antigen-binding potencies of 2F5, PG9, and 2G12-I19R. Inhibitor profiling experiments indicate that different subtilisin-like serine proteases account for bNAb fragmentation in the apoplast. Differential scanning calorimetry experiments corroborate that the antigen-binding domains of wild-type 2G12 and 4E10 are more compact than those of proteolysis-sensitive antibodies, thus shielding their CDR H3 regions from proteolytic attack. This suggests that the extent of proteolytic inactivation of bNAbs in plants is primarily dictated by the steric accessibility of their CDR H3 loops.
Collapse
Affiliation(s)
- Alejandro A Puchol Tarazona
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190, Vienna, Austria
| | - Yvonne Taubenschmid
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Melanie Paireder
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Juan A Torres Acosta
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|
13
|
Jutras PV, Dodds I, van der Hoorn RA. Proteases of Nicotiana benthamiana: an emerging battle for molecular farming. Curr Opin Biotechnol 2020; 61:60-65. [PMID: 31765962 DOI: 10.1016/j.copbio.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
Molecular farming increasingly uses the tobacco relative Nicotiana benthamiana for production of recombinant proteins through transient expression. Several proteins are produced efficiently with this expression platform, but yields for other proteins are often very low. These low yields are frequently due to endogenous proteases. The latest genome annotations indicate that N. benthamiana encodes for at least 1243 putative proteases that probably act redundantly and consecutively on substrates in different subcellular compartments. Here, we discuss the N. benthamiana protease repertoire that may affect recombinant protein production and recent advances in protease depletion strategies to increase recombinant protein production in N. benthamiana.
Collapse
Affiliation(s)
- Philippe V Jutras
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | - Isobel Dodds
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | - Renier Al van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK.
| |
Collapse
|
14
|
Schiermeyer A. Optimizing product quality in molecular farming. Curr Opin Biotechnol 2019; 61:15-20. [PMID: 31593785 DOI: 10.1016/j.copbio.2019.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
The production of biopharmaceuticals in plant-based systems had faced several challenges that hampered broader adoption of this technology. In recent years, various plant production hosts have been improved by genetic engineering approaches to overcome obstacles with regard to post-translational modifications and integrity of target proteins. Together with optimized extraction and purification processes, those advances have put plant molecular farming in a more competitive position compared to established production systems. Certain biopharmaceuticals can be derived from plant systems with unique desired properties, qualifying them as biobetters.
Collapse
Affiliation(s)
- Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany.
| |
Collapse
|
15
|
Jutras PV, Grosse‐Holz F, Kaschani F, Kaiser M, Michaud D, van der Hoorn RA. Activity-based proteomics reveals nine target proteases for the recombinant protein-stabilizing inhibitor SlCYS8 in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1670-1678. [PMID: 30742730 PMCID: PMC6662110 DOI: 10.1111/pbi.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 05/23/2023]
Abstract
Co-expression of protease inhibitors like the tomato cystatin SlCYS8 is useful to increase recombinant protein production in plants, but key proteases involved in protein proteolysis are still unknown. Here, we performed activity-based protein profiling to identify proteases that are inhibited by SlCYS8 in agroinfiltrated Nicotiana benthamiana. We discovered that SlCYS8 selectively suppresses papain-like cysteine protease (PLCP) activity in both apoplastic fluids and total leaf extracts, while not affecting vacuolar-processing enzyme and serine hydrolase activity. A robust concentration-dependent inhibition of PLCPs occurred in vitro when purified SlCYS8 was added to leaf extracts, indicating direct cystatin-PLCP interactions. Activity-based proteomics revealed that nine different Cathepsin-L/-F-like PLCPs are strongly inhibited by SlCYS8 in leaves. By contrast, the activity of five other Cathepsin-B/-H-like PLCPs, as well as 87 Ser hydrolases, was unaffected by SlCYS8. SlCYS8 expression prevented protein degradation by inhibiting intermediate and mature isoforms of granulin-containing proteases from the Resistant-to-Desiccation-21 (RD21) PLCP subfamily. Our data underline the key role of endogenous PLCPs on recombinant protein degradation and reveal candidate proteases for depletion strategies.
