1
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
2
|
Morelli AM, Scholkmann F. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation. Biochimie 2024; 221:99-109. [PMID: 38307246 DOI: 10.1016/j.biochi.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
4
|
Stern A, Fokra M, Sarvin B, Alrahem AA, Lee WD, Aizenshtein E, Sarvin N, Shlomi T. Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution. Nat Commun 2023; 14:7525. [PMID: 37980339 PMCID: PMC10657349 DOI: 10.1038/s41467-023-42824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2023] [Indexed: 11/20/2023] Open
Abstract
The inability to inspect metabolic activities within distinct subcellular compartments has been a major barrier to our understanding of eukaryotic cell metabolism. Previous work addressed this challenge by analyzing metabolism in isolated organelles, which grossly bias metabolic activity. Here, we describe a method for inferring physiological metabolic fluxes and metabolite concentrations in mitochondria and cytosol based on isotope tracing experiments performed with intact cells. This is made possible by computational deconvolution of metabolite isotopic labeling patterns and concentrations into cytosolic and mitochondrial counterparts, coupled with metabolic and thermodynamic modelling. Our approach lowers the uncertainty regarding compartmentalized fluxes and concentrations by one and three orders of magnitude compared to existing modelling approaches, respectively. We derive a quantitative view of mitochondrial and cytosolic metabolic activities in central carbon metabolism across cultured cell lines without performing cell fractionation, finding major variability in compartmentalized malate-aspartate shuttle fluxes. We expect our approach for inferring metabolism at a subcellular resolution to be instrumental for a variety of studies of metabolic dysfunction in human disease and for bioengineering.
Collapse
Affiliation(s)
- Alon Stern
- Department of Computer Science, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Mariam Fokra
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Boris Sarvin
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Ahmad Abed Alrahem
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Won Dong Lee
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Elina Aizenshtein
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Nikita Sarvin
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Tomer Shlomi
- Department of Computer Science, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
- Lokey Center for Life Science and Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
5
|
Lagies S, Pan D, Mohl DA, Plattner DA, Gentle IE, Kammerer B. Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph. Cells 2023; 12:692. [PMID: 36899826 PMCID: PMC10000845 DOI: 10.3390/cells12050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Metabolomics has expanded from cellular to subcellular level to elucidate subcellular compartmentalization. By applying isolated mitochondria to metabolome analysis, the hallmark of mitochondrial metabolites has been unraveled, showing compartment-specific distribution and regulation of metabolites. This method was employed in this work to study a mitochondrial inner membrane protein Sym1, whose human ortholog MPV17 is related to mitochondria DNA depletion syndrome. Gas chromatography-mass spectrometry-based metabolic profiling was combined with targeted liquid chromatography-mass spectrometry analysis to cover more metabolites. Furthermore, we applied a workflow employing ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry with a powerful chemometrics platform, focusing on only significantly changed metabolites. This workflow highly reduced the complexity of acquired data without losing metabolites of interest. Consequently, forty-one novel metabolites were identified in addition to the combined method, of which two metabolites, 4-guanidinobutanal and 4-guanidinobutanoate, were identified for the first time in Saccharomyces cerevisiae. With compartment-specific metabolomics, we identified sym1Δ cells as lysine auxotroph. The highly reduced carbamoyl-aspartate and orotic acid indicate a potential role of the mitochondrial inner membrane protein Sym1 in pyrimidine metabolism.
Collapse
Affiliation(s)
- Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Daqiang Pan
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Pharmaceutical Science, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel A. Mohl
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar A. Plattner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ian E. Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Coulet M, Kepp O, Kroemer G, Basmaciogullari S. Metabolic Profiling of CHO Cells during the Production of Biotherapeutics. Cells 2022; 11:cells11121929. [PMID: 35741058 PMCID: PMC9221972 DOI: 10.3390/cells11121929] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
As indicated by an ever-increasing number of FDA approvals, biotherapeutics constitute powerful tools for the treatment of various diseases, with monoclonal antibodies (mAbs) accounting for more than 50% of newly approved drugs between 2014 and 2018 (Walsh, 2018). The pharmaceutical industry has made great progress in developing reliable and efficient bioproduction processes to meet the demand for recombinant mAbs. Mammalian cell lines are preferred for the production of functional, complex recombinant proteins including mAbs, with Chinese hamster ovary (CHO) cells being used in most instances. Despite significant advances in cell growth control for biologics manufacturing, cellular responses to environmental changes need to be understood in order to further improve productivity. Metabolomics offers a promising approach for developing suitable strategies to unlock the full potential of cellular production. This review summarizes key findings on catabolism and anabolism for each phase of cell growth (exponential growth, the stationary phase and decline) with a focus on the principal metabolic pathways (glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle) and the families of biomolecules that impact these circuities (nucleotides, amino acids, lipids and energy-rich metabolites).
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Correspondence: (G.K.); (S.B.)
