1
|
Gallego I, Medic N, Pedersen JS, Ramasamy PK, Robbens J, Vereecke E, Romeis J. The microalgal sector in Europe: Towards a sustainable bioeconomy. N Biotechnol 2025; 86:1-13. [PMID: 39778767 DOI: 10.1016/j.nbt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Microalgae are a diverse group of photosynthetic microorganisms that can be exploited to produce sustainable food and feed products, alleviate environmental pollution, or sequester CO2 to mitigate climate change, among other uses. To optimize resource use and integrate industrial waste streams, it is essential to consider factors such as the biology and cultivation parameters of the microalgal strains, as well as the cultivation system and processing technologies employed. This paper reviews the main commercial applications of microalgae (including cyanobacteria) and examines the biological and biotechnological aspects critical to the sustainable processing of microalgal biomass and its derived compounds. We also provide an up-to-date overview of the microalgal sector in Europe considering the strain, cultivation system and commercial application. We have identified 146 different microalgal-derived products from 66 European microalgae producers, and 49 additional companies that provide services and technologies, such as optimization and scalability of the microalgal production. The most widely cultivated microalga is 'spirulina' (Limnospira spp.), followed by Chlorella spp. and Nannochloropsis spp., mainly for human consumption and cosmetics. The preferred cultivation system in Europe is the photobioreactor. Finally, we discuss the logistic and regulatory challenges of producing microalgae at industrial scale, particularly in the European Union, and explore the potential of new genomic techniques and bioprocessing to foster a sustainable bioeconomy in the microalgal sector.
Collapse
Affiliation(s)
- Irene Gallego
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland.
| | - Nikola Medic
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | - Jakob Skov Pedersen
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | | | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Elke Vereecke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| |
Collapse
|
2
|
Chen HH, Zheng QX, Yu F, Xie SR, Jiang JG. Development of a chloroplast expression system for Dunaliella salina. Enzyme Microb Technol 2024; 179:110464. [PMID: 38850682 DOI: 10.1016/j.enzmictec.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Dunaliella salina is an innovative expression system due to its distinct advantages such as high salt tolerance, low susceptibility to contamination, and the absence of the cell wall. While nuclear transformation has been extensively studied, research on D. salina chloroplast transformation remains in the preliminary stages. In this study, we established an efficient chloroplast expression system for D. salina using Golden Gate assembly. We developed a D. salina toolkit comprising essential components such as chloroplast-specific promoters, terminators, homologous fragments, and various vectors. We confirmed its functionality by expressing the EGFP protein. Moreover, we detailed the methodology of the entire construction process. This expression system enables the specific targeting of foreign genes through simple homologous recombination, resulting in stable expression in chloroplasts. The toolkit achieved a relatively high transformation efficiency within a shorter experimental cycle. Consequently, the construction and utilization of this toolkit have the potential to enhance the efficiency of transgenic engineering in D. salina and advance the development of microalgal biofactories.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Qian-Xi Zheng
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Fan Yu
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Shan-Rong Xie
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Goold HD, Moseley JL, Lauersen KJ. The synthetic future of algal genomes. CELL GENOMICS 2024; 4:100505. [PMID: 38395701 PMCID: PMC10943592 DOI: 10.1016/j.xgen.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae. Efforts to redesign and rebuild entire genomes to create fit-for-purpose organisms currently being explored in heterotrophic prokaryotes and eukaryotic microbes could also be applied to photosynthetic algae. Future algal genome engineering will enhance yields of native products and permit the expression of complex biochemical pathways to produce novel metabolites from sustainable inputs. We present a historical perspective on advances in engineering algae, discuss the requisite genetic traits to enable algal genome optimization, take inspiration from whole-genome engineering efforts in other microbes for algal systems, and present candidate algal species in the context of these engineering goals.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia; ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Phycoil Biotechnology International, Inc., Fremont, CA 94538, USA