Collapse
Affiliation(s)
- Philippe V. Jutras
- Department of Plant SciencesPlant Chemetics LaboratoryUniversity of OxfordOxfordUK
| | | | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuébecCanada
| | | |
Collapse
|
16
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
17
|
Menzel S, Holland T, Boes A, Spiegel H, Fischer R, Buyel JF. Downstream processing of a plant-derived malaria transmission-blocking vaccine candidate. Protein Expr Purif 2018; 152:122-130. [PMID: 30059744 DOI: 10.1016/j.pep.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/15/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Plants as a platform for recombinant protein expression are now economically comparable to well-established systems, such as microbes and mammalian cells, thanks to advantages such as scalability and product safety. However, downstream processing accounts for the majority of the final product costs because plant extracts contain large quantities of host cell proteins (HCPs) that must be removed using elaborate purification strategies. Heat precipitation in planta (blanching) can remove ∼80% of HCPs and thus simplify further purification steps, but this is only possible if the target protein is thermostable. Here we describe a combination of blanching and chromatography to purify the thermostable transmission-blocking malaria vaccine candidate FQS, which was transiently expressed in Nicotiana benthamiana leaves. If the blanching temperature exceeded a critical threshold of ∼75 °C, FQS was no longer recognized by the malaria transmission-blocking monoclonal antibody 4B7. A design-of-experiments approach revealed that reducing the blanching temperature from 80 °C to 70 °C restored antibody binding while still precipitating most HCPs. We also found that blanching inhibited the degradation of FQS in plant extracts, probably due to the thermal inactivation of proteases. We screened hydrophobic interaction chromatography materials using miniature columns and a liquid-handling station. Octyl Sepharose achieved the highest FQS purity during the primary capture step and led to a final purity of ∼72% with 60% recovery via step elution. We found that 30-75% FQS was lost during ultrafiltration/diafiltration, giving a final yield of 9 mg kg-1 plant material after purification based on an initial yield of ∼49 mg kg-1 biomass after blanching.
Collapse
Affiliation(s)
- Stephan Menzel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Tanja Holland
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany; Eppendorf AG, Bioprocess Center, Rudolf-Schulten-Str. 5, 52428, Juelich, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
18
|
Jutras PV, Goulet M, Lavoie P, D'Aoust M, Sainsbury F, Michaud D. Recombinant protein susceptibility to proteolysis in the plant cell secretory pathway is pH-dependent. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1928-1938. [PMID: 29618167 PMCID: PMC6181212 DOI: 10.1111/pbi.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 05/07/2023]
Abstract
Cellular engineering approaches have been proposed to mitigate unintended proteolysis in plant protein biofactories, involving the design of protease activity-depleted environments by gene silencing or in situ inactivation with accessory protease inhibitors. Here, we assessed the impact of influenza virus M2 proton channel on host protease activities and recombinant protein processing in the cell secretory pathway of Nicotiana benthamiana leaves. Transient co-expression assays with M2 and GFP variant pHluorin were first conducted to illustrate the potential of proton export from the Golgi lumen to promote recombinant protein yield. A fusion protein-based system involving protease-sensitive peptide linkers to attach inactive variants of tomato cystatin SlCYS8 was then designed to relate the effects of M2 on protein levels with altered protease activities in situ. Secreted versions of the cystatin fusions transiently expressed in leaf tissue showed variable 'fusion to free cystatin' cleavage ratios, in line with the occurrence of protease forms differentially active against the peptide linkers in the secretory pathway. Variable ratios were also observed for the fusions co-expressed with M2, but the extent of fusion cleavage was changed for several fusions, positively or negatively, as a result of pH increase in the Golgi. These data indicating a remodelling of endogenous protease activities upon M2 expression confirm that the stability of recombinant proteins in the plant cell secretory pathway is pH-dependent. They suggest, in practice, the potential of M2 proton channel to modulate the stability of protease-susceptible secreted proteins in planta via a pH-related, indirect effect on host resident proteases.