| | | |
Collapse
|
7
|
Malubhoy Z, Bahia FM, de Valk SC, de Hulster E, Rendulić T, Ortiz JPR, Xiberras J, Klein M, Mans R, Nevoigt E. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:102. [PMID: 35643577 PMCID: PMC9148483 DOI: 10.1186/s12934-022-01817-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
Background The microbial production of succinic acid (SA) from renewable carbon sources via the reverse TCA (rTCA) pathway is a process potentially accompanied by net-fixation of carbon dioxide (CO2). Among reduced carbon sources, glycerol is particularly attractive since it allows a nearly twofold higher CO2-fixation yield compared to sugars. Recently, we described an engineered Saccharomyces cerevisiae strain which allowed SA production in synthetic glycerol medium with a maximum yield of 0.23 Cmol Cmol−1. The results of that previous study suggested that the glyoxylate cycle considerably contributed to SA accumulation in the respective strain. The current study aimed at improving the flux into the rTCA pathway accompanied by a higher CO2-fixation and SA yield. Results By changing the design of the expression cassettes for the rTCA pathway, overexpressing PYC2, and adding CaCO3 to the batch fermentations, an SA yield on glycerol of 0.63 Cmol Cmol−1 was achieved (i.e. 47.1% of the theoretical maximum). The modifications in this 2nd-generation SA producer improved the maximum biomass-specific glycerol consumption rate by a factor of nearly four compared to the isogenic baseline strain solely equipped with the dihydroxyacetone (DHA) pathway for glycerol catabolism. The data also suggest that the glyoxylate cycle did not contribute to the SA production in the new strain. Cultivation conditions which directly or indirectly increased the concentration of bicarbonate, led to an accumulation of malate in addition to the predominant product SA (ca. 0.1 Cmol Cmol−1 at the time point when SA yield was highest). Off-gas analysis in controlled bioreactors with CO2-enriched gas-phase indicated that CO2 was fixed during the SA production phase. Conclusions The data strongly suggest that a major part of dicarboxylic acids in our 2nd-generation SA-producer was formed via the rTCA pathway enabling a net fixation of CO2. The greatly increased capacity of the rTCA pathway obviously allowed successful competition with other pathways for the common precursor pyruvate. The overexpression of PYC2 and the increased availability of bicarbonate, the co-substrate for the PYC reaction, further strengthened this capacity. The achievements are encouraging to invest in future efforts establishing a process for SA production from (crude) glycerol and CO2. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01817-1.
Collapse
|
8
|
The potential of emerging sub-omics technologies for CHO cell engineering. Biotechnol Adv 2022; 59:107978. [DOI: 10.1016/j.biotechadv.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
|
9
|
Qin S, Zhang Y, Tian Y, Xu F, Zhang P. Subcellular metabolomics: Isolation, measurement, and applications. J Pharm Biomed Anal 2021; 210:114557. [PMID: 34979492 DOI: 10.1016/j.jpba.2021.114557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/26/2022]
Abstract
Metabolomics, a technique that profiles global small molecules in biological samples, has been a pivotal tool for disease diagnosis and mechanism research. The sample type in metabolomics covers a wide range, including a variety of body fluids, tissues, and cells. However, little attention was paid to the smaller, relatively independent partition systems in cells, namely the organelles. The organelles are specific compartments/places where diverse metabolic activities are happening in an orderly manner. Metabolic disorders of organelles were found to occur in various pathological conditions such as inherited metabolic diseases, diabetes, cancer, and neurodegenerative diseases. However, at the cellular level, the metabolic outcomes of organelles and cytoplasm are superimposed interactively, making it difficult to describe the changes in subcellular compartments. Therefore, characterizing the metabolic pool in the compartmentalized system is of great significance for understanding the role of organelles in physiological functions and diseases. So far, there are very few research articles or reviews related to subcellular metabolomics. In this review, subcellular fractionation and metabolite analysis methods, as well as the application of subcellular metabolomics in the physiological and pathological studies are systematically reviewed, as a practical reference to promote the continued advancement in subcellular metabolomics.
Collapse
Affiliation(s)
- Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuxin Zhang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Wijaya AW, Verhagen N, Teleki A, Takors R. Compartment-specific 13C metabolic flux analysis reveals boosted NADPH availability coinciding with increased cell-specific productivity for IgG1 producing CHO cells after MTA treatment. Eng Life Sci 2021; 21:832-847. [PMID: 34899120 PMCID: PMC8638276 DOI: 10.1002/elsc.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/26/2023] Open
Abstract
Increasing cell-specific productivities (CSPs) for the production of heterologous proteins in Chinese hamster ovary (CHO) cells is an omnipresent need in the biopharmaceutical industry. The novel additive 5'-deoxy-5'-(methylthio)adenosine (MTA), a chemical degradation product of S-(5'-adenosyl)-ʟ-methionine (SAM) and intermediate of polyamine biosynthesis, boosts the CSP of IgG1-producing CHO cells by 50%. Compartment-specific 13C flux analysis revealed a fundamental reprogramming of the central metabolism after MTA addition accompanied by cell-cycle arrest and increased cell volumes. Carbon fluxes into the pentose-phosphate pathway increased 22 fold in MTA-treated cells compared to that in non-MTA-treated reference cells. Most likely, cytosolic ATP inhibition of phosphofructokinase mediated the carbon detour. Mitochondrial shuttle activity of the α-ketoglurarate/malate antiporter (OGC) reversed, reducing cytosolic malate transport. In summary, NADPH supply in MTA-treated cells improved three fold compared to that in non-MTA-treated cells, which can be regarded as a major factor for explaining the boosted CSPs.
Collapse
Affiliation(s)
| | - Natascha Verhagen
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Attila Teleki
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
11
|
Rish AJ, Drennen JK, Anderson CA. Metabolic trends of Chinese hamster ovary cells in biopharmaceutical production under batch and fed-batch conditions. Biotechnol Prog 2021; 38:e3220. [PMID: 34676699 DOI: 10.1002/btpr.3220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
Extensive knowledge of Chinese hamster ovary (CHO) cell metabolism is required to improve process productivity and culture performance in biopharmaceutical manufacturing. However, CHO cells show a dynamic metabolism during culturing in batch and fed-batch bioreactors. CHO cell metabolism is generally described as taking place in three stages: exponential growth phase, stationary phase, and death phase. This review aims to summarize the trends of central metabolism for CHO cells during each stage. Additional insights into how culture conditions are related to phase transitions and force metabolic rewiring are provided. Understanding of CHO cell metabolism lends itself to improving culture qualities by, for example, identifying sources of toxic byproducts and pathways for cellular engineering. In summary, this review describes the changes in CHO cell central metabolism over the course of the culture.