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Jareonsin S, Mahanil K, Phinyo K, Srinuanpan S, Pekkoh J, Kameya M, Arai H, Ishii M, Chundet R, Sattayawat P, Pumas C. Unlocking microalgal host-exploring dark-growing microalgae transformation for sustainable high-value phytochemical production. Front Bioeng Biotechnol 2023; 11:1296216. [PMID: 38026874 PMCID: PMC10666632 DOI: 10.3389/fbioe.2023.1296216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Microalgae have emerged as a promising, next-generation sustainable resource with versatile applications, particularly as expression platforms and green cell factories. They possess the ability to overcome the limitations of terrestrial plants, such non-arable land, water scarcity, time-intensive growth, and seasonal changes. However, the heterologous expression of interested genes in microalgae under heterotrophic cultivation (dark mode) remains a niche area within the field of engineering technologies. In this study, the green microalga, Chlorella sorokiniana AARL G015 was chosen as a potential candidate due to its remarkable capacity for rapid growth in complete darkness, its ability to utilize diverse carbon sources, and its potential for wastewater treatment in a circular bioeconomy model. The aims of this study were to advance microalgal genetic engineering via dark cultivation, thereby positioning the strain as promising dark-host for expressing heterologous genes to produce high-value phytochemicals and ingredients for food and feed. To facilitate comprehensive screening based on resistance, eleven common antibiotics were tested under heterotrophic condition. As the most effective selectable markers for this strain, G418, hygromycin, and streptomycin exhibited growth inhibition rates of 98%, 93%, and 92%, respectively, ensuring robust long-term transgenic growth. Successful transformation was achieved through microalgal cell cocultivation with Agrobacterium under complete darkness verified through the expression of green fluorescence protein and β-glucuronidase. In summary, this study pioneers an alternative dark-host microalgal platform, using, Chlorella, under dark mode, presenting an easy protocol for heterologous gene transformation for microalgal host, devoid of the need for expensive equipment and light for industrial production. Furthermore, the developed genetic transformation methodology presents a sustainable way for production of high-value nutrients, dietary supplements, nutraceuticals, proteins and pharmaceuticals using heterotrophic microalgae as an innovative host system.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Masafumi Kameya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ruttaporn Chundet
- Division of Biotechnology, Faculty of Science, Maejo University, Chiangmai, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Tambat VS, Patel AK, Singhania RR, Vadrale AP, Tiwari A, Chen CW, Dong CD. Sustainable mixotrophic microalgae refinery of astaxanthin and lipid from Chlorella zofingiensis. BIORESOURCE TECHNOLOGY 2023; 387:129635. [PMID: 37544537 DOI: 10.1016/j.biortech.2023.129635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Microalgal astaxanthin possesses numerous bioactivities and has several health applications. The current research focuses on designing and optimizing the two-stage mixotrophic bioprocess by Chlorella zofingiensis for astaxanthin production. Gradual increase in light intensity (4-8k-lux) and 3x micronutrient concentration were the key parameters for maximizing biomass yield of 2.5 g/L during 15 days of stage I. Furthermore, stress conditions (excessive CO2, light, salinity, etc.) enhanced astaxanthin yield at stage II. 20k lux light, 3x nutrients, and 5% CO2 were the best ranges for maximum astaxanthin production. Maximum biomass yield and astaxanthin content were 3.3 g/L and 16.7 mg/g, respectively, after 29 days of bioprocess. Astaxanthin biosynthesis was also affected by salinity, but less than other parameters. Astaxanthin bioprocess resulted in enhanced lipid yields of 35-37%, which could be used for biodiesel. This study shows promising scale-up potential with attractive sustainability features of Chlorella zofingiensis model for commercial astaxanthin-lipid biorefinery.