Collapse
Affiliation(s)
- Philippe V. Jutras
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| | - Marie‐Claire Goulet
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| | | | | | - Frank Sainsbury
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQldAustralia
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQCCanada
| |
Collapse
|
19
|
Hoernstein SNW, Fode B, Wiedemann G, Lang D, Niederkrüger H, Berg B, Schaaf A, Frischmuth T, Schlosser A, Decker EL, Reski R. Host Cell Proteome of Physcomitrella patens Harbors Proteases and Protease Inhibitors under Bioproduction Conditions. J Proteome Res 2018; 17:3749-3760. [PMID: 30226384 DOI: 10.1021/acs.jproteome.8b00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Benjamin Fode
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany.,Plant Genome and System Biology , Helmholtz Center Munich , D-85764 Neuherberg , Germany
| | - Holger Niederkrüger
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Birgit Berg
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Andreas Schaaf
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Thomas Frischmuth
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Center for Experimental Biomedicine , University of Wuerzburg , D-97080 Wuerzburg , Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany.,BIOSS - Centre for Biological Signalling Studies , University of Freiburg , D-79104 Freiburg , Germany
| |
Collapse
|
20
|
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:405-426. [PMID: 30149789 DOI: 10.1146/annurev-phyto-080417-050141] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Cara Mortimer
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Fatima Naim
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Joshua G Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Roger Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0002, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA;
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| |
Collapse
|
21
|
MacDonald J. History and Promise of Plant-Made Vaccines for Animals. PROSPECTS OF PLANT-BASED VACCINES IN VETERINARY MEDICINE 2018. [PMCID: PMC7122757 DOI: 10.1007/978-3-319-90137-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Grosse‐Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RA. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1068-1084. [PMID: 29055088 PMCID: PMC5902771 DOI: 10.1111/pbi.12852] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 05/06/2023]
Abstract
Infiltration of disarmed Agrobacterium tumefaciens into leaves of Nicotiana benthamiana (agroinfiltration) facilitates quick and safe production of antibodies, vaccines, enzymes and metabolites for industrial use (molecular farming). However, yield and purity of proteins produced by agroinfiltration are hampered by unintended proteolysis, restricting industrial viability of the agroinfiltration platform. Proteolysis may be linked to an immune response to agroinfiltration, but understanding of the response to agroinfiltration is limited. To identify the proteases, we studied the transcriptome, extracellular proteome and active secretome of agroinfiltrated leaves over a time course, with and without the P19 silencing inhibitor. Remarkably, the P19 expression had little effect on the leaf transcriptome and no effect on the extracellular proteome. 25% of the detected transcripts changed in abundance upon agroinfiltration, associated with a gradual up-regulation of immunity at the expense of photosynthesis. By contrast, 70% of the extracellular proteins increased in abundance, in many cases associated with increased efficiency of extracellular delivery. We detect a dynamic reprogramming of the proteolytic machinery upon agroinfiltration by detecting transcripts encoding for 975 different proteases and protease homologs. The extracellular proteome contains peptides derived from 196 proteases and protease homologs, and activity-based proteomics displayed 17 active extracellular Ser and Cys proteases in agroinfiltrated leaves. We discuss unique features of the N. benthamiana protease repertoire and highlight abundant extracellular proteases in agroinfiltrated leaves, being targets for reverse genetics. This data set increases our understanding of the plant response to agroinfiltration and indicates ways to improve a key expression platform for both plant science and molecular farming.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Svenja Blaskowski
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | | |
Collapse
|
23
|
Santos RB, Chandrasekar B, Mandal MK, Kaschani F, Kaiser M, Both L, van der Hoorn RAL, Schiermeyer A, Abranches R. Low Protease Content in Medicago truncatula Cell Cultures Facilitates Recombinant Protein Production. Biotechnol J 2018. [PMID: 29528190 DOI: 10.1002/biot.201800050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Medicago truncatula is an established model for studying legume biology. More recently, it has also been exploited as a Molecular Farming platform for the production of recombinant proteins, with the successful expression of fungal and human proteins in plants and cell suspension cultures of this species. One of the challenges that now must be overcome is the degradation of final products during production and downstream processing stages. In the M. truncatula genome, there are more than 400 putative protease-encoding genes, but to date, the proteolytic content of Medicago cell cultures has not been studied. In this report, the proteolytic activities that can potentially hamper the successful production of recombinant proteins in this system are evaluated. The potential proteases responsible for the degradation of target proteins are identified. Interestingly, the number of proteases found in Medicago spent medium is considerably lower than that of the well-established tobacco bright yellow 2 (BY-2) system. Papain-like cysteine proteases are found to be the major contributors to recombinant protein degradation in Medicago. This knowledge is used to engineer a cell line with reduced endogenous protease activity by expressing a selective protease inhibitor, further improving this expression platform.
