1
|
Liu X, Shi L, Bai H, Wang J, Yu A, Liu A, Li P. Comparative analysis of HKTs in six poplar species and functional characterization of PyHKTs in stress-affected tissues. BMC Genomics 2025; 26:18. [PMID: 39773338 PMCID: PMC11708190 DOI: 10.1186/s12864-025-11203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Plant HKTs (High-affinity K+ transporters) are essential transporters for ion transport and homeostasis and play crucial roles in plant growth and stress responses. However, the evolution of HKTs in Populus species and their functions require further investigation. In this study, we identified 16 HKTs from six Populus species. All poplar HKTs were classified as Class I HKTs because of their physiological relationships and the conservation of amino acids in key structures, which aligns with their conserved evolutionary coding sequences. The analysis of the protein domains, motifs and gene structures of 16 poplar HKTs revealed consistent conservation, with the exception of two members. The number of homologs and their chromosome locations indicated the differentiation of HKTs during poplar evolution and adaptation. Poplar HKTs can be classified into two subgroups on the basis of their physiological relationships and distinct protein structures. Gene expression pattern analysis revealed that poplar HKTs presented relatively high expression levels in roots and stems under salt stress. Furthermore, cis-element analysis and protein interaction predictions provide insights into the functions of HKTs under salt stress through the activation of ion transporters, proline content, and ATPases regulated by hormonal signals and MYB transcription factors. In conclusion, our research established a theoretical framework for investigating the evolutionary relationships and functional roles of HKTs in Populus species and offered valuable insights into the functions and underlying mechanisms of poplar HKTs in specific tissues under various stress conditions.
Collapse
Affiliation(s)
- Xiaojiao Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Lincui Shi
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Hezi Bai
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Yunnan Kunming, China
| | - Jing Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Anmin Yu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China.
| | - Ping Li
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China.
| |
Collapse
|
2
|
Shu M, Yates TB, John C, Harman-Ware AE, Happs RM, Bryant N, Jawdy SS, Ragauskas AJ, Tuskan GA, Muchero W, Chen JG. Providing biological context for GWAS results using eQTL regulatory and co-expression networks in Populus. THE NEW PHYTOLOGIST 2024; 244:603-617. [PMID: 39169686 DOI: 10.1111/nph.20026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Our study utilized genome-wide association studies (GWAS) to link nucleotide variants to traits in Populus trichocarpa, a species with rapid linkage disequilibrium decay. The aim was to overcome the challenge of interpreting statistical associations at individual loci without sufficient biological context, which often leads to reliance solely on gene annotations from unrelated model organisms. We employed an integrative approach that included GWAS targeting multiple traits using three individual techniques for lignocellulose phenotyping, expression quantitative trait loci (eQTL) analysis to construct transcriptional regulatory networks around each candidate locus and co-expression analysis to provide biological context for these networks, using lignocellulose biosynthesis in Populus trichocarpa as a case study. The research identified three candidate genes potentially involved in lignocellulose formation, including one previously recognized gene (Potri.005G116800/VND1, a critical regulator of secondary cell wall formation) and two genes (Potri.012G130000/AtSAP9 and Potri.004G202900/BIC1) with newly identified putative roles in lignocellulose biosynthesis. Our integrative approach offers a framework for providing biological context to loci associated with trait variation, facilitating the discovery of new genes and regulatory networks.
Collapse
Affiliation(s)
- Mengjun Shu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Cai John
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Renee M Happs
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Arthur J Ragauskas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| |
Collapse
|
3
|
Ren Y, Wu L, Zhong Y, Zhao X, Xu M, Wang J. Transcriptome Analysis Revealed the Paternal Importance to Vegetative Growth Heterosis in Populus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2278. [PMID: 39204714 PMCID: PMC11359908 DOI: 10.3390/plants13162278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Parental selection is important for heterosis formation during crossbreeding of Populus. However, in poplar hybrids, the effect of parents on vegetative growth heterosis is not well understood. In this study, one female parent (P. simonii XY4) and two male parents (P. nigra OH and P. deltoides × P. nigra BJLY3#) were used to produce two progenies (Hyb1 and Hyb2). Vegetative growth investigation showed that both Hyb1 and Hyb2 performed heterosis in plant growth and ground diameter. The vegetative growth of hybrids was strongly correlated with the male parents but not with the female parents. The gene expression levels in the hybrids were more biased toward the male parents. In Hyb1 and Hyb2, 51.93% and 45.03% of the expressed genes showed the non-additive effect, respectively, and over 65% of the non-additively expressed genes showed the dominant effect. It is noteworthy that genes of paternal expression dominant effect (ELD_♂) account for the majority of dominantly expressed genes, suggesting the paternal contribution to heterosis. KEGG enrichment analysis indicated that a large number of non-additively expressed genes were enriched in the plant hormone signal transduction pathway. WGCNA analysis showed that MEcyan was significantly correlated with the traits of hybrids, and 12 plant hormone signal transduction pathway genes were enriched in this module. Transcription factors (TFs) MYB88, LHY, and TCP4 may be involved in the regulation of these pathway genes. This finding supported that the male parents play an important role in the formation of vegetative growth heterosis of Populus. In addition, the non-additively expressed genes of the signal transduction pathway and the regulation of TFs related to these pathway genes may be one of the reasons for the generation of heterosis.
Collapse
Affiliation(s)
- Yuxin Ren
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lixia Wu
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuhang Zhong
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xinwen Zhao
- Liaoning Provincial Institute of Poplar, Gaizhou 115213, China
| | - Meng Xu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Wang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Wang D, Quan M, Qin S, Fang Y, Xiao L, Qi W, Jiang Y, Zhou J, Gu M, Guan Y, Du Q, Liu Q, El‐Kassaby YA, Zhang D. Allelic variations of WAK106-E2Fa-DPb1-UGT74E2 module regulate fibre properties in Populus tomentosa. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:970-986. [PMID: 37988335 PMCID: PMC10955495 DOI: 10.1111/pbi.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Wood formation, intricately linked to the carbohydrate metabolism pathway, underpins the capacity of trees to produce renewable resources and offer vital ecosystem services. Despite their importance, the genetic regulatory mechanisms governing wood fibre properties in woody plants remain enigmatic. In this study, we identified a pivotal module comprising 158 high-priority core genes implicated in wood formation, drawing upon tissue-specific gene expression profiles from 22 Populus samples. Initially, we conducted a module-based association study in a natural population of 435 Populus tomentosa, pinpointing PtoDPb1 as the key gene contributing to wood formation through the carbohydrate metabolic pathway. Overexpressing PtoDPb1 led to a 52.91% surge in cellulose content, a reduction of 14.34% in fibre length, and an increment of 38.21% in fibre width in transgenic poplar. Moreover, by integrating co-expression patterns, RNA-sequencing analysis, and expression quantitative trait nucleotide (eQTN) mapping, we identified a PtoDPb1-mediated genetic module of PtoWAK106-PtoDPb1-PtoE2Fa-PtoUGT74E2 responsible for fibre properties in Populus. Additionally, we discovered the two PtoDPb1 haplotypes that influenced protein interaction efficiency between PtoE2Fa-PtoDPb1 and PtoDPb1-PtoWAK106, respectively. The transcriptional activation activity of the PtoE2Fa-PtoDPb1 haplotype-1 complex on the promoter of PtoUGT74E2 surpassed that of the PtoE2Fa-PtoDPb1 haplotype-2 complex. Taken together, our findings provide novel insights into the regulatory mechanisms of fibre properties in Populus, orchestrated by PtoDPb1, and offer a practical module for expediting genetic breeding in woody plants via molecular design.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shitong Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weina Qi
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yongsen Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyue Gu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yicen Guan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qing Liu
- CSIRO Agriculture and FoodBlack MountainCanberraACTAustralia
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences CentreUniversity of British ColumbiaVancouverBCCanada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
5
|
Kovalev MA, Gladysh NS, Bogdanova AS, Bolsheva NL, Popchenko MI, Kudryavtseva AV. Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens? Int J Mol Sci 2024; 25:1308. [PMID: 38279306 PMCID: PMC10816636 DOI: 10.3390/ijms25021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with improved traits faster than traditional methods, and with the development of CRISPR/Cas-based genome editing systems, scientists have a new highly effective tool for creating valuable genotypes. In this review, we summarize the latest research data on poplar diseases, the biology of their pathogens and how these plants resist pathogens. In the final section, we propose to plant male or mixed poplar populations; consider the genes of the MLO group, transcription factors of the WRKY and MYB families and defensive proteins BbChit1, LJAMP2, MsrA2 and PtDef as the most promising targets for genetic engineering; and also pay attention to the possibility of microbiome engineering.