Collapse
Affiliation(s)
- Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
7
|
Kim MJ, Kim SH, Kim JO, Lee TK, Jang IK, Choi TJ. Efficacy of White Spot Syndrome Virus Protein VP28-Expressing Chlorella vulgaris as an Oral Vaccine for Shrimp. Viruses 2023; 15:2010. [PMID: 37896787 PMCID: PMC10610983 DOI: 10.3390/v15102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The white spot syndrome virus (WSSV) is the causative agent of white spot disease, which kills shrimp within a few days of infection. Although WSSV has a mortality rate of almost 100% and poses a serious threat to the shrimp farming industry, strategies for its prevention and treatment are extremely limited. In this study, we examined the efficacy of VP28, a recombinant WSSV protein expressed in Chlorella vulgaris (C. vulgaris), as an oral shrimp vaccine. When compared with the control group, in which WSSV had a cumulative mortality of 100%, shrimp treated with 5% VP28-expressing C. vulgaris in their feed only had a 20% cumulative mortality rate 12 days after the WSSV challenge. When compared with the nonvaccinated group, the transcription of anti-lipopolysaccharide factor, C-type lectin, and prophenoloxidase genes, which are involved in shrimp defense against WSSV infection, was upregulated 29.6 fold, 15.4 fold, and 11.5 fold, respectively. These findings highlight C. vulgaris as a potential host for industrial shrimp vaccine production.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Su-Hyun Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Jong-Oh Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Taek-Kyun Lee
- South Sea Environment Research Division, Korea Institute of Ocean Science & Technology, Geoje-si 53201, Republic of Korea;
| | - In-Kwon Jang
- Junggyeom Co., Ltd., Goyang-si 10223, Republic of Korea;
| | - Tae-Jin Choi
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| |
Collapse
|
8
|
Kanna Dasan Y, Lam MK, Chai YH, Lim JW, Ho YC, Tan IS, Lau SY, Show PL, Lee KT. Unlocking the potential of microalgae bio-factories for carbon dioxide mitigation: A comprehensive exploration of recent advances, key challenges, and energy-economic insights. BIORESOURCE TECHNOLOGY 2023; 380:129094. [PMID: 37100295 DOI: 10.1016/j.biortech.2023.129094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Microalgae are promising alternatives to mitigate atmospheric CO2 owing to their fast growth rates, resilience in the face of adversity and ability to produce a wide range of products, including food, feed supplements, chemicals, and biofuels. However, to fully harness the potential of microalgae-based carbon capture technology, further advancements are required to overcome the associated challenges and limitations, particularly with regards to enhancing CO2 solubility in the culture medium. This review provides an in-depth analysis of the biological carbon concentrating mechanism and highlights the current approaches, including species selection, optimization of hydrodynamics, and abiotic components, aimed at improving the efficacy of CO2 solubility and biofixation. Moreover, cutting-edge strategies such as gene mutation, bubble dynamics and nanotechnology are systematically outlined to elevate the CO2 biofixation capacity of microalgal cells. The review also evaluates the energy and economic feasibility of using microalgae for CO2 bio-mitigation, including challenges and prospects for future development.
Collapse
Affiliation(s)
- Yaleeni Kanna Dasan
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Yee Ho Chai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Civil and Environmental Engineering Department, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Penang, Nibong Tebal 14300, Malaysia
| |
Collapse
|
9
|
Zhuang H, Ou Y, Chen R, Huang D, Wang C. Comparing the Ability of Secretory Signal Peptides for Heterologous Expression of Anti-Lipopolysaccharide Factor 3 in Chlamydomonas reinhardtii. Mar Drugs 2023; 21:346. [PMID: 37367671 DOI: 10.3390/md21060346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Anti-lipopolysaccharide factor 3 (ALFPm3) possesses a wide antimicrobial spectrum and high antibacterial and viral activities for broad application prospects in the aquaculture industry. However, the application of ALFPm3 is limited by its low production in nature, as well as its low activity when expressed in Escherichia coli and yeast. Although it has been proven that its secretory expression can be used to produce antimicrobial peptides with strong antimicrobial activity, there is no study on the high-efficiency secretory expression of ALFPm3 in Chlamydomonas reinhardtii. In this study, signal peptides ARS1 and CAH1 were fused with ALFPm3 and inserted into the pESVH vector to construct pH-aALF and pH-cALF plasmids, respectively, that were transformed to C. reinhardtii JUV using the glass bead method. Subsequently, through antibiotic screening, DNA-PCR, and RT-PCR, transformants expressing ALFPm3 were confirmed and named T-JaA and T-JcA, respectively. The peptide ALFPm3 could be detected in algal cells and culture medium by immunoblot, meaning that ALFPm3 was successfully expressed in C. reinhardtii and secreted into the extracellular environment. Moreover, ALFPm3 extracts from the culture media of T-JaA and T-JcA showed significant inhibitory effects on the growth of V. harveyi, V. alginolyticus, V. anguillarum, and V. parahaemolyticus within 24 h. Interestingly, the inhibitory rate of c-ALFPm3 from T-JcA against four Vibrio was 2.77 to 6.23 times greater than that of a-ALFPm3 from T-JaA, indicating that the CAH1 signal peptide was more helpful in enhancing the secreted expression of the ALFPm3 peptide. Our results provided a new strategy for the secretory production of ALFPm3 with high antibacterial activity in C. reinhardtii, which could improve the application potentiality of ALFPm3 in the aquaculture industry.