Collapse
Affiliation(s)
- Rita B Santos
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Balakumaran Chandrasekar
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Manoj K Mandal
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Farnusch Kaschani
- Chemical Biology, Faculty of Biology, University of Duisburg-Essen, ZMB, Universitätsstraße 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Faculty of Biology, University of Duisburg-Essen, ZMB, Universitätsstraße 2, 45117 Essen, Germany
| | - Leonard Both
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Andreas Schiermeyer
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
24
|
Kurppa K, Reuter LJ, Ritala A, Linder MB, Joensuu JJ. In-solution antibody harvesting with a plant-produced hydrophobin-Protein A fusion. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:404-414. [PMID: 28640955 PMCID: PMC5787837 DOI: 10.1111/pbi.12780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/01/2016] [Accepted: 06/16/2017] [Indexed: 05/02/2023]
Abstract
Purification is a bottleneck and a major cost factor in the production of antibodies. We set out to engineer a bifunctional fusion protein from two building blocks, Protein A and a hydrophobin, aiming at low-cost and scalable antibody capturing in solutions. Immunoglobulin-binding Protein A is widely used in affinity-based purification. The hydrophobin fusion tag, on the other hand, has been shown to enable purification by two-phase separation. Protein A was fused to two different hydrophobin tags, HFBI or II, and expressed transiently in Nicotiana benthamiana. The hydrophobins enhanced accumulation up to 35-fold, yielding up to 25% of total soluble protein. Both fused and nonfused Protein A accumulated in protein bodies. Hence, the increased yield could not be attributed to HFB-induced protein body formation. We also demonstrated production of HFBI-Protein A fusion protein in tobacco BY-2 suspension cells in 30 l scale, with a yield of 35 mg/l. Efficient partitioning to the surfactant phase confirmed that the fusion proteins retained the amphipathic properties of the hydrophobin block. The reversible antibody-binding capacity of the Protein A block was similar to the nonfused Protein A. The best-performing fusion protein was tested in capturing antibodies from hybridoma culture supernatant with two-phase separation. The fusion protein was able to carry target antibodies to the surfactant phase and subsequently release them back to the aqueous phase after a change in pH. This report demonstrates the potential of hydrophobin fusion proteins for novel applications, such as harvesting antibodies in solutions.
Collapse
Affiliation(s)
- Katri Kurppa
- VTT Technical Research Centre of Finland Ltd.EspooFinland
| | | | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd.EspooFinland
| | - Markus B. Linder
- VTT Technical Research Centre of Finland Ltd.EspooFinland
- Aalto UniversityDepartment of Biotechnology and Chemical TechnologyEspooFinland
| | | |
Collapse
|
25
|
Cheon SH, Kim ZH, Choi HY, Kang SH, Nam HJ, Kim JY, Kim DI. Effective delivery of siRNA to transgenic rice cells for enhanced transfection using PEI-based polyplexes. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0155-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Edgue G, Twyman RM, Beiss V, Fischer R, Sack M. Antibodies from plants for bionanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Gueven Edgue
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| | | | - Veronique Beiss
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| | - Rainer Fischer
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Aachen Germany
| | - Markus Sack
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
27
|
Jutras PV, Marusic C, Lonoce C, Deflers C, Goulet MC, Benvenuto E, Michaud D, Donini M. An Accessory Protease Inhibitor to Increase the Yield and Quality of a Tumour-Targeting mAb in Nicotiana benthamiana Leaves. PLoS One 2016; 11:e0167086. [PMID: 27893815 PMCID: PMC5125672 DOI: 10.1371/journal.pone.0167086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
The overall quality of recombinant IgG antibodies in plants is dramatically compromised by host endogenous proteases. Different approaches have been developed to reduce the impact of endogenous proteolysis on IgGs, notably involving site-directed mutagenesis to eliminate protease-susceptible sites or the in situ mitigation of host protease activities to minimize antibody processing in the cell secretory pathway. We here characterized the degradation profile of H10, a human tumour-targeting monoclonal IgG, in leaves of Nicotiana benthamiana also expressing the human serine protease inhibitor α1-antichymotrypsin or the cysteine protease inhibitor tomato cystatin SlCYS8. Leaf extracts revealed consistent fragmentation patterns for the recombinant antibody regardless of leaf age and a strong protective effect of SlCYS8 in specific regions of the heavy chain domains. As shown using an antigen-binding ELISA and LC-MS/MS analysis of antibody fragments, SlCYS8 had positive effects on both the amount of fully-assembled antibody purified from leaf tissue and the stability of biologically active antibody fragments containing the heavy chain Fc domain. Our data confirm the potential of Cys protease inhibitors as convenient antibody-stabilizing expression partners to increase the quality of therapeutic antibodies in plant protein biofactories.