Collapse
Affiliation(s)
- Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
6
|
Lin Z, Ying W, Wen P, Lian Z, Zhang J. Effect of peracetic acid generation in hydrogen peroxide-acetic acid pretreatment on production of xylooligosaccharides from poplar by organic acid hydrolysis. BIORESOURCE TECHNOLOGY 2023; 376:128848. [PMID: 36906236 DOI: 10.1016/j.biortech.2023.128848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide-acetic acid (HPAA) compositions affect the peracetic acid generation and subsequent delignification of lignocellulosic materials. However, the effects of HPAA compositions on lignin removal and poplar hydrolyzability after HPAA pretreatment are not fully elucidated yet. In this work, different volume ratios of HP to AA were used to pretreat poplar, AA and lactic acid (LA) hydrolysis of delignified poplar to produce XOS was compared. Peracetic acid was mainly produced in 1 h of HPAA pretreatment. HPAA with HP to AA ratio of 8:2 (HP8AA2) generated 4.4% peracetic acid and removed 57.7% of lignin at 2 h. Furthermore, XOS production from HP8AA2-pretreated poplar by AA and LA hydrolysis was increased by 97.1% and 14.9% compared to those from raw poplar, respectively. After alkaline incubation, the glucose yield of HP8AA2-AA-pretreated poplar increased from 40.1% to 97.1%. The study results indicated that HP8AA2 was conducive to XOS and monosaccharides production from poplar..
Collapse
Affiliation(s)
- Zihe Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peiyao Wen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
7
|
Abeyratne CR, Macaya-Sanz D, Zhou R, Barry KW, Daum C, Haiby K, Lipzen A, Stanton B, Yoshinaga Y, Zane M, Tuskan GA, DiFazio SP. High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa. G3 (BETHESDA, MD.) 2023; 13:jkac269. [PMID: 36250890 PMCID: PMC9836356 DOI: 10.1093/g3journal/jkac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes. The 14 parental genetic maps contained 1,820 SNP/INDELs on average that covered 376.7 Mb of physical length across 19 chromosomes. Comparison of parental and progeny haplotypes allowed fine-scale demarcation of cross-over regions, where 38,846 cross-over events in 1,658 gametes were observed. Cross-over events were positively associated with gene density and negatively associated with GC content and long-terminal repeats. One of the most striking findings was higher rates of cross-overs in males in 8 out of 19 chromosomes. Regions with elevated male cross-over rates had lower gene density and GC content than windows showing no sex bias. High-resolution analysis identified 67 candidate cross-over hotspots spread throughout the genome. DNA sequence motifs enriched in these regions showed striking similarity to those of maize, Arabidopsis, and wheat. These findings, and recombination estimates, will be useful for ongoing efforts to accelerate domestication of this and other biomass feedstocks, as well as future studies investigating broader questions related to evolutionary history, perennial development, phenology, wood formation, vegetative propagation, and dioecy that cannot be studied using annual plant model systems.
Collapse
Affiliation(s)
| | - David Macaya-Sanz
- Department of Forest Ecology & Genetics, CIFOR-INIA, CSIC, Madrid 28040, Spain
| | - Ran Zhou
- Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Anna Lipzen
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Yuko Yoshinaga
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Matthew Zane
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Gerald A Tuskan
- Biosciences Division, Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
8
|
Crosby JR, Laemthong T, Bing RG, Zhang K, Tanwee TNN, Lipscomb GL, Rodionov DA, Zhang Y, Adams MWW, Kelly RM. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Appl Environ Microbiol 2022; 88:e0130222. [PMID: 36218355 PMCID: PMC9642015 DOI: 10.1128/aem.01302-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor species scavenge carbohydrates from runoff containing plant biomass that enters hot springs and from grasses that grow in more moderate parts of thermal features. While only a few Caldicellulosiruptor species can degrade cellulose, all known species are hemicellulolytic. The most well-characterized species, Caldicellulosiruptor bescii, decentralizes its hemicellulase inventory across five different genomic loci and two isolated genes. Transcriptomic analyses, comparative genomics, and enzymatic characterization were utilized to assign functional roles and determine the relative importance of its six putative endoxylanases (five glycoside hydrolase family 10 [GH10] enzymes and one GH11 enzyme) and two putative exoxylanases (one GH39 and one GH3) in C. bescii. Two genus-wide conserved xylanases, C. bescii XynA (GH10) and C. bescii Xyl3A (GH3), had the highest levels of sugar release on oat spelt xylan, were in the top 10% of all genes transcribed by C. bescii, and were highly induced on xylan compared to cellulose. This indicates that a minimal set of enzymes are used to drive xylan degradation in the genus Caldicellulosiruptor, complemented by hemicellulolytic inventories that are tuned to specific forms of hemicellulose in available plant biomasses. To this point, synergism studies revealed that the pairing of specific GH family proteins (GH3, -11, and -39) with C. bescii GH10 proteins released more sugar in vitro than mixtures containing five different GH10 proteins. Overall, this work demonstrates the essential requirements for Caldicellulosiruptor to degrade various forms of xylan and the differences in species genomic inventories that are tuned for survival in unique biotopes with variable lignocellulosic substrates. IMPORTANCE Microbial deconstruction of lignocellulose for the production of biofuels and chemicals requires the hydrolysis of heterogeneous hemicelluloses to access the microcrystalline cellulose portion. This work extends previous in vivo and in vitro efforts to characterize hemicellulose utilization by integrating genomic reconstruction, transcriptomic data, operon structures, and biochemical characteristics of key enzymes to understand the deployment and functionality of hemicellulases by the extreme thermophile Caldicellulosiruptor bescii. Furthermore, comparative genomics of the genus revealed both conserved and divergent mechanisms for hemicellulose utilization across the 15 sequenced species, thereby paving the way to connecting functional enzyme characterization with metabolic engineering efforts to enhance lignocellulose conversion.
Collapse
Affiliation(s)
- James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environmental and Life Sciences, University of Rhode Island, Kinston, Rhode Island, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Irving TB, Chakraborty S, Maia LGS, Knaack S, Conde D, Schmidt HW, Triozzi PM, Simmons CH, Roy S, Kirst M, Ané JM. An LCO-responsive homolog of NODULE INCEPTION positively regulates lateral root formation in Populus sp. PLANT PHYSIOLOGY 2022; 190:1699-1714. [PMID: 35929094 PMCID: PMC9614479 DOI: 10.1093/plphys/kiac356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The transcription factor NODULE INCEPTION (NIN) has been studied extensively for its multiple roles in root nodule symbiosis within plants of the nitrogen-fixing clade (NFC) that associate with soil bacteria, such as rhizobia and Frankia. However, NIN homologs are present in plants outside the NFC, suggesting a role in other developmental processes. Here, we show that the biofuel crop Populus sp., which is not part of the NFC, contains eight copies of NIN with diversified protein sequence and expression patterns. Lipo-chitooligosaccharides (LCOs) are produced by rhizobia and a wide range of fungi, including mycorrhizal ones, and act as symbiotic signals that promote lateral root formation. RNAseq analysis of Populus sp. treated with purified LCO showed induction of the PtNIN2 subfamily. Moreover, the expression of PtNIN2b correlated with the formation of lateral roots and was suppressed by cytokinin treatment. Constitutive expression of PtNIN2b overcame the inhibition of lateral root development by cytokinin under high nitrate conditions. Lateral root induction in response to LCOs likely represents an ancestral function of NIN retained and repurposed in nodulating plants, as we demonstrate that the role of NIN in LCO-induced root branching is conserved in both Populus sp. and legumes. We further established a visual marker of LCO perception in Populus sp. roots, the putative sulfotransferase PtSS1 that can be used to study symbiotic interactions with the bacterial and fungal symbionts of Populus sp.