Collapse
Affiliation(s)
- Adam J Rish
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Wijaya AW, Ulmer A, Hundsdorfer L, Verhagen N, Teleki A, Takors R. Compartment-specific metabolome labeling enables the identification of subcellular fluxes that may serve as promising metabolic engineering targets in CHO cells. Bioprocess Biosyst Eng 2021; 44:2567-2578. [PMID: 34590184 PMCID: PMC8536584 DOI: 10.1007/s00449-021-02628-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
13C labeling data are used to calculate quantitative intracellular flux patterns reflecting in vivo conditions. Given that approaches for compartment-specific metabolomics exist, the benefits they offer compared to conventional non-compartmented 13C flux studies remain to be determined. Using compartment-specific labeling information of IgG1-producing Chinese hamster ovary cells, this study investigated differences of flux patterns exploiting and ignoring metabolic labeling data of cytosol and mitochondria. Although cellular analysis provided good estimates for the majority of intracellular fluxes, half of the mitochondrial transporters, and NADH and ATP balances, severe differences were found for some reactions. Accurate flux estimations of almost all iso-enzymes heavily depended on the sub-cellular labeling information. Furthermore, key discrepancies were found for the mitochondrial carriers vAGC1 (Aspartate/Glutamate antiporter), vDIC (Malate/H+ symporter), and vOGC (α-ketoglutarate/malate antiporter). Special emphasis is given to the flux of cytosolic malic enzyme (vME): it could not be estimated without the compartment-specific malate labeling information. Interesting enough, cytosolic malic enzyme is an important metabolic engineering target for improving cell-specific IgG1 productivity. Hence, compartment-specific 13C labeling analysis serves as prerequisite for related metabolic engineering studies.
Collapse
Affiliation(s)
- Andy Wiranata Wijaya
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Lara Hundsdorfer
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Natascha Verhagen
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
13
|
Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021; 11:233. [PMID: 33920115 PMCID: PMC8070181 DOI: 10.3390/metabo11040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| | - Ling Hao
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| |
Collapse
|
14
|
Long N, Min JE, Anh NH, Kim SJ, Park S, Kim HM, Yoon SJ, Lim J, Lee SJ, Kwon SW. Isolation and Metabolic Assessment of Cancer Cell Mitochondria. ACS OMEGA 2020; 5:27304-27313. [PMID: 33134693 PMCID: PMC7594158 DOI: 10.1021/acsomega.0c03612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Mitochondrial metabolism plays an essential role in various biological processes of cancer cells. Herein, we established an experimental procedure for the metabolic assessment of mitochondria in cancer cells. We examined procedures for mitochondrial isolation coupled with various mitochondrial extraction buffers in three major cancer cell lines (PANC1, A549, and MDA-MB-231) and identified a potentially optimal and generalized approach. The purity of the mitochondrial fraction isolated by the selected protocol was verified using specific protein markers of cellular components, and the ultrastructure of the isolated mitochondria was also analyzed by transmission electron microscopy. The isolation procedure, involving a bead beater for cell lysis, a modified sucrose buffer, and differential centrifugation, appeared to be a suitable method for the extraction of mitochondria from cancer cells. Electron micrographs indicated an intact two-layer membrane and inner structures of mitochondria isolated by this procedure. Metabolomic and lipidomic analyses were conducted to examine the metabolic phenotypes of the mitochondria-enriched fractions and associated bulk cancer cells. A total of 44 metabolites, including malate and succinate, occurred at significantly higher levels in the mitochondrial fractions, whereas 51 metabolites, including citrate, oxaloacetate, and fumarate of the Krebs cycle and the oncometabolites glutamine and glutamate, were reduced in mitochondria compared to that in the corresponding bulk cells of PANC1. Similar patterns were observed in mitochondria and bulk cells of MDA-MB-231 and A549 cell lines. A clear difference between the lipid profiles of bulk PANC1, MDA-MB-231, and A549 and corresponding mitochondrial fractions of these cell lines was detected by principal component analysis. In conclusion, we developed an experimental procedure for a large-scale metabolic assessment for suborganelle metabolic profiling and multiple omics data integration in cancer cells with broad applications.
Collapse
Affiliation(s)
- Nguyen
Phuoc Long
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Eun Min
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Hoang Anh
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Jo Kim
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongoh Park
- Department
of Statistics, Sungshin Women’s University, Seoul 02844, Republic of Korea
| | - Hyung Min Kim
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Jun Yoon
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Johan Lim
- Department
of Statistics, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul Ji Lee
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Won Kwon
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Plant
Genomics and Breeding Institute, Seoul National
University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
van der Walt G, Louw R. Novel mitochondrial and cytosolic purification pipeline for compartment-specific metabolomics in mammalian disease model tissues. Metabolomics 2020; 16:78. [PMID: 32577914 DOI: 10.1007/s11306-020-01697-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/13/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Mitochondria represent an important milieu for studying the pathogenesis of several major diseases. The need for organelle-level metabolic resolution exists, as mitochondrial/cytosolic metabolites are often diluted beyond detection limits in complex samples. Compartment-specific studies are still hindered by the lack of efficient, cost-effective fractioning methods-applicable to laboratories of all financial/analytical standing. OBJECTIVES We established a novel mitochondrial/cytosolic purification pipeline for complimentary GC-TOF-MS and 1H-NMR metabolomics using robust, commercially available fractionation strategies. METHODS Magnetic based mitochondria isolation kits (MACS) were adapted for this purpose, accompanied by cytosolic filtering. Yield was assessed through the percentage recovery of citrate synthase (CS; a mitochondrial marker), purity by immunoblotting against compartment-specific proteins and integrity interrogated through the respiratory coupling ratio (RCR). The effects of the kit-based buffers on MS/NMR analyses of pure metabolite standards were evaluated. Finally, biological applicability to mammalian disease models was shown using Ndufs4 mouse brain tissue. RESULTS With minor modifications, MACS produced around 60% more mitochondria compared to a differential centrifugation method. Less than 15% of lysosomal LAMP-2 protein was found in the MACS isolates, confirming relative purity-while RCR's above 6 indicate sufficient mitochondrial integrity. The filtering approach effectively depleted mitochondria from the cytosolic fraction, as indicated by negligible Hsp60 and CS levels. Our GC-MS pilot yielded 60-70 features per fraction, while NMR analyses could quantify 6-10 of the most abundant compounds in each fraction. CONCLUSION This study provides a simple and flexible solution for mitochondrial and cytosolic metabolomics in animal model tissues, towards large-scale application of such methodologies in disease research.