Collapse
Affiliation(s)
| | - Carla Marusic
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Chiara Lonoce
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Carole Deflers
- Département de phytologie, Université Laval, Québec Quebec, Canada
| | | | - Eugenio Benvenuto
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | | | - Marcello Donini
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| |
Collapse
|
28
|
Buyel JF, Hubbuch J, Fischer R. Comparison of Tobacco Host Cell Protein Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts. J Vis Exp 2016:54343. [PMID: 27584939 PMCID: PMC5091784 DOI: 10.3791/54343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy.
Collapse
Affiliation(s)
- Johannes F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.; Institute for Molecular Biotechnology, RWTH Aachen University;
| | - Jürgen Hubbuch
- Department of Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT)
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.; Institute for Molecular Biotechnology, RWTH Aachen University
| |
Collapse
|
29
|
Mandal MK, Ahvari H, Schillberg S, Schiermeyer A. Tackling Unwanted Proteolysis in Plant Production Hosts Used for Molecular Farming. FRONTIERS IN PLANT SCIENCE 2016; 7:267. [PMID: 27014293 PMCID: PMC4782010 DOI: 10.3389/fpls.2016.00267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/19/2016] [Indexed: 05/17/2023]
Abstract
Although the field of molecular farming has significantly matured over the last years, some obstacles still need to be resolved. A major limiting factor for a broader application of plant hosts for the production of valuable recombinant proteins is the low yield of intact recombinant proteins. These low yields are at least in part due to the action of endogenous plant proteases on the foreign recombinant proteins. This mini review will present the current knowledge of the proteolytic enzymes involved in the degradation of different target proteins and strategies that are applied to suppress undesirable proteolytic activities in order to safeguard recombinant proteins during the production process.
Collapse
Affiliation(s)
| | | | | | - Andreas Schiermeyer
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied EcologyAachen, Germany
| |
Collapse
|
30
|
Niemer M, Mehofer U, Verdianz M, Porodko A, Schähs P, Kracher D, Lenarcic B, Novinec M, Mach L. Nicotiana benthamiana cathepsin B displays distinct enzymatic features which differ from its human relative and aleurain-like protease. Biochimie 2016; 122:119-25. [PMID: 26166069 DOI: 10.1016/j.biochi.2015.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 11/23/2022]
Abstract
The tobacco-related plant species Nicotiana benthamiana has recently emerged as a versatile expression platform for the rapid generation of recombinant biopharmaceuticals, but product yield and quality frequently suffer from unintended proteolysis. Previous studies have highlighted that recombinant protein fragmentation in plants involves papain-like cysteine proteinases (PLCPs). For this reason, we have now characterized two major N. benthamiana PLCPs in detail: aleurain-like protease (NbALP) and cathepsin B (NbCathB). As typical for PLCPs, the precursor of NbCathB readily undergoes autocatalytic activation when incubated at low pH. On the contrary, maturation of NbALP requires the presence of a cathepsin L-like PLCP as processing enzyme. While the catalytic features of NbALP closely resemble those of its mammalian homologue cathepsin H, NbCathB displays remarkable differences to human cathepsin B. In particular, NbCathB appears to be a far less efficient peptidyldipeptidase (removing C-terminal dipeptides) than its human counterpart, suggesting that it functions primarily as an endopeptidase. Importantly, NbCathB was far more efficient than NbALP in processing the human anti-HIV-1 antibody 2F5 into fragments observed during its production in N. benthamiana. This suggests that targeted down-regulation of NbCathB could improve the performance of this plant-based expression platform.