Collapse
Affiliation(s)
| | | | - Lucas Gontijo Silva Maia
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Sara Knaack
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Daniel Conde
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Henry W Schmidt
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Paolo M Triozzi
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Carl H Simmons
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Matias Kirst
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
10
|
Wouters M, Corneillie S, Dewitte A, Van Doorsselaere J, Van den Bulcke J, Van Acker J, Vanholme B, Boerjan W. Whole genome duplication of wild-type and CINNAMYL ALCOHOL DEHYDROGENASE1-downregulated hybrid poplar reduces biomass yield and causes a brittle apex phenotype in field-grown wild types. FRONTIERS IN PLANT SCIENCE 2022; 13:995402. [PMID: 36160989 PMCID: PMC9504066 DOI: 10.3389/fpls.2022.995402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The potential of whole genome duplication to increase plant biomass yield is well-known. In Arabidopsis tetraploids, an increase in biomass yield was accompanied by a reduction in lignin content and, as a result, a higher saccharification efficiency was achieved compared with diploid controls. Here, we evaluated whether the results obtained in Arabidopsis could be translated into poplar and whether the enhanced saccharification yield upon alkaline pretreatment of hairpin-downregulated CINNAMYL ALCOHOL DEHYDROGENASE1 (hpCAD) transgenic poplar could be further improved upon a whole genome duplication. Using a colchicine treatment, wild-type (WT) Populus tremula x P. alba cv. INRA 717-1B4, a commonly used model clone in tree biotechnology research, and hpCAD tetraploids were generated and grown in the greenhouse. In parallel, WT tetraploid poplars were grown in the field. In contrast to Arabidopsis, a whole genome duplication of poplar had a negative impact on the biomass yield of both greenhouse- and field-grown trees. Strikingly, field-grown WT tetraploids developed a brittle apex phenotype, i.e., their tip broke off just below the apex. In addition, the chromosome doubling altered the biomass composition of field-grown, but not of greenhouse-grown tetraploid poplars. More specifically, the lignin content of field-grown tetraploid poplars was increased at the expense of matrix polysaccharides. This increase in lignin deposition in biomass is likely the cause of the observed brittle apex phenotype, though no major differences in stem anatomy or in mechanical properties could be found between di- and tetraploid WT poplars grown in the field. Finally, without biomass pretreatment, the saccharification efficiency of greenhouse- and field-grown WT diploids was not different from that of tetraploids, whereas that of greenhouse-grown hpCAD tetraploids was higher than that of greenhouse-grown diploids. Upon alkaline pretreatment, the saccharification yield of diploids was similar to that of tetraploids for all genotypes and growth conditions tested. This study showed that a whole genome duplication in hybrid WT and hpCAD poplar did neither result in further improvements in biomass yield, nor in improved biomass composition and, hence, saccharification performance.
Collapse
Affiliation(s)
- Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sander Corneillie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Angelo Dewitte
- Expertisecentrum Agro- en Biotechnologie, VIVES, Roeselare, Belgium
| | | | - Jan Van den Bulcke
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris Van Acker
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
11
|
Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. ENERGIES 2022. [DOI: 10.3390/en15124348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Energy crops are dedicated cultures directed for biofuels, electricity, and heat production. Due to their tolerance to contaminated lands, they can alleviate and remediate land pollution by the disposal of toxic elements and polymetallic agents. Moreover, these crops are suitable to be exploited in marginal soils (e.g., saline), and, therefore, the risk of land-use conflicts due to competition for food, feed, and fuel is reduced, contributing positively to economic growth, and bringing additional revenue to landowners. Therefore, further study and investment in R&D is required to link energy crops to the implementation of biorefineries. The main objective of this study is to present a review of the potential of selected energy crops for bioenergy and biofuels production, when cultivated in marginal/degraded/contaminated (MDC) soils (not competing with agriculture), contributing to avoiding Indirect Land Use Change (ILUC) burdens. The selected energy crops are Cynara cardunculus, Arundo donax, Cannabis sativa, Helianthus tuberosus, Linum usitatissimum, Miscanthus × giganteus, Sorghum bicolor, Panicum virgatum, Acacia dealbata, Pinus pinaster, Paulownia tomentosa, Populus alba, Populus nigra, Salix viminalis, and microalgae cultures. This article is useful for researchers or entrepreneurs who want to know what kind of crops can produce which biofuels in MDC soils.
Collapse
|
12
|
Nayeri S, Baghban Kohnehrouz B, Ahmadikhah A, Mahna N. CRISPR/Cas9-mediated P-CR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1197-1212. [PMID: 35266285 PMCID: PMC9129088 DOI: 10.1111/pbi.13803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 05/21/2023]
Abstract
Cellulose is the most abundant unique biopolymer in nature with widespread applications in bioenergy and high-value bioproducts. The large transmembrane-localized cellulose synthase (CESA) complexes (CSCs) play a pivotal role in the biosynthesis and orientation of the para-crystalline cellulose microfibrils during secondary cell wall (SCW) deposition. However, the hub CESA subunit with high potential homo/heterodimerization capacity and its functional effects on cell wall architecture, cellulose crystallinity, and saccharification efficiency remains unclear. Here, we reported the highly potent binding site containing four residues of Pro435, Trp436, Pro437, and Gly438 in the plant-conserved region (P-CR) of PalCESA4 subunit, which are involved in the CESA4-CESA8 heterodimerization. The CRISPR/Cas9-knockout mutagenesis in the predicted binding site results in physiological abnormalities, stunt growth, and deficient roots. The homozygous double substitution of W436Q and P437S and heterozygous double deletions of W436 and P437 residues potentially reduced CESA4-binding affinity resulting in normal roots, 1.5-2-fold higher plant growth and cell wall regeneration rates, 1.7-fold thinner cell wall, high hemicellulose content, 37%-67% decrease in cellulose content, high cellulose DP, 25%-37% decrease in cellulose crystallinity, and 50% increase in saccharification efficiency. The heterozygous deletion of W436 increases about 2-fold CESA4 homo/heterodimerization capacity led to the 50% decrease in plant growth and increase in cell walls thickness, cellulose content (33%), cellulose DP (20%), and CrI (8%). Our findings provide a strategy for introducing commercial CRISPR/Cas9-mediated bioengineered poplars with promising cellulose applications. We anticipate our results could create an engineering revolution in bioenergy and cellulose-based nanomaterial technologies.