Collapse
Affiliation(s)
- Huilin Zhuang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yaohui Ou
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ruoyu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Masi A, Leonelli F, Scognamiglio V, Gasperuzzo G, Antonacci A, Terzidis MA. Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023; 28:molecules28031185. [PMID: 36770853 PMCID: PMC9921279 DOI: 10.3390/molecules28031185] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.
Collapse
Affiliation(s)
- Annalisa Masi
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Giulia Gasperuzzo
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| |
Collapse
|
11
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
12
|
Target of Rapamycin Regulates Photosynthesis and Cell Growth in Auxenochlorella pyrenoidosa. Int J Mol Sci 2022; 23:ijms231911309. [PMID: 36232611 PMCID: PMC9569773 DOI: 10.3390/ijms231911309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Auxenochlorella pyrenoidosa is an efficient photosynthetic microalga with autotrophic growth and reproduction, which has the advantages of rich nutrition and high protein content. Target of rapamycin (TOR) is a conserved protein kinase in eukaryotes both structurally and functionally, but little is known about the TOR signalling in Auxenochlorella pyrenoidosa. Here, we found a conserved ApTOR protein in Auxenochlorella pyrenoidosa, and the key components of TOR complex 1 (TORC1) were present, while the components RICTOR and SIN1 of the TORC2 were absent in Auxenochlorella pyrenoidosa. Drug sensitivity experiments showed that AZD8055 could effectively inhibit the growth of Auxenochlorella pyrenoidosa, whereas rapamycin, Torin1 and KU0063794 had no obvious effect on the growth of Auxenochlorella pyrenoidosaa. Transcriptome data results indicated that Auxenochlorella pyrenoidosa TOR (ApTOR) regulates various intracellular metabolism and signaling pathways in Auxenochlorella pyrenoidosa. Most genes related to chloroplast development and photosynthesis were significantly down-regulated under ApTOR inhibition by AZD8055. In addition, ApTOR was involved in regulating protein synthesis and catabolism by multiple metabolic pathways in Auxenochlorella pyrenoidosa. Importantly, the inhibition of ApTOR by AZD8055 disrupted the normal carbon and nitrogen metabolism, protein and fatty acid metabolism, and TCA cycle of Auxenochlorella pyrenoidosa cells, thus inhibiting the growth of Auxenochlorella pyrenoidosa. These RNA-seq results indicated that ApTOR plays important roles in photosynthesis, intracellular metabolism and cell growth, and provided some insights into the function of ApTOR in Auxenochlorella pyrenoidosa.
Collapse
|
13
|
Development of spirulina for the manufacture and oral delivery of protein therapeutics. Nat Biotechnol 2022; 40:956-964. [PMID: 35314813 PMCID: PMC9200632 DOI: 10.1038/s41587-022-01249-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
The use of the edible photosynthetic cyanobacterium Arthrospira platensis (spirulina) as a biomanufacturing platform has been limited by a lack of genetic tools. Here we report genetic engineering methods for stable, high-level expression of bioactive proteins in spirulina, including large-scale, indoor cultivation and downstream processing methods. Following targeted integration of exogenous genes into the spirulina chromosome (chr), encoded protein biopharmaceuticals can represent as much as 15% of total biomass, require no purification before oral delivery and are stable without refrigeration and protected during gastric transit when encapsulated within dry spirulina. Oral delivery of a spirulina-expressed antibody targeting campylobacter-a major cause of infant mortality in the developing world-prevents disease in mice, and a phase 1 clinical trial demonstrated safety for human administration. Spirulina provides an advantageous system for the manufacture of orally delivered therapeutic proteins by combining the safety of a food-based production host with the accessible genetic manipulation and high productivity of microbial platforms.