Collapse
Affiliation(s)
- Gunter van der Walt
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
16
|
Hu X, Go YM, Jones DP. Omics Integration for Mitochondria Systems Biology. Antioxid Redox Signal 2020; 32:853-872. [PMID: 31891667 PMCID: PMC7074923 DOI: 10.1089/ars.2019.8006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Significance: Elucidation of the central importance of mitophagy in homeostasis of cells and organisms emphasizes that mitochondrial functions extend far beyond short-term needs for energy production. In mitochondria systems biology, the mitochondrial genome, proteome, and metabolome operate as a functional network in coordination of cell activities. Organization occurs through subnetworks that are interconnected by membrane potential, transport activities, allosteric and cooperative interactions, redox signaling mechanisms, rheostatic control by post-translational modifications, and metal ion homeostasis. These subnetworks enable use of varied energy precursors, defense against environmental stressors, and macromolecular rewiring to titrate energy production, biosynthesis, and detoxification according to cell-specific needs. Rewiring mechanisms, termed mitochondrial reprogramming, enhance fitness to respond to metabolic resources and challenges from the environment. Maladaptive responses can cause cell death. Maladaptive rewiring can cause disease. In cancer, adaptive rewiring can interfere with effective treatment. Recent Advances: Many recent advances have been facilitated by the development of new omics tools, which create opportunities to use data-driven analysis of omics data to address these complex adaptive and maladaptive mechanisms of mitochondrial reprogramming in human disease. Critical Issues: Application of omics integration to model systems reveals a critical role for metal ion homeostasis broadly impacting mitochondrial reprogramming. Importantly, data show that trans-omics associations are more robust and biologically relevant than single omics associations. Future Directions: Application of omics integration to mitophagy research creates new opportunities to link the complex, interactive functions of mitochondrial form and function in mitochondria systems biology.
Collapse
Affiliation(s)
- Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
17
|
Wang G, Haringa C, Tang W, Noorman H, Chu J, Zhuang Y, Zhang S. Coupled metabolic-hydrodynamic modeling enabling rational scale-up of industrial bioprocesses. Biotechnol Bioeng 2019; 117:844-867. [PMID: 31814101 DOI: 10.1002/bit.27243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Metabolomics aims to address what and how regulatory mechanisms are coordinated to achieve flux optimality, different metabolic objectives as well as appropriate adaptations to dynamic nutrient availability. Recent decades have witnessed that the integration of metabolomics and fluxomics within the goal of synthetic biology has arrived at generating the desired bioproducts with improved bioconversion efficiency. Absolute metabolite quantification by isotope dilution mass spectrometry represents a functional readout of cellular biochemistry and contributes to the establishment of metabolic (structured) models required in systems metabolic engineering. In industrial practices, population heterogeneity arising from fluctuating nutrient availability frequently leads to performance losses, that is reduced commercial metrics (titer, rate, and yield). Hence, the development of more stable producers and more predictable bioprocesses can benefit from a quantitative understanding of spatial and temporal cell-to-cell heterogeneity within industrial bioprocesses. Quantitative metabolomics analysis and metabolic modeling applied in computational fluid dynamics (CFD)-assisted scale-down simulators that mimic industrial heterogeneity such as fluctuations in nutrients, dissolved gases, and other stresses can procure informative clues for coping with issues during bioprocessing scale-up. In previous studies, only limited insights into the hydrodynamic conditions inside the industrial-scale bioreactor have been obtained, which makes case-by-case scale-up far from straightforward. Tracking the flow paths of cells circulating in large-scale bioreactors is a highly valuable tool for evaluating cellular performance in production tanks. The "lifelines" or "trajectories" of cells in industrial-scale bioreactors can be captured using Euler-Lagrange CFD simulation. This novel methodology can be further coupled with metabolic (structured) models to provide not only a statistical analysis of cell lifelines triggered by the environmental fluctuations but also a global assessment of the metabolic response to heterogeneity inside an industrial bioreactor. For the future, the industrial design should be dependent on the computational framework, and this integration work will allow bioprocess scale-up to the industrial scale with an end in mind.