Collapse
Affiliation(s)
- Melanie Niemer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrich Mehofer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria Verdianz
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Porodko
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Philipp Schähs
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Kracher
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Brigita Lenarcic
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
31
|
Menzel S, Holland T, Boes A, Spiegel H, Bolzenius J, Fischer R, Buyel JF. Optimized Blanching Reduces the Host Cell Protein Content and Substantially Enhances the Recovery and Stability of Two Plant-Derived Malaria Vaccine Candidates. FRONTIERS IN PLANT SCIENCE 2016; 7:159. [PMID: 26925077 PMCID: PMC4756251 DOI: 10.3389/fpls.2016.00159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/30/2016] [Indexed: 05/19/2023]
Abstract
Plants provide an advantageous expression platform for biopharmaceutical proteins because of their low pathogen burden and potential for inexpensive, large-scale production. However, the purification of target proteins can be challenging due to issues with extraction, the removal of host cell proteins (HCPs), and low expression levels. The heat treatment of crude extracts can reduce the quantity of HCPs by precipitation thus increasing the purity of the target protein and streamlining downstream purification. In the overall context of downstream process (DSP) development for plant-derived malaria vaccine candidates, we applied a design-of-experiments approach to enhance HCP precipitation from Nicotiana benthamiana extracts generated after transient expression, using temperatures in the 20-80°C range, pH values of 3.0-8.0 and incubation times of 0-60 min. We also investigated the recovery of two protein-based malaria vaccine candidates under these conditions and determined their stability in the heat-treated extract while it was maintained at room temperature for 24 h. The heat precipitation of HCPs was also carried out by blanching intact plants in water or buffer prior to extraction in a blender. Our data show that all the heat precipitation methods reduced the amount of HCP in the crude plant extracts by more than 80%, simplifying the subsequent DSP steps. Furthermore, when the heat treatment was performed at 80°C rather than 65°C, both malaria vaccine candidates were more stable after extraction and the recovery of both proteins increased by more than 30%.
Collapse
Affiliation(s)
- Stephan Menzel
- Integrated Production Platforms, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Tanja Holland
- Integrated Production Platforms, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Alexander Boes
- Plant Biotechnology, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Holger Spiegel
- Plant Biotechnology, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
| | - Johanna Bolzenius
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Rainer Fischer
- Integrated Production Platforms, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Plant Biotechnology, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Johannes F. Buyel
- Integrated Production Platforms, Fraunhofer-Institute for Molecular Biology and Applied Ecology IMEAachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
- *Correspondence: Johannes F. Buyel,
| |
Collapse
|
32
|
Santos RB, Abranches R, Fischer R, Sack M, Holland T. Putting the Spotlight Back on Plant Suspension Cultures. FRONTIERS IN PLANT SCIENCE 2016; 7:297. [PMID: 27014320 PMCID: PMC4786539 DOI: 10.3389/fpls.2016.00297] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/25/2016] [Indexed: 05/05/2023]
Abstract
Plant cell suspension cultures have several advantages that make them suitable for the production of recombinant proteins. They can be cultivated under aseptic conditions using classical fermentation technology, they are easy to scale-up for manufacturing, and the regulatory requirements are similar to those established for well-characterized production systems based on microbial and mammalian cells. It is therefore no surprise that taliglucerase alfa (Elelyso®)-the first licensed recombinant pharmaceutical protein derived from plants-is produced in plant cell suspension cultures. But despite this breakthrough, plant cells are still largely neglected compared to transgenic plants and the more recent plant-based transient expression systems. Here, we revisit plant cell suspension cultures and highlight recent developments in the field that show how the rise of plant cells parallels that of Chinese hamster ovary cells, currently the most widespread and successful manufacturing platform for biologics. These developments include medium optimization, process engineering, statistical experimental designs, scale-up/scale-down models, and process analytical technologies. Significant yield increases for diverse target proteins will encourage a gold rush to adopt plant cells as a platform technology, and the first indications of this breakthrough are already on the horizon.