Collapse
Affiliation(s)
- Shahnoush Nayeri
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | - Asadollah Ahmadikhah
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Nasser Mahna
- Department of Horticultural SciencesFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
13
|
Huang XY, Shang J, Zhong YH, Li DL, Song LJ, Wang J. Disaggregation of Ploidy, Gender, and Genotype Effects on Wood and Fiber Traits in a Diploid and Triploid Hybrid Poplar Family. FRONTIERS IN PLANT SCIENCE 2022; 13:866296. [PMID: 35432438 PMCID: PMC9011097 DOI: 10.3389/fpls.2022.866296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Triploid breeding based on unilateral sexual polyploidization is an effective approach for genetic improvement of Populus, which can integrate heterosis and ploidy vigor in an elite variety. However, the phenotypic divergence of unselected allotriploids with the same cross-combination remains poorly understood, and the contributions of ploidy, gender, and genotype effects on phenotypic variation are still unclear. In this study, wood and fiber traits, including basic density (BD), lignin content (LC), fiber length (FL), fiber width (FW), and fiber length/width (FL/W), were measured based on a 10-year-old clonal trial, including full-sib diploid and triploid hybrids of (Populus pseudo-simonii × P. nigra 'Zheyin3#') × P. × beijingensis, and contributions of ploidy, gender, and genotype effects on the variation of these traits, were disaggregated to enhance our understanding of triploid breeding. We found a significant phenotypic variation for all measured traits among genotypes. All the wood and fiber traits studied here underwent strong clonal responses with high repeatabilities (0.55-0.76). The Pearson's correlation analyses based on the best linear unbiased predictors (BLUPs) revealed that BD was significantly positively correlated with FL (r = 0.65, p = 0.030), suggesting that BD could be improved together with FL during triploid breeding. The FL of the triploids was significantly larger than that of the diploids (p < 0.001), suggesting that ploidy strongly affected the variation of FL traits. The difference between females and males was not significant for any measured trait, implying that gender might not be a major factor for variation in these traits. Further analyses of variance components showed that genotype dominantly contributed to the variation of BD, LC, and FW traits (with 54, 62, and 53% contributions, respectively) and ploidy contributed strongly to variation in FL and FL/W (77 and 50%, respectively). The genetic coefficient of variation (CVG) of triploids for each trait was low, suggesting that it is necessary to produce many triploids for selection or to use different Populus species as parents. Our findings provide new insights into the genetic effects of ploidy, gender, and genotype on wood and fiber traits within a full-sib poplar family, enhancing the understanding of the triploid breeding program of Populus.
Collapse
Affiliation(s)
- Xu-Yan Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing Shang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Hang Zhong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dai-Li Li
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Lian-Jun Song
- Breeding and Propagation Base for Tree Varieties in Weixian County, Xingtai, China
| | - Jun Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Abstract
The integral role of microbial communities in plant growth and health is now widely recognized, and, increasingly, the constituents of the microbiome are being defined. While phylogenetic surveys have revealed the taxa present in a microbiome and show that this composition can depend on, and respond to, environmental perturbations, the challenge shifts to determining why particular microbes are selected and how they collectively function in concert with their host. In this study, we targeted the isolation of representative bacterial strains from environmental samples of Populus roots using a direct plating approach and compared them to amplicon-based sequencing analysis of root samples. The resulting culture collection contains 3,211 unique isolates representing 10 classes, 18 orders, 45 families, and 120 genera from 6 phyla, based on 16S rRNA gene sequence analysis. The collection accounts for ∼50% of the natural community of plant-associated bacteria as determined by phylogenetic analysis. Additionally, a representative set of 553 had their genomes sequenced to facilitate functional analyses. The top sequence variants in the amplicon data, identified as Pseudomonas, had multiple representatives within the culture collection. We then explore a simplified microbiome, comprised of 10 strains representing abundant taxa from environmental samples, and tested for their ability to reproducibly colonize Populus root tissue. The 10-member simplified community was able to reproducibly colonize on Populus roots after 21 days, with some taxa found in surface-sterilized aboveground tissue. This study presents a comprehensive collection of bacteria isolated from Populus for use in exploring microbial function and community inoculation experiments to understand basic concepts of plant and environmental selection. IMPORTANCE Microbial communities play an integral role in the health and survival of their plant hosts. Many studies have identified key members in these communities and led to the use of synthetic communities for elucidating their function; however, these studies are limited by the available cultured bacterial representatives. Here, we present a bacterial culture collection comprising 3,211 isolates that is representative of the root community of Populus. We then demonstrate the ability to examine underlying microbe-microbe interactions using a synthetic community approach. This culture collection will allow for the greater exploration of the microbial community function through targeted experimentation and manipulation.
Collapse
|
15
|
Vélez JM, Morris RM, Vilgalys R, Labbé J, Schadt CW. Phylogenetic diversity of 200+ isolates of the ectomycorrhizal fungus Cenococcum geophilum associated with Populus trichocarpa soils in the Pacific Northwest, USA and comparison to globally distributed representatives. PLoS One 2021; 16:e0231367. [PMID: 33406078 PMCID: PMC7787446 DOI: 10.1371/journal.pone.0231367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
The ectomycorrhizal fungal symbiont Cenococcum geophilum is of high interest as it is globally distributed, associates with many plant species, and has resistance to multiple environmental stressors. C. geophilum is only known from asexual states but is often considered a cryptic species complex, since extreme phylogenetic divergence is often observed within nearly morphologically identical strains. Alternatively, C. geophilum may represent a highly diverse single species, which would suggest cryptic but frequent recombination. Here we describe a new isolate collection of 229 C. geophilum isolates from soils under Populus trichocarpa at 123 collection sites spanning a ~283 mile north-south transect in Western Washington and Oregon, USA (PNW). To further understanding of the phylogenetic relationships within C. geophilum, we performed maximum likelihood and Bayesian phylogenetic analyses to assess divergence within the PNW isolate collection, as well as a global phylogenetic analysis of 789 isolates with publicly available data from the United States, Japan, and European countries. Phylogenetic analyses of the PNW isolates revealed three distinct phylogenetic groups, with 15 clades that strongly resolved at >80% bootstrap support based on a GAPDH phylogeny and one clade segregating strongly in two principle component analyses. The abundance and representation of PNW isolate clades varied greatly across the North-South range, including a monophyletic group of isolates that spanned nearly the entire gradient at ~250 miles. A direct comparison between the GAPDH and ITS rRNA gene region phylogenies, combined with additional analyses revealed stark incongruence between the ITS and GAPDH gene regions, consistent with intra-species recombination between PNW isolates. In the global isolate collection phylogeny, 34 clades were strongly resolved using Maximum Likelihood and Bayesian approaches (at >80% MLBS and >0.90 BPP respectively), with some clades having intra- and intercontinental distributions. Together these data are highly suggestive of divergence within multiple cryptic species, however additional analyses such as higher resolution genotype-by-sequencing approaches are needed to distinguish potential species boundaries and the mode and tempo of recombination patterns.
Collapse
Affiliation(s)
- Jessica M. Vélez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States of America
| | - Reese M. Morris
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | - Rytas Vilgalys
- Biology Department, Duke University, Raleigh, NC, United States of America
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States of America
- Dept of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
16
|
Hori C, Takata N, Lam PY, Tobimatsu Y, Nagano S, Mortimer JC, Cullen D. Identifying transcription factors that reduce wood recalcitrance and improve enzymatic degradation of xylem cell wall in Populus. Sci Rep 2020; 10:22043. [PMID: 33328495 PMCID: PMC7744511 DOI: 10.1038/s41598-020-78781-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Developing an efficient deconstruction step of woody biomass for biorefinery has been drawing considerable attention since its xylem cell walls display highly recalcitrance nature. Here, we explored transcriptional factors (TFs) that reduce wood recalcitrance and improve saccharification efficiency in Populus species. First, 33 TF genes up-regulated during poplar wood formation were selected as potential regulators of xylem cell wall structure. The transgenic hybrid aspens (Populus tremula × Populus tremuloides) overexpressing each selected TF gene were screened for in vitro enzymatic saccharification. Of these, four transgenic seedlings overexpressing previously uncharacterized TF genes increased total glucan hydrolysis on average compared to control. The best performing lines overexpressing Pt × tERF123 and Pt × tZHD14 were further grown to form mature xylem in the greenhouse. Notably, the xylem cell walls exhibited significantly increased total xylan hydrolysis as well as initial hydrolysis rates of glucan. The increased saccharification of Pt × tERF123-overexpressing lines could reflect the improved balance of cell wall components, i.e., high cellulose and low xylan and lignin content, which could be caused by upregulation of cellulose synthase genes upon the expression of Pt × tERF123. Overall, we successfully identified Pt × tERF123 and Pt × tZHD14 as effective targets for reducing cell wall recalcitrance and improving the enzymatic degradation of woody plant biomass.