Collapse
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Cees Haringa
- Transport Phenomena, Chemical Engineering Department, Delft University of Technology, Delft, The Netherlands.,DSM Biotechnology Center, Delft, The Netherlands
| | - Wenjun Tang
- DSM Biotechnology Center, Delft, The Netherlands
| | - Henk Noorman
- DSM Biotechnology Center, Delft, The Netherlands.,Bioprocess Engineering, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Harnessing microbial metabolomics for industrial applications. World J Microbiol Biotechnol 2019; 36:1. [DOI: 10.1007/s11274-019-2775-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
19
|
Heat Stress-Induced Metabolic Remodeling in Saccharomyces cerevisiae. Metabolites 2019; 9:metabo9110266. [PMID: 31694329 PMCID: PMC6918159 DOI: 10.3390/metabo9110266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023] Open
Abstract
Yeast cells respond to heat stress by remodeling their gene expression, resulting in the changes of the corresponding proteins and metabolites. Compared to the intensively investigated transcriptome and proteome, the metabolic response to heat stress is not sufficiently characterized. Mitochondria have been recognized to play an essential role in heat stress tolerance. Given the compartmentalization of the cell, it is not clear if the heat stress-induced metabolic response occurs in mitochondria or in the cytosol. Therefore, a compartment-specific metabolite analysis was performed to analyze the heat stress-induced metabolic response in mitochondria and the cytoplasm. In this work, the isolated mitochondria and the cytoplasm of yeast cells grown at permissive temperature and cells adapting to heat stress were subjected to mass spectrometry-based metabolomics. Over a hundred metabolites could be identified, covering amino acid metabolism, energy metabolism, arginine metabolism, purine and pyrimidine metabolism, and others. Highly accumulated citrulline and reduced arginine suggested remodeled arginine metabolism. A stable isotope-labeled experiment was performed to analyze the heat stress-induced metabolic remodeling of the arginine metabolism, identifying activated de novo ornithine biosynthesis to support arginine and spermidine synthesis. The short-term increased spermidine and trehalose suggest their important roles as heat stress markers. These data provide metabolic clues of heat stress-induced metabolic remodeling, which helps in understanding the heat stress response.
Collapse
|
20
|
Becker M, Junghans L, Teleki A, Bechmann J, Takors R. The Less the Better: How Suppressed Base Addition Boosts Production of Monoclonal Antibodies With Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2019; 7:76. [PMID: 31032253 PMCID: PMC6470187 DOI: 10.3389/fbioe.2019.00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/25/2019] [Indexed: 11/30/2022] Open
Abstract
Biopharmaceutical production processes strive for the optimization of economic efficiency. Among others, the maximization of volumetric productivity is a key criterion. Typical parameters such as partial pressure of CO2 (pCO2) and pH are known to influence the performance although reasons are not yet fully elucidated. In this study the effects of pCO2 and pH shifts on the phenotypic performance were linked to metabolic and energetic changes. Short peak performance of qmAb (23 pg/cell/day) was achieved by early pCO2 shifts up to 200 mbar but followed by declining intracellular ATP levels to 2.5 fmol/cell and 80% increase of qLac. On the contrary, steadily rising qmAb could be installed by slight pH down-shifts ensuring constant cell specific ATP production (qATP) of 27 pmol/cell/day and high intracellular ATP levels of about 4 fmol/cell. As a result, maximum productivity was achieved combining highest qmAb (20 pg/cell/day) with maximum cell density and no lactate formation. Our results indicate that the energy availability in form of intracellular ATP is crucial for maintaining antibody synthesis and reacts sensitive to pCO2 and pH-process parameters typically responsible for inhomogeneities after scaling up.
Collapse
Affiliation(s)
- Max Becker
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Lisa Junghans
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Jan Bechmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
21
|
Wang J, Wang C, Fan L, Zhao L, Tan WS. Simultaneous detection of nicotinamide adenine nucleotides and adenylate pool to quantify redox and energy states in mAb-producing CHO cells by capillary electrophoresis. Anal Bioanal Chem 2019; 411:2971-2979. [PMID: 30923861 DOI: 10.1007/s00216-019-01747-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 11/24/2022]
Abstract
Chinese hamster ovary (CHO) cells are predominant in the production of therapeutic proteins to treat various diseases. Characterization and investigation of CHO cell metabolism in a quick and simple way could boost process and cell line development. Therefore, a method to simultaneously detect seven redox- and energy-related metabolites in CHO cells by capillary electrophoresis has been developed. An on-line focusing technique was applied to improve the peak shape and resolution by using a 50 μm × 44 cm uncoated fused silica capillary. Key parameters and their interactions were investigated by design of experiments (DoE) and optimized conditions were determined by desirability function as follows: 24 °C, 95 mM, and pH 9.4 of BGE. The method was validated to ensure sensitivity, linearity, and reproducibility. The limits of detection (LODs) ranged from 0.050 to 0.688 mg/L for seven metabolites, and correlation coefficients of linearity were all greater than 0.996. The relative standard deviations (RSD) of migration time and peak area were smaller than 0.872% and 5.5%, respectively, except for NADPH, and the recoveries were between 97.5 and 101.2%. The method was successfully applied to analyze the extracts from CHO cells under two different culture conditions. Graphical abstract.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Box 309, 130 Meilong Road, Shanghai, 200237, China
| | - Chen Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Box 309, 130 Meilong Road, Shanghai, 200237, China
| | - Li Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Box 309, 130 Meilong Road, Shanghai, 200237, China.,Shanghai BioEngine Sci-Tech Co. Ltd, Shanghai, 201203, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Box 309, 130 Meilong Road, Shanghai, 200237, China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Box 309, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
22
|
Junghans L, Teleki A, Wijaya AW, Becker M, Schweikert M, Takors R. From nutritional wealth to autophagy: In vivo metabolic dynamics in the cytosol, mitochondrion and shuttles of IgG producing CHO cells. Metab Eng 2019; 54:145-159. [PMID: 30930288 DOI: 10.1016/j.ymben.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
To fulfil the optimization needs of current biopharmaceutical processes the knowledge how to improve cell specific productivities is of outmost importance. This requires a detailed understanding of cellular metabolism on a subcellular level inside compartments such as cytosol and mitochondrion. Using IgG1 producing Chinese hamster ovary (CHO) cells, a pioneering protocol for compartment-specific metabolome analysis was applied. Various production-like growth conditions ranging from ample glucose and amino acid supply via moderate to severe nitrogen limitation were investigated in batch cultures. The combined application of quantitative metabolite pool analysis, 13C tracer studies and non-stationary flux calculations revealed that Pyr/H+ symport (MPC1/2) bore the bulk of the mitochondrial transport under ample nutrient supply. Glutamine limitation induced the concerted adaptation of the bidirectional Mal/aKG (OGC) and the Mal/HPO42- antiporter (DIC), even installing completely reversed shuttle fluxes. As a result, NADPH and ATP formation were adjusted to cellular needs unraveling the key role of cytosolic malic enzyme for NADPH production. Highest cell specific IgG1 productivities were closely correlated to a strong mitochondrial malate export according to the anabolic demands. The requirement to install proper NADPH supply for optimizing the production of monoclonal antibodies is clearly outlined. Interestingly, it was observed that mitochondrial citric acid cycle activity was always maintained enabling constant cytosolic adenylate energy charges at physiological levels, even under autophagy conditions.