Collapse
Affiliation(s)
- Rita B. Santos
- Plant Cell Biology Laboratory, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António XavierOeiras, Portugal
| | - Rita Abranches
- Plant Cell Biology Laboratory, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António XavierOeiras, Portugal
| | - Rainer Fischer
- Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (IME), Integrated Production PlatformsAachen, Germany
- Biology VII, Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Markus Sack
- Biology VII, Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Tanja Holland
- Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (IME), Integrated Production PlatformsAachen, Germany
- *Correspondence: Tanja Holland
| |
Collapse
|
33
|
Robert S, Jutras PV, Khalf M, D'Aoust MA, Goulet MC, Sainsbury F, Michaud D. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants. Methods Mol Biol 2016; 1385:115-26. [PMID: 26614285 DOI: 10.1007/978-1-4939-3289-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.
Collapse
Affiliation(s)
- Stéphanie Robert
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Philippe V Jutras
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Moustafa Khalf
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | | | - Marie-Claire Goulet
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Frank Sainsbury
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Dominique Michaud
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada.
| |
Collapse
|
34
|
Robert S, Goulet MC, D'Aoust MA, Sainsbury F, Michaud D. Leaf proteome rebalancing in Nicotiana benthamiana for upstream enrichment of a transiently expressed recombinant protein. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1169-79. [PMID: 26286859 DOI: 10.1111/pbi.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 05/18/2023]
Abstract
A key factor influencing the yield of biopharmaceuticals in plants is the ratio of recombinant to host proteins in crude extracts. Postextraction procedures have been devised to enrich recombinant proteins before purification. Here, we assessed the potential of methyl jasmonate (MeJA) as a generic trigger of recombinant protein enrichment in Nicotiana benthamiana leaves before harvesting. Previous studies have reported a significant rebalancing of the leaf proteome via the jasmonate signalling pathway, associated with ribulose 1,5-bisphosphate carboxylase oxygenase (RuBisCO) depletion and the up-regulation of stress-related proteins. As expected, leaf proteome alterations were observed 7 days post-MeJA treatment, associated with lowered RuBisCO pools and the induction of stress-inducible proteins such as protease inhibitors, thionins and chitinases. Leaf infiltration with the Agrobacterium tumefaciens bacterial vector 24 h post-MeJA treatment induced a strong accumulation of pathogenesis-related proteins after 6 days, along with a near-complete reversal of MeJA-mediated stress protein up-regulation. RuBisCO pools were partly restored upon infiltration, but most of the depletion effect observed in noninfiltrated plants was maintained over six more days, to give crude protein samples with 50% less RuBisCO than untreated tissue. These changes were associated with net levels reaching 425 μg/g leaf tissue for the blood-typing monoclonal antibody C5-1 expressed in MeJA-treated leaves, compared to less than 200 μg/g in untreated leaves. Our data confirm overall the ability of MeJA to trigger RuBisCO depletion and recombinant protein enrichment in N. benthamiana leaves, estimated here for C5-1 at more than 2-fold relative to host proteins.
Collapse
Affiliation(s)
- Stéphanie Robert
- Centre de recherche et d'innovation sur les végétaux, Pavillon Envirotron, Université Laval, Québec, QC, Canada
| | - Marie-Claire Goulet
- Centre de recherche et d'innovation sur les végétaux, Pavillon Envirotron, Université Laval, Québec, QC, Canada
| | | | - Frank Sainsbury
- Centre de recherche et d'innovation sur les végétaux, Pavillon Envirotron, Université Laval, Québec, QC, Canada
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD, Australia
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux, Pavillon Envirotron, Université Laval, Québec, QC, Canada
| |
Collapse
|
35
|
Catrice EVB, Sainsbury F. Assembly and Purification of Polyomavirus-Like Particles from Plants. Mol Biotechnol 2015; 57:904-13. [PMID: 26179381 DOI: 10.1007/s12033-015-9879-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polyomaviruses are small DNA viruses that have a history of use in biotechnology. The capsids of a number of species have been developed into experimental prophylactic and therapeutic virus-like particle (VLP) vaccines. In order to explore plants as a host for the expression and purification of polyomavirus-like particles, we have transiently expressed the major capsid protein, VP1, in Nicotiana benthamiana leaves. Deletion of a polybasic motif from the N-terminal region of VP1 resulted in increased expression as well as reduced necrosis of leaf tissue, which was associated with differences in subcellular localisation and reduced DNA binding by the deletion variant (ΔVP1). Self-assembled VLPs were recovered from tissue expressing both wild-type VP1 and ΔVP1 by density gradient ultracentrifugation. VLPs composed of ΔVP1 were more homogenous than wtVPLs and, unlike the latter, did not encapsidate nucleic acid. Such homogenous, empty VLPs are of great interest in biotechnology and nanotechnology. In addition, we show that both MPyV VLP variants assembled in plants can be produced with encapsidated foreign protein. Thus, this study demonstrates the utility of plant-based expression of polyomavirus-like particles and the suitability of this host for further developments in polyomavirus-based technologies.