Collapse
Affiliation(s)
- Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, 319-1301, Japan
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, 319-1301, Japan
| | - Jenny C Mortimer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, CA, 94720, USA
| | - Dan Cullen
- U. S. Department of Agriculture, Forest Products Laboratory, Madison, WI, 53726, USA
| |
Collapse
|
17
|
Kim MH, Cho JS, Park EJ, Lee H, Choi YI, Bae EK, Han KH, Ko JH. Overexpression of a Poplar RING-H2 Zinc Finger, Ptxerico, Confers Enhanced Drought Tolerance via Reduced Water Loss and Ion Leakage in Populus. Int J Mol Sci 2020; 21:E9454. [PMID: 33322558 PMCID: PMC7764267 DOI: 10.3390/ijms21249454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023] Open
Abstract
Drought stress is one of the major environmental problems in the growth of crops and woody perennials, but it is getting worse due to the global climate crisis. XERICO, a RING (Really Interesting New Gene) zinc-finger E3 ubiquitin ligase, has been shown to be a positive regulator of drought tolerance in plants through the control of abscisic acid (ABA) homeostasis. We characterized a poplar (Populus trichocarpa) RING protein family and identified the closest homolog of XERICO called PtXERICO. Expression of PtXERICO is induced by both salt and drought stress, and by ABA treatment in poplars. Overexpression of PtXERICO in Arabidopsis confers salt and ABA hypersensitivity in young seedlings, and enhances drought tolerance by decreasing transpirational water loss. Consistently, transgenic hybrid poplars overexpressing PtXERICO demonstrate enhanced drought tolerance with reduced transpirational water loss and ion leakage. Subsequent upregulation of genes involved in the ABA homeostasis and drought response was confirmed in both transgenic Arabidopsis and poplars. Taken together, our results suggest that PtXERICO will serve as a focal point to improve drought tolerance of woody perennials.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea; (M.-H.K.); (J.-S.C.)
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea; (M.-H.K.); (J.-S.C.)
| | - Eung-Jun Park
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon 16631, Korea; (E.-J.P.); (H.L.); (Y.-I.C.); (E.-K.B.)
| | - Hyoshin Lee
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon 16631, Korea; (E.-J.P.); (H.L.); (Y.-I.C.); (E.-K.B.)
| | - Young-Im Choi
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon 16631, Korea; (E.-J.P.); (H.L.); (Y.-I.C.); (E.-K.B.)
| | - Eun-Kyung Bae
- Division of Forest Biotechnology, National Institute of Forest Science, Suwon 16631, Korea; (E.-J.P.); (H.L.); (Y.-I.C.); (E.-K.B.)
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA;
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea; (M.-H.K.); (J.-S.C.)
| |
Collapse
|
18
|
Quantitative genetic architecture of adaptive phenology traits in the deciduous tree, Populus trichocarpa (Torr. and Gray). Heredity (Edinb) 2020; 125:449-458. [PMID: 32901141 PMCID: PMC7784687 DOI: 10.1038/s41437-020-00363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/02/2022] Open
Abstract
In a warming climate, the ability to accurately predict and track shifting environmental conditions will be fundamental for plant survival. Environmental cues define the transitions between growth and dormancy as plants synchronise development with favourable environmental conditions, however these cues are predicted to change under future climate projections which may have profound impacts on tree survival and growth. Here, we use a quantitative genetic approach to estimate the genetic basis of spring and autumn phenology in Populus trichocarpa to determine this species capacity for climate adaptation. We measured bud burst, leaf coloration, and leaf senescence traits across two years (2017–2018) and combine these observations with measures of lifetime growth to determine how genetic correlations between phenology and growth may facilitate or constrain adaptation. Timing of transitions differed between years, although we found strong cross year genetic correlations in all traits, suggesting that genotypes respond in consistent ways to seasonal cues. Spring and autumn phenology were correlated with lifetime growth, where genotypes that burst leaves early and shed them late had the highest lifetime growth. We also identified substantial heritable variation in the timing of all phenological transitions (h2 = 0.5–0.8) and in lifetime growth (h2 = 0.8). The combination of additive variation and favourable genetic correlations in phenology traits suggests that populations of cultivated varieties of P. Trichocarpa may have the capability to adapt their phenology to climatic changes without negative impacts on growth.
Collapse
|
19
|
Bryant ND, Pu Y, Tschaplinski TJ, Tuskan GA, Muchero W, Kalluri UC, Yoo CG, Ragauskas AJ. Transgenic Poplar Designed for Biofuels. TRENDS IN PLANT SCIENCE 2020; 25:881-896. [PMID: 32482346 DOI: 10.1016/j.tplants.2020.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 05/12/2023]
Abstract
Members of the genus Populus (i.e., cottonwood, hybrid poplar) represent a promising source of lignocellulosic biomass for biofuels. However, one of the major factors negatively affecting poplar's efficient conversion to biofuel is the inherent recalcitrance to enzymatic saccharification due to cell wall components such as lignin. To this effect, there have been efforts to modify gene expression to reduce biomass recalcitrance by changing cell wall properties. Here, we review recent genetic modifications of poplar that led to change cell wall properties and the resulting effects on subsequent pretreatment efficacy and saccharification. Although genetic engineering's impacts on cell wall properties are not fully predictable, recent studies have shown promising improvement in the biological conversion of transgenic poplar to biofuels.
Collapse
Affiliation(s)
- Nathan D Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C Kalluri
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
20
|
Piot A, Prunier J, Isabel N, Klápště J, El-Kassaby YA, Villarreal Aguilar JC, Porth I. Genomic Diversity Evaluation of Populus trichocarpa Germplasm for Rare Variant Genetic Association Studies. Front Genet 2020; 10:1384. [PMID: 32047512 PMCID: PMC6997551 DOI: 10.3389/fgene.2019.01384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies are powerful tools to elucidate the genome-to-phenome relationship. In order to explain most of the observed heritability of a phenotypic trait, a sufficient number of individuals and a large set of genetic variants must be examined. The development of high-throughput technologies and cost-efficient resequencing of complete genomes have enabled the genome-wide identification of genetic variation at large scale. As such, almost all existing genetic variation becomes available, and it is now possible to identify rare genetic variants in a population sample. Rare genetic variants that were usually filtered out in most genetic association studies are the most numerous genetic variations across genomes and hold great potential to explain a significant part of the missing heritability observed in association studies. Rare genetic variants must be identified with high confidence, as they can easily be confounded with sequencing errors. In this study, we used a pre-filtered data set of 1,014 pure Populus trichocarpa entire genomes to identify rare and common small genetic variants across individual genomes. We compared variant calls between Platypus and HaplotypeCaller pipelines, and we further applied strict quality filters for improved genetic variant identification. Finally, we only retained genetic variants that were identified by both variant callers increasing calling confidence. Based on these shared variants and after stringent quality filtering, we found high genomic diversity in P. trichocarpa germplasm, with 7.4 million small genetic variants. Importantly, 377k non-synonymous variants (5% of the total) were uncovered. We highlight the importance of genomic diversity and the potential of rare defective genetic variants in explaining a significant portion of P. trichocarpa's phenotypic variability in association genetics. The ultimate goal is to associate both rare and common alleles with poplar's wood quality traits to support selective breeding for an improved bioenergy feedstock.