Collapse
Affiliation(s)
- Lisa Junghans
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Andy Wiranata Wijaya
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Max Becker
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Schweikert
- Institute of Biomaterials and Biomolecular Systems, Department of Biobased Materials, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
23
|
Becker M, Junghans L, Teleki A, Bechmann J, Takors R. Perfusion cultures require optimum respiratory ATP supply to maximize cell-specific and volumetric productivities. Biotechnol Bioeng 2019; 116:951-960. [PMID: 30659583 DOI: 10.1002/bit.26926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 01/16/2023]
Abstract
Perfusion processes are an emerging alternative to common fed-batch processes in the growing biopharmaceutical industry. However, the challenge of maintaining high cell-specific productivities remains. In this study, glucose limitation was applied to two perfusion steady states and compared with a third steady state without any detectable limitation. The metabolic phenotype was enhanced under glucose limitation with a decrease of 30% in glucose uptake and 75% in lactate formation. Cell-specific productivities were substantially improved by 50%. Remarkably, the productivities showed a strong correlation to respiratory adenosine triphosphate (ATP) supply. As less reduced nicotinamide adenine dinucleotide (NADH) remained in the cytosol, the ATP generation from oxidative phosphorylation was increased by almost 30%. Consequently, the efficiency of carbon metabolism and the resulting respiratory ATP supply was crucial for maintaining the highly productive cellular state. This study highlights that glucose limitation can be used for process intensification in perfusion cultures as ATP generation via respiration is significantly increased, leading to elevated productivities.
Collapse
Affiliation(s)
- Max Becker
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Lisa Junghans
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Jan Bechmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
24
|
Zieringer J, Takors R. In Silico Prediction of Large-Scale Microbial Production Performance: Constraints for Getting Proper Data-Driven Models. Comput Struct Biotechnol J 2018; 16:246-256. [PMID: 30105090 PMCID: PMC6077756 DOI: 10.1016/j.csbj.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Industrial bioreactors range from 10.000 to 700.000 L and characteristically show different zones of substrate availabilities, dissolved gas concentrations and pH values reflecting physical, technical and economic constraints of scale-up. Microbial producers are fluctuating inside the bioreactors thereby experiencing frequently changing micro-environmental conditions. The external stimuli induce responses on microbial metabolism and on transcriptional regulation programs. Both may deteriorate the expected microbial production performance in large scale compared to expectations deduced from ideal, well-mixed lab-scale conditions. Accordingly, predictive tools are needed to quantify large-scale impacts considering bioreactor heterogeneities. The review shows that the time is right to combine simulations of microbial kinetics with calculations of large-scale environmental conditions to predict the bioreactor performance. Accordingly, basic experimental procedures and computational tools are presented to derive proper microbial models and hydrodynamic conditions, and to link both for bioreactor modeling. Particular emphasis is laid on the identification of gene regulatory networks as the implementation of such models will surely gain momentum in future studies.
Collapse
|
25
|
Pan D, Lindau C, Lagies S, Wiedemann N, Kammerer B. Metabolic profiling of isolated mitochondria and cytoplasm reveals compartment-specific metabolic responses. Metabolomics 2018; 14:59. [PMID: 29628813 PMCID: PMC5878833 DOI: 10.1007/s11306-018-1352-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Subcellular compartmentalization enables eukaryotic cells to carry out different reactions at the same time, resulting in different metabolite pools in the subcellular compartments. Thus, mutations affecting the mitochondrial energy metabolism could cause different metabolic alterations in mitochondria compared to the cytoplasm. Given that the metabolite pool in the cytosol is larger than that of other subcellular compartments, metabolic profiling of total cells could miss these compartment-specific metabolic alterations. OBJECTIVES To reveal compartment-specific metabolic differences, mitochondria and the cytoplasmic fraction of baker's yeast Saccharomyces cerevisiae were isolated and subjected to metabolic profiling. METHODS Mitochondria were isolated through differential centrifugation and were analyzed together with the remaining cytoplasm by gas chromatography-mass spectrometry (GC-MS) based metabolic profiling. RESULTS Seventy-two metabolites were identified, of which eight were found exclusively in mitochondria and sixteen exclusively in the cytoplasm. Based on the metabolic signature of mitochondria and of the cytoplasm, mutants of the succinate dehydrogenase (respiratory chain complex II) and of the FOF1-ATP-synthase (complex V) can be discriminated in both compartments by principal component analysis from wild-type and each other. These mitochondrial oxidative phosphorylation machinery mutants altered not only citric acid cycle related metabolites but also amino acids, fatty acids, purine and pyrimidine intermediates and others. CONCLUSION By applying metabolomics to isolated mitochondria and the corresponding cytoplasm, compartment-specific metabolic signatures can be identified. This subcellular metabolomics analysis is a powerful tool to study the molecular mechanism of compartment-specific metabolic homeostasis in response to mutations affecting the mitochondrial metabolism.