Collapse
Affiliation(s)
- Emeline V B Catrice
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | | |
Collapse
|
36
|
Jutras PV, D'Aoust MA, Couture MMJ, Vézina LP, Goulet MC, Michaud D, Sainsbury F. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants. Biotechnol J 2015; 10:1478-86. [PMID: 25914077 DOI: 10.1002/biot.201500056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/19/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022]
Abstract
Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Sainsbury
- Département de phytologie, Université Laval, Québec, Canada.
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Australia.
| |
Collapse
|
37
|
Lallemand J, Bouché F, Desiron C, Stautemas J, de Lemos Esteves F, Périlleux C, Tocquin P. Extracellular peptidase hunting for improvement of protein production in plant cells and roots. FRONTIERS IN PLANT SCIENCE 2015; 6:37. [PMID: 25705212 PMCID: PMC4319384 DOI: 10.3389/fpls.2015.00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/14/2015] [Indexed: 05/23/2023]
Abstract
Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.
Collapse
Affiliation(s)
- Jérôme Lallemand
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Frédéric Bouché
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Carole Desiron
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
| | - Jennifer Stautemas
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
| | | | - Claire Périlleux
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Pierre Tocquin
- Laboratory of Plant Physiology, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| |
Collapse
|
38
|
Sack M, Hofbauer A, Fischer R, Stoger E. The increasing value of plant-made proteins. Curr Opin Biotechnol 2015; 32:163-170. [PMID: 25578557 DOI: 10.1016/j.copbio.2014.12.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/07/2014] [Accepted: 12/10/2014] [Indexed: 12/31/2022]
Abstract
The production of high-value proteins in plants is maturing, as shown by the recent approval of innovative products and the latest studies that showcase plant-based production systems using technologies and approaches that are well established in other fields. These include host cell engineering, medium optimization, scalable unit operations for downstream processing (DSP), bioprocess optimization and detailed cost analysis. Product-specific benefits of plant-based systems have also been exploited, including bioencapsulation and the mucosal delivery of minimally processed topical and oral products with a lower entry barrier than pharmaceuticals for injection. Success stories spearheaded by the FDA approval of Elelyso developed by Protalix have revitalized the field and further interest has been fueled by the production of experimental Ebola treatments in plants.
Collapse
Affiliation(s)
- Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen, Germany
| | - Anna Hofbauer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
39
|
High-value products from plants: the challenges of process optimization. Curr Opin Biotechnol 2015; 32:156-162. [PMID: 25562816 DOI: 10.1016/j.copbio.2014.12.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
Plants can be used to produce a diverse repertoire of complex small-molecule compounds and recombinant proteins that are valuable as industrial and pharmaceutical products. But as we move from proof-of-principle experiments and begin to consider the realistic prospects of commercial production, the focus must shift from the achievement of target molecule production and move towards quality, purity and yield aspects that determine commercial feasibility. This review describes some of the recent advances that have been implemented to improve the development of integrated production processes for high-value molecules expressed in plants, including the introduction of novel procedures to increase the likelihood of regulatory acceptance.
Collapse
|
40
|
On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. ACTA ACUST UNITED AC 2014; 2:499-518. [PMID: 25621170 DOI: 10.4155/pbp.14.32] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.
Collapse
|
41
|
Lee SY, Jungbauer A. Editorial: Biotechnology as an enabling technology and much more. Biotechnol J 2014; 9:991-2. [DOI: 10.1002/biot.201400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|