Collapse
Affiliation(s)
- Anthony Piot
- Department of Wood and Forest Sciences, Université Laval, Quebec, QC, Canada.,Institute for System and Integrated Biology (IBIS), Université Laval, Quebec, QC, Canada.,Centre for Forest Research, Université Laval, Quebec, QC, Canada
| | - Julien Prunier
- Department of Wood and Forest Sciences, Université Laval, Quebec, QC, Canada.,Institute for System and Integrated Biology (IBIS), Université Laval, Quebec, QC, Canada.,Centre for Forest Research, Université Laval, Quebec, QC, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC, Canada
| | | | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Juan Carlos Villarreal Aguilar
- Centre for Forest Research, Université Laval, Quebec, QC, Canada.,Smithsonian Tropical Research Institute (STRI), Ancon, Panama.,Department of Biology, Université Laval, Quebec, QC, Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Université Laval, Quebec, QC, Canada.,Institute for System and Integrated Biology (IBIS), Université Laval, Quebec, QC, Canada.,Centre for Forest Research, Université Laval, Quebec, QC, Canada
| |
Collapse
|
21
|
High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere. Proc Natl Acad Sci U S A 2020; 117:1596-1605. [PMID: 31907313 DOI: 10.1073/pnas.1912327117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.
Collapse
|
22
|
Guerra FP, Suren H, Holliday J, Richards JH, Fiehn O, Famula R, Stanton BJ, Shuren R, Sykes R, Davis MF, Neale DB. Exome resequencing and GWAS for growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa. BMC Genomics 2019; 20:875. [PMID: 31747881 PMCID: PMC6864938 DOI: 10.1186/s12864-019-6160-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background Populus trichocarpa is an important forest tree species for the generation of lignocellulosic ethanol. Understanding the genomic basis of biomass production and chemical composition of wood is fundamental in supporting genetic improvement programs. Considerable variation has been observed in this species for complex traits related to growth, phenology, ecophysiology and wood chemistry. Those traits are influenced by both polygenic control and environmental effects, and their genome architecture and regulation are only partially understood. Genome wide association studies (GWAS) represent an approach to advance that aim using thousands of single nucleotide polymorphisms (SNPs). Genotyping using exome capture methodologies represent an efficient approach to identify specific functional regions of genomes underlying phenotypic variation. Results We identified 813 K SNPs, which were utilized for genotyping 461 P. trichocarpa clones, representing 101 provenances collected from Oregon and Washington, and established in California. A GWAS performed on 20 traits, considering single SNP-marker tests identified a variable number of significant SNPs (p-value < 6.1479E-8) in association with diameter, height, leaf carbon and nitrogen contents, and δ15N. The number of significant SNPs ranged from 2 to 220 per trait. Additionally, multiple-marker analyses by sliding-windows tests detected between 6 and 192 significant windows for the analyzed traits. The significant SNPs resided within genes that encode proteins belonging to different functional classes as such protein synthesis, energy/metabolism and DNA/RNA metabolism, among others. Conclusions SNP-markers within genes associated with traits of importance for biomass production were detected. They contribute to characterize the genomic architecture of P. trichocarpa biomass required to support the development and application of marker breeding technologies.
Collapse
Affiliation(s)
- Fernando P Guerra
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, P.O. Box 747, 3460000, Chile
| | - Haktan Suren
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jason Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - James H Richards
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, CA, 95616, USA
| | - Randi Famula
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA
| | - Brian J Stanton
- Biological Research Group, GreenWood Resources, Portland, OR, 97201, USA
| | - Richard Shuren
- Biological Research Group, GreenWood Resources, Portland, OR, 97201, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, 262C Robbins Hall, Mail Stop 4, Davis, CA, 95616, USA. .,Bioenergy Research Center, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Kim MH, Cho JS, Jeon HW, Sangsawang K, Shim D, Choi YI, Park EJ, Lee H, Ko JH. Wood Transcriptome Profiling Identifies Critical Pathway Genes of Secondary Wall Biosynthesis and Novel Regulators for Vascular Cambium Development in Populus. Genes (Basel) 2019; 10:E690. [PMID: 31500311 PMCID: PMC6770981 DOI: 10.3390/genes10090690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Wood, the most abundant biomass on Earth, is composed of secondary xylem differentiated from vascular cambium. However, the underlying molecular mechanisms of wood formation remain largely unclear. To gain insight into wood formation, we performed a series of wood-forming tissue-specific transcriptome analyses from a hybrid poplar (Populus alba × P. glandulosa, clone BH) using RNA-seq. Together with shoot apex and leaf tissue, cambium and xylem tissues were isolated from vertical stem segments representing a gradient of secondary growth developmental stages (i.e., immature, intermediate, and mature stem). In a comparative transcriptome analysis of the 'developing xylem' and 'leaf' tissue, we could identify critical players catalyzing each biosynthetic step of secondary wall components (e.g., cellulose, xylan, and lignin). Several candidate genes involved in the initiation of vascular cambium formation were found via a co-expression network analysis using abundantly expressed genes in the 'intermediate stem-derived cambium' tissue. We found that transgenic Arabidopsis plants overexpressing the PtrHAM4-1, a GRAS family transcription factor, resulted in a significant increase of vascular cambium development. This phenotype was successfully reproduced in the transgenic poplars overexpressing the PtrHAM4-1. Taken together, our results may serve as a springboard for further research to unravel the molecular mechanism of wood formation, one of the most important biological processes on this planet.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
| | - Hyung-Woo Jeon
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Kanidta Sangsawang
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
| | - Donghwan Shim
- Korea Forest Research Institute, Suwon 16631, Korea.
| | - Young-Im Choi
- Korea Forest Research Institute, Suwon 16631, Korea.
| | - Eung-Jun Park
- Korea Forest Research Institute, Suwon 16631, Korea.
| | - Hyoshin Lee
- Korea Forest Research Institute, Suwon 16631, Korea.
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
| |
Collapse
|
24
|
Cho J, Jeon H, Kim M, Vo TK, Kim J, Park E, Choi Y, Lee H, Han K, Ko J. Wood forming tissue-specific bicistronic expression of PdGA20ox1 and PtrMYB221 improves both the quality and quantity of woody biomass production in a hybrid poplar. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1048-1057. [PMID: 30515982 PMCID: PMC6523601 DOI: 10.1111/pbi.13036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/27/2018] [Accepted: 10/28/2018] [Indexed: 05/22/2023]
Abstract
With the exponential growth of the human population and industrial developments, research on renewable energy resources is required to alleviate environmental and economic impacts caused by the consumption of fossil fuels. In this study, we present a synthetic biological application of a wood forming tissue-specific bicistronic gene expression system to improve both the quantity and quality of woody biomass to minimize undesirable growth penalties. Our transgenic poplars, designed to express both PdGA20ox1 (a GA20-oxidase from Pinus densiflora producing bioactive gibberellin, GA) and PtrMYB221 (a MYB transcription factor negatively regulating lignin biosynthesis) under the developing xylem (DX) tissue-specific promoter (i.e., DX15::PdGA20ox1-2A-PtrMYB221 poplar), resulted in a 2-fold increase in biomass quantity compared to wild-type (WT), without undesirable growth defects. A similar phenotype was observed in transgenic Arabidopsis plants harboring the same gene constructs. These phenotypic consequences were further verified in the field experiments. Importantly, our transgenic poplars exhibited an improved quality of biomass with reduced lignin content (~16.0 wt%) but increased holocellulose content (~6.6 wt%). Furthermore, the saccharification efficiency of our transgenic poplar increased significantly by up to 8%. Our results demonstrate that the controlled production of both GA and a secondary wall modifying regulator in the same spatio-temporal manner can be utilized as an efficient biotechnological tool for producing the desired multi-purpose woody biomass.