Collapse
Affiliation(s)
- Daqiang Pan
- grid.5963.9Center for Biological Systems Analysis, ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- grid.5963.9Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- grid.5963.9Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- grid.5963.9Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Simon Lagies
- grid.5963.9Center for Biological Systems Analysis, ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- grid.5963.9Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- grid.5963.9Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- grid.5963.9Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- grid.5963.9BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Kammerer
- grid.5963.9Center for Biological Systems Analysis, ZBSA, Albert-Ludwigs-University Freiburg, Habsburgerstraße 49, 79104 Freiburg, Germany
- grid.5963.9BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Liu X, Xu G. Recent advances in using mass spectrometry for mitochondrial metabolomics and lipidomics - A review. Anal Chim Acta 2017; 1037:3-12. [PMID: 30292306 DOI: 10.1016/j.aca.2017.11.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023]
Abstract
Metabolomics and lipidomics generally targets a huge number of intermediate and end products of cellular metabolism in body fluids, tissues, and cells etc. At present, mass spectrometry (MS) based metabolic or lipid profiling of routine biological specimens including the whole cells, tissues, plasma, serum and urine etc., can cover hundreds of metabolites or lipid species in one analysis, which has qualified deep elucidation of global metabolic and lipid networks. Mitochondria are important intracellular organelles and many critical biochemical reactions occur here, they provide building block for new cells, control redox balance, participate in apoptosis and behave as a signalling platform. Evidence suggests high prevalence of mitochondrial dysfunction occurs in a variety of cancers and other diseases, thus there is an urgent demand for investigating and clarifying mitochondrial metabolic and lipid alterations induced by diseases. Nevertheless, mitochondria contribute a small fraction to cellular contents, profiling of whole cell is probably unsuitable for monitoring alterations in mitochondria. Therefore, metabolomics and lipidomics analyses specially for mitochondria are necessary to understand disturbed metabolic and lipid pathways induced by environment and diseases. However, methods for comprehensively profiling metabolites and lipids in mitochondria have been limited at present. This review summarizes the current states and progress of MS-based mitochondrial metabolomics and lipidomics study. Details of mitochondrial isolation procedure, analytical methods and their applications are described. The challenges and opportunities are also given.
Collapse
Affiliation(s)
- Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
27
|
Stolfa G, Smonskey MT, Boniface R, Hachmann AB, Gulde P, Joshi AD, Pierce AP, Jacobia SJ, Campbell A. CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction. Biotechnol J 2017; 13:e1700227. [PMID: 29072373 DOI: 10.1002/biot.201700227] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
CHO cells are the most prevalent platform for modern bio-therapeutic production. Currently, there are several CHO cell lines used in bioproduction with distinct characteristics and unique genotypes and phenotypes. These differences limit advances in productivity and quality that can be achieved by the most common approaches to bioprocess optimization and cell line engineering. Incorporating omics-based approaches into current bioproduction processes will complement traditional methodologies to maximize gains from CHO engineering and bioprocess improvements. In order to highlight the utility of omics technologies in CHO bioproduction, the authors discuss current applications as well as limitations of genomics, transcriptomics, proteomics, metabolomics, lipidomics, fluxomics, glycomics, and multi-omics approaches and the potential they hold for the future of bioproduction. Multiple omics approaches are currently being used to improve CHO bioprocesses; however, the application of these technologies is still limited. As more CHO-omic datasets become available and integrated into systems models, the authors expect significant gains in product yield and quality. While individual omics technologies provide incremental improvements in bioproduction, the authors will likely see the most significant gains by applying multi-omics and systems biology approaches to individual CHO cell lines.
Collapse
Affiliation(s)
- Gino Stolfa
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | | | - Ryan Boniface
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | | | - Paul Gulde
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | - Atul D Joshi
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | - Anson P Pierce
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | - Scott J Jacobia
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| | - Andrew Campbell
- Bioproduction R&D, Thermo Fisher Scientific, Grand Island, USA
| |
Collapse
|
28
|
Chen WW, Freinkman E, Sabatini DM. Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat Protoc 2017. [PMID: 29532801 DOI: 10.1038/nprot.2017.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitochondria carry out numerous metabolic reactions that are critical to cellular homeostasis. Here we present a protocol for interrogating mitochondrial metabolites and measuring their matrix concentrations. Our workflow uses high-affinity magnetic immunocapture to rapidly purify HA-tagged mitochondria from homogenized mammalian cells in ∼12 min. These mitochondria are extracted with methanol and water. Liquid chromatography and mass spectrometry (LC/MS) is used to determine the identities and mole quantities of mitochondrial metabolites using authentic metabolite standards and isotopically labeled internal standards, whereas the corresponding mitochondrial matrix volume is determined via immunoblotting, confocal microscopy of intact cells, and volumetric analysis. Once all values have been obtained, the matrix volume is combined with the aforementioned mole quantities to calculate the matrix concentrations of mitochondrial metabolites. With shortened isolation times and improved mitochondrial purity when compared with alternative methods, this LC/MS-compatible workflow allows for robust profiling of mitochondrial metabolites and serves as a strategy generalizable to the study of other mammalian organelles. Once all the necessary reagents have been prepared, quantifying the matrix concentrations of mitochondrial metabolites can be accomplished within a week.
Collapse
Affiliation(s)
- Walter W Chen
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Elizaveta Freinkman
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David M Sabatini
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. Metabolite Measurement: Pitfalls to Avoid and Practices to Follow. Annu Rev Biochem 2017; 86:277-304. [PMID: 28654323 DOI: 10.1146/annurev-biochem-061516-044952] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolites are the small biological molecules involved in energy conversion and biosynthesis. Studying metabolism is inherently challenging due to metabolites' reactivity, structural diversity, and broad concentration range. Herein, we review the common pitfalls encountered in metabolomics and provide concrete guidelines for obtaining accurate metabolite measurements, focusing on water-soluble primary metabolites. We show how seemingly straightforward sample preparation methods can introduce systematic errors (e.g., owing to interconversion among metabolites) and how proper selection of quenching solvent (e.g., acidic acetonitrile:methanol:water) can mitigate such problems. We discuss the specific strengths, pitfalls, and best practices for each common analytical platform: liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), and enzyme assays. Together this information provides a pragmatic knowledge base for carrying out biologically informative metabolite measurements.
Collapse
Affiliation(s)
- Wenyun Lu
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey 08544;
| | - Xiaoyang Su
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey 08544;
| | - Matthias S Klein
- Department of Biological Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ian A Lewis
- Department of Biological Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California 95616.,Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
30
|
Martínez VS, Krömer JO. Quantification of Microbial Phenotypes. Metabolites 2016; 6:E45. [PMID: 27941694 PMCID: PMC5192451 DOI: 10.3390/metabo6040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022] Open
Abstract
Metabolite profiling technologies have improved to generate close to quantitative metabolomics data, which can be employed to quantitatively describe the metabolic phenotype of an organism. Here, we review the current technologies available for quantitative metabolomics, present their advantages and drawbacks, and the current challenges to generate fully quantitative metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy under physiological conditions, including examples of the estimations, and the different methods for thermodynamics-based network analysis. The fundamentals of the methods and how to perform the analyses are described. Finally, an example applying quantitative metabolomics to a yeast model by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows that (1) these two methods are complementary to each other; and (2) there is a need to take into account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when further constraints are included in the analysis.
Collapse
Affiliation(s)
- Verónica S Martínez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Jens O Krömer
- Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Brisbane 4072, Australia.
- Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
31
|
Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell 2016; 166:1324-1337.e11. [PMID: 27565352 PMCID: PMC5030821 DOI: 10.1016/j.cell.2016.07.040] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/08/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023]
Abstract
Mitochondria house metabolic pathways that impact most aspects of cellular physiology. While metabolite profiling by mass spectrometry is widely applied at the whole-cell level, it is not routinely possible to measure the concentrations of small molecules in mammalian organelles. We describe a method for the rapid and specific isolation of mitochondria and use it in tandem with a database of predicted mitochondrial metabolites ("MITObolome") to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function. Disruption of the RC reveals extensive compartmentalization of mitochondrial metabolism and signatures unique to the inhibition of each RC complex. Pyruvate enables the proliferation of RC-deficient cells but has surprisingly limited effects on matrix contents. Interestingly, despite failing to restore matrix NADH/NAD balance, pyruvate does increase aspartate, likely through the exchange of matrix glutamate for cytosolic aspartate. We demonstrate the value of mitochondrial metabolite profiling and describe a strategy applicable to other organelles.
Collapse
Affiliation(s)
- Walter W Chen
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Tim Wang
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York City, NY 10065, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Pfizenmaier J, Junghans L, Teleki A, Takors R. Hyperosmotic stimulus study discloses benefits in ATP supply and reveals miRNA/mRNA targets to improve recombinant protein production of CHO cells. Biotechnol J 2016; 11:1037-47. [PMID: 27214792 DOI: 10.1002/biot.201500606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/07/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023]
Abstract
Biopharmaceuticals are predominantly produced by Chinese hamster ovary (CHO) cells cultivated in fed-batch mode. Hyperosmotic culture conditions (≥ 350 mOsmol kg(∑1) ) resulting from feeding of nutrients may enhance specific product formation rates (qp ). As an improved ATP supply was anticipated to enhance qp this study focused on the identification of suitable miRNA/mRNA targets to increase ATP levels. Therefor next generation sequencing and a compartment specific metabolomics approach were applied to analyze the response of an antibody (mAB) producing CHO cell line upon osmotic shift (280 → 430 mOsmol kg(-1) ). Hyperosmotic culture conditions caused a ∼2.6-fold increase of specific ATP formation rates together with a ∼1.7-fold rise in cytosolic and mitochondrial ATP-pools, thus showing increased ATP supply. mRNA expression analysis identified several genes encoding glycosylated proteins with strictly tissue related function. In addition, hyperosmotic culture conditions induced an upregulation of miR-132-3p, miR-132-5p, miR-182, miR-183, miR-194, miR-215-3p, miR-215-5p which have all been related to cell cycle arrest/proliferation in cancer studies. In relation to a previous independent CHO study miR-183 may be the most promising target to enhance qp by stable overexpression. Furthermore, deletion of genes with presumably dispensable function in suspension growing CHO cells may enhance mAB formation by increased ATP levels.
Collapse
Affiliation(s)
- Jennifer Pfizenmaier
- University of Stuttgart, Institute of Biochemical Engineering, Stuttgart, Germany
| | - Lisa Junghans
- University of Stuttgart, Institute of Biochemical Engineering, Stuttgart, Germany
| | - Attila Teleki
- University of Stuttgart, Institute of Biochemical Engineering, Stuttgart, Germany
| | - Ralf Takors
- University of Stuttgart, Institute of Biochemical Engineering, Stuttgart, Germany.
| |
Collapse
|
33
|
Wang H, Liang X, Luo G, Ding M, Liang Q. Protection effect of nicotinamide on cardiomyoblast hypoxia/re-oxygenation injury: study of cellular mitochondrial metabolism. MOLECULAR BIOSYSTEMS 2016; 12:2257-2264. [DOI: 10.1039/c6mb00108d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Nicotinamide exerts a protective effect on cardiomyoblasts against hypoxia/re-oxygenation-induced injury through reduction of reactive oxygen species generation via succinate dehydrogenase inhibition.
Collapse
Affiliation(s)
- He Wang
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Xiaoping Liang
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Guoan Luo
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Mingyu Ding
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Qionglin Liang
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| |
Collapse
|