Collapse
Affiliation(s)
- Jin‐Seong Cho
- Department of Plant & Environmental New ResourcesKyung Hee UniversityYonginKorea
| | - Hyung‐Woo Jeon
- Department of Plant & Environmental New ResourcesKyung Hee UniversityYonginKorea
| | - Min‐Ha Kim
- Department of Plant & Environmental New ResourcesKyung Hee UniversityYonginKorea
| | - The K. Vo
- Department of Chemical EngineeringKyung Hee UniversityYonginKorea
| | - Jinsoo Kim
- Department of Chemical EngineeringKyung Hee UniversityYonginKorea
| | - Eung‐Jun Park
- Division of Forest BiotechnologyKorea Forest Research InstituteSuwonKorea
| | - Young‐Im Choi
- Division of Forest BiotechnologyKorea Forest Research InstituteSuwonKorea
| | - Hyoshin Lee
- Division of Forest BiotechnologyKorea Forest Research InstituteSuwonKorea
| | - Kyung‐Hwan Han
- Department of Horticulture and Department of ForestryMichigan State UniversityEast LansingMIUSA
| | - Jae‐Heung Ko
- Department of Plant & Environmental New ResourcesKyung Hee UniversityYonginKorea
| |
Collapse
|
25
|
Yuan Y, Chen S. Widespread antisense transcription of Populus genome under drought. Mol Genet Genomics 2018; 293:1017-1033. [PMID: 29876646 DOI: 10.1007/s00438-018-1456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
Abstract
Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.
Collapse
Affiliation(s)
- Yinan Yuan
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Su Chen
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
26
|
Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. FORESTS 2017. [DOI: 10.3390/f8070237] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Moreno-Cortés A, Ramos-Sánchez JM, Hernández-Verdeja T, González-Melendi P, Alves A, Simões R, Rodrigues JC, Guijarro M, Canellas I, Sixto H, Allona I. Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:110. [PMID: 28469706 PMCID: PMC5414296 DOI: 10.1186/s13068-017-0795-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Early branching or syllepsis has been positively correlated with high biomass yields in short-rotation coppice (SRC) poplar plantations, which could represent an important lignocellulosic feedstock for the production of second-generation bioenergy. In prior work, we generated hybrid poplars overexpressing the chestnut gene RELATED TO ABI3/VP1 1 (CsRAV1), which featured c. 80% more sylleptic branches than non-modified trees in growth chambers. Given the high plasticity of syllepsis, we established a field trial to monitor the performance of these trees under outdoor conditions and a SRC management. RESULTS We examined two CsRAV1-overexpression poplar events for their ability to maintain syllepsis and their potential to enhance biomass production. Two poplar events with reduced expression of the CsRAV1 homologous poplar genes PtaRAV1 and PtaRAV2 were also included in the trial. Under our culture conditions, CsRAV1-overexpression poplars continued developing syllepsis over two cultivation cycles. Biomass production increased on completion of the first cycle for one of the overexpression events, showing unaltered structural, chemical, or combustion wood properties. On completion of the second cycle, aerial growth and biomass yields of both overexpression events were reduced as compared to the control. CONCLUSIONS These findings support the potential application of CsRAV1-overexpression to increase syllepsis in commercial elite trees without changing their wood quality. However, the syllepsis triggered by the introduction of this genetic modification appeared not to be sufficient to sustain and enhance biomass production.
Collapse
Affiliation(s)
- Alicia Moreno-Cortés
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | - José Manuel Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | - Tamara Hernández-Verdeja
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Ana Alves
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Rita Simões
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José Carlos Rodrigues
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Mercedes Guijarro
- Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Isabel Canellas
- Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Hortensia Sixto
- Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
28
|
Cordovil CMDS, de Varennes A, Pinto RMDS, Alves TF, Mendes P, Sampaio SC. Decomposition rate and enzymatic activity of composted municipal waste and poultry manure in the soil in a biofuel crops field. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2245-2255. [PMID: 27620351 DOI: 10.1002/jsfa.8035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Biofuel crops are gaining importance because of the need to replace non-renewable sources. Also, due to the increasing amounts of wastes generated, there is the need to recycle them to the soil, both to fertilize crops and to improve soil physical properties through organic matter increase and microbiological changes in the rhizosphere. We therefore studied the influence of six biofuel crops (elephant grass, giant cane, sugarcane, blue gum, black cottonwood, willow) on the decomposition rate and enzymatic activity of composted municipal solid waste and poultry manure. Organic amendments were incubated in the field (litterbag method), buried near each plant or bare soil. Biomass decrease and dehydrogenase, urease and acid phosphatase level in amendments was monitored over a 180-day period. Soil under the litterbags was analysed for the same enzymatic activity and organic matter fractions (last sampling). After 365 days, a fractionation of organic matter was carried out in both amendments and soil under the litterbags. RESULTS For compost, willow and sugarcane generally led to the greatest enzymatic activity, at the end of the experiment. For manure, dehydrogenase activity decreased sharply with time, the smallest value near sugarcane, while phosphatase and urease generally presented the highest values, at the beginning or after 90 days' incubation. Clustering showed that plant species could be grouped based on biomass and enzymes measured over time. CONCLUSIONS Plant species influenced the decomposition rate and enzymatic activities of the organic amendments. Overall, mineralization of both amendments was associated with a greater urease activity in soils. Dehydrogenase activity in manure was closely associated with urease activity. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Amarilis de Varennes
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | | | - Tiago Filipe Alves
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Pedro Mendes
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Sílvio César Sampaio
- Research Group on Water Resources and Environmental Sanitation, Western Paraná State University, UNIOESTE/Cascavel/ CCET/PGEAGRI, 85819-110, Cascavel, PR, Brazil
| |
Collapse
|
29
|
Fahrenkrog AM, Neves LG, Resende MFR, Vazquez AI, de Los Campos G, Dervinis C, Sykes R, Davis M, Davenport R, Barbazuk WB, Kirst M. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides. THE NEW PHYTOLOGIST 2017; 213:799-811. [PMID: 27596807 DOI: 10.1111/nph.14154] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/13/2016] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. These polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.
Collapse
Affiliation(s)
- Annette M Fahrenkrog
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110690, Gainesville, FL, 32610, USA
| | - Leandro G Neves
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110690, Gainesville, FL, 32610, USA
| | - Márcio F R Resende
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
- Genetics and Genomics Graduate Program, University of Florida, PO Box 103610, Gainesville, FL, 32610, USA
| | - Ana I Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, 909 Fee Road, East Lansing, MI, 48824, USA
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, 909 Fee Road, East Lansing, MI, 48824, USA
- Statistics Department, Michigan State University, 619 Red Cedar Road, MI, 48824, USA
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Mark Davis
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Ruth Davenport
- Biology Department, University of Florida, PO Box 118525, Gainesville, FL, 32611, USA
| | - William B Barbazuk
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110690, Gainesville, FL, 32610, USA
- Biology Department, University of Florida, PO Box 118525, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110690, Gainesville, FL, 32610, USA
- University of Florida Genetics Institute, University of Florida, PO Box 103610, Gainesville, FL, 32611, USA
| |
Collapse
|
30
|
Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation. Appl Environ Microbiol 2016; 82:4387-4400. [PMID: 27208101 DOI: 10.1128/aem.00134-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Identification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the annotated genomes of the brown- and white-rot fungi, Rhodonia placenta (formerly Postia placenta) and Phanerochaete chrysosporium, respectively. We monitored the expression of genes involved in the enzymatic deconstruction of the cell walls of three 4-year-old Populus trichocarpa (poplar) trees of genotypes with distinct cell wall chemistries, selected from a population of several hundred trees grown in a common garden. The woody substrates were incubated with wood decay fungi for 10, 20, and 30 days. An analysis of transcript abundance in all pairwise comparisons highlighted 64 and 84 differentially expressed genes (>2-fold, P < 0.05) in P. chrysosporium and P. placenta, respectively. Cross-fungal comparisons also revealed an array of highly differentially expressed genes (>4-fold, P < 0.01) across different substrates and time points. These results clearly demonstrate that gene expression profiles of P. chrysosporium and P. placenta are influenced by wood substrate composition and the duration of incubation. Many of the significantly expressed genes encode "proteins of unknown function," and determining their role in lignocellulose degradation presents opportunities and challenges for future research. IMPORTANCE This study describes the variation in expression patterns of two wood-degrading fungi (brown- and white-rot fungi) during colonization and incubation on three different naturally occurring poplar substrates of differing chemical compositions, over time. The results clearly show that the two fungi respond differentially to their substrates and that several known and, more interestingly, currently unknown genes are highly misregulated in response to various substrate compositions. These findings highlight the need to characterize several unknown proteins for catalytic function but also as potential candidate proteins to improve the efficiency of enzymatic cocktails to degrade lignocellulosic substrates in industrial applications, such as in a biochemically based bioenergy platform.
Collapse
|
31
|
Chandra RP, Ragauskas AJ. Refining Each Process Step to Accelerate the Development of Biorefineries. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2016.29038.rch] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Richard P. Chandra
- Department of Wood Science, University of British Columbia, Vancouver, BC
| | - Art J. Ragauskas
- Department of Chemical and Biomolecular Engineering, Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN
| |
Collapse
|
32
|
Suarez-Gonzalez A, Hefer CA, Christe C, Corea O, Lexer C, Cronk QCB, Douglas CJ. Genomic and functional approaches reveal a case of adaptive introgression fromPopulus balsamifera(balsam poplar) inP. trichocarpa(black cottonwood). Mol Ecol 2016; 25:2427-42. [DOI: 10.1111/mec.13539] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 01/14/2023]
Affiliation(s)
| | - Charles A. Hefer
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Camille Christe
- Unit of Ecology & Evolution; Department of Biology; University of Fribourg; CH-1700 Fribourg Switzerland
| | - Oliver Corea
- Department of Biology and Centre for Forest Biology; University of Victoria; Victoria BC V8W 3N5 Canada
| | - Christian Lexer
- Unit of Ecology & Evolution; Department of Biology; University of Fribourg; CH-1700 Fribourg Switzerland
- Department of Botany and Biodiversity Research; University of Vienna; A-1030 Vienna Austria
| | - Quentin C. B. Cronk
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Carl J. Douglas
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
33
|
Dumitrache A, Akinosho H, Rodriguez M, Meng X, Yoo CG, Natzke J, Engle NL, Sykes RW, Tschaplinski TJ, Muchero W, Ragauskas AJ, Davison BH, Brown SD. Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:31. [PMID: 26855670 PMCID: PMC4743434 DOI: 10.1186/s13068-016-0445-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/20/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be significantly influenced by the ratio of different monolignol types in Populus biomass. Hydrolysis and fermentation of autoclaved, but otherwise not pretreated Populus trichocarpa by Clostridium thermocellum ATCC 27405 was compared using feedstocks that had similar carbohydrate and total lignin contents but differed in S/G ratios. RESULTS Populus with an S/G ratio of 2.1 was converted more rapidly and to a greater extent compared to similar biomass that had a ratio of 1.2. For either microbes or commercial enzymes, an approximate 50 % relative difference in total solids solubilization was measured for both biomasses, which suggests that the differences and limitations in the microbial breakdown of lignocellulose may be largely from the enzymatic hydrolytic process. Surprisingly, the reduction in glucan content per gram solid in the residual microbially processed biomass was similar (17-18 %) irrespective of S/G ratio, pointing to a similar mechanism of solubilization that proceeded at different rates. Fermentation metabolome testing did not reveal the release of known biomass-derived alcohol and aldehyde inhibitors that could explain observed differences in microbial hydrolytic activity. Biomass-derived p-hydroxybenzoic acid was up to nine-fold higher in low S/G ratio biomass fermentations, but was not found to be inhibitory in subsequent test fermentations. Cellulose crystallinity and degree of polymerization did not vary between Populus lines and had minor changes after fermentation. However, lignin molecular weights and cellulose accessibility determined by Simons' staining were positively correlated to the S/G content. CONCLUSIONS Higher S/G ratios in Populus biomass lead to longer and more linear lignin chains and greater access to surface cellulosic content by microbe-bound enzymatic complexes. Substrate access limitation is suggested as a primary bottleneck in solubilization of minimally processed Populus, which has important implications for microbial deconstruction of lignocellulose biomass. Our findings will allow others to examine different Populus lines and to test if similar observations are possible for other plant species.
Collapse
Affiliation(s)
- Alexandru Dumitrache
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Hannah Akinosho
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332 USA
- />UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Miguel Rodriguez
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Xianzhi Meng
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332 USA
- />School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Chang Geun Yoo
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jace Natzke
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Nancy L. Engle
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Robert W. Sykes
- />National Renewable Energy Laboratory, US Department of Energy, Golden, CO 80401 USA
| | - Timothy J. Tschaplinski
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Wellington Muchero
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Arthur J. Ragauskas
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- />UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Department of Chemical and Biomolecular Engineering, Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN 37996 USA
| | - Brian H. Davison
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Steven D. Brown
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />BioEnergy Sciences Center, Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
34
|
Bhalla A, Bansal N, Stoklosa RJ, Fountain M, Ralph J, Hodge DB, Hegg EL. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:34. [PMID: 26862348 PMCID: PMC4746924 DOI: 10.1186/s13068-016-0442-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. RESULTS Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. CONCLUSIONS This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment process was effective in pretreating hybrid poplar for its conversion into fermentable sugars. Results showed sugar yields near the theoretical maximum were achieved from enzymatically hydrolyzed hybrid poplar by incorporating an alkaline extraction step prior to pretreatment and by efficiently utilizing H2O2 during the Cu-AHP process. Significantly, this study reports high sugar yields from woody biomass treated with an AHP pretreatment under mild reaction conditions.
Collapse
Affiliation(s)
- Aditya Bhalla
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- />Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Namita Bansal
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- />Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Ryan J. Stoklosa
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
| | - Mackenzie Fountain
- />Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - John Ralph
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, USA
| | - David B. Hodge
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- />Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- />Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden
| | - Eric L. Hegg
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, USA
- />Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| |
Collapse
|
35
|
Porth I, Klápště J, McKown AD, La Mantia J, Guy RD, Ingvarsson PK, Hamelin R, Mansfield SD, Ehlting J, Douglas CJ, El-Kassaby YA. Evolutionary Quantitative Genomics of Populus trichocarpa. PLoS One 2015; 10:e0142864. [PMID: 26599762 PMCID: PMC4658102 DOI: 10.1371/journal.pone.0142864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022] Open
Abstract
Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST -FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate of origin. We consider our approach the most comprehensive, as it uncovers the molecular mechanisms of adaptation using multiple methods and tests. We also provide a detailed outline of the required analyses for studying adaptation to the environment in a population genomics context to better understand the species’ potential adaptive capacity to future climatic scenarios.
Collapse
Affiliation(s)
- Ilga Porth
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, G1V 0A6 Canada
| | - Jaroslav Klápště
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Genetics and Physiology of Forest Trees, Czech University of Life Sciences, Prague, 165 21, Czech Republic
| | - Athena D. McKown
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan La Mantia
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Corn, Soybean and Wheat Quality Research Unit, United States Department of Agriculture, Wooster, Ohio, 44691 United States of America
| | - Robert D. Guy
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Pär K. Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE-901 87, Sweden
| | - Richard Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shawn D. Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jürgen Ehlting
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- * E-mail:
| |
Collapse
|
36
|
Laimer M, Maghuly F, Vollmann J, Carels N. Editorial: Sustainable production of renewable energy from non-food crops. Biotechnol J 2015; 10:503-4. [PMID: 25847435 DOI: 10.1002/biot.201500100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since the world faced the petroleum crisis in the 1970s and people started to realize the limitation of fossil energy resources coupled with concerns over the effects of increasing carbon dioxide in the atmosphere, major efforts were devoted to the search for alternative energy sources.
Collapse
Affiliation(s)
- Margit Laimer
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | | | | | | |
Collapse
|