Collapse
|
14
|
Liu T, Chen Z, Xiao Y, Yuan M, Zhou C, Liu G, Fang J, Yang B. Biochemical and Morphological Changes Triggered by Nitrogen Stress in the Oleaginous Microalga Chlorella vulgaris. Microorganisms 2022; 10:microorganisms10030566. [PMID: 35336142 PMCID: PMC8949318 DOI: 10.3390/microorganisms10030566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Oleaginous microalgae have been considered promising sources of biodiesel due to their high lipid content. Nitrogen limitation/starvation is one of the most prominent strategies to induce lipid accumulation in microalgae. Nonetheless, despite numerous studies, the mechanism underlying this approach is not well understood. The aim of this study was to investigate the effect of nitrogen limitation and starvation on biochemical and morphological changes in the microalga Chlorella vulgaris FACHB-1068, thereby obtaining the optimal nitrogen stress strategy for maximizing the lipid productivity of microalgal biomass. The results showed that nitrogen limitation (nitrate concentration < 21.66 mg/L) and starvation enhanced the lipid content but generally decreased the biomass productivity, pigment concentration, and protein content in algal cells. Comparatively, 3-day nitrogen starvation was found to be a more suitable strategy to produce lipid-rich biomass. It resulted in an increased biomass production and satisfactory lipid content of 266 mg/L and 31.33%, respectively. Besides, nitrogen starvation caused significant changes in cell morphology, with an increase in numbers and total size of lipid droplets and starch granules. Under nitrogen starvation, saturated fatty acids (C-16:0, C-20:0, and C-18:0) accounted for the majority of the total fatty acids (~80%), making C. vulgaris FACHB-1068 a potential feedstock for biodiesel production. Our work may contribute to a better understanding of the biochemical and morphological changes in microalgae under nitrogen stress. Besides, our work may provide valuable information on increasing the lipid productivity of oleaginous microalgae by regulating nitrogen supply.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Yang
- Correspondence: (J.F.); (B.Y.)
| |
Collapse
|
15
|
Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. ENERGIES 2022. [DOI: 10.3390/en15041550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research progress on sustainable and renewable biofuel has gained motion over the years, not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental and potential energy security issues as well. Intense interest in microalgae (photosynthetic microbes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels derived from algae are now considered sustainable biofuels that are promising, renewable, and clean. Therefore, selecting the robust species of microalgae with substantial features for quality biodiesel production is the first step in the way of biofuel production. A contemporary investigation is more focused on several strategies and techniques to achieve higher biomass and triglycerides in microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most recent ways of improving the production of biomass and lipids. Hence, the current review collects up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures that may aid in lipid harvesting efficiency and improve lipid recovery rate are described.
Collapse
|
16
|
Muthukrishnan L. Bio‐engineering of microalgae: Challenges and future prospects toward industrial and environmental applications. J Basic Microbiol 2022; 62:310-329. [DOI: 10.1002/jobm.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| |
Collapse
|
17
|
Lin JY, Lin WR, Ng IS. CRISPRa/i with Adaptive Single Guide Assisted Regulation DNA (ASGARD) mediated control of Chlorella sorokiniana to enhance lipid and protein production. Biotechnol J 2021; 17:e2100514. [PMID: 34800080 DOI: 10.1002/biot.202100514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023]
Abstract
Chlorella species are indispensable microalgae for biorefinery but are hardly in DNA manipulation due to the high guanine-cytosine (GC) contents of DNA. In this study, we established a new approach via 20 guanines for sgRNA design, which is annotated as "Adaptive Single Guide Assisted Regulation DNA (ASGARD)" and coupling with CRISPR interference associated dCas9 system to overcome the difficulties. At first, C. sorokiniana was predominate as its faster growth rate when compared to C. vulgaris and C. variabilis in the culture using Tris-acetate-phosphate (TAP) medium. Among all the genetic transformants, gene regulation via CRISPRa-VP64 (CRISPRa) enhanced the protein contents up to 60% (w/w) of dry cell weight, where the highest concentration was 570 mg L-1 . Meanwhile, CRISPRi-KRAB (CRISPRi) with ASGARD increased protein content to 65% and lipid formed in the range of 150-250 mg L-1 . From the transcriptome analysis, we deciphered 468 genes down-regulated and 313 genes up-regulated via CRISPRi, while less difference existed in CRISPRa. This novel design and technology reveal a high potential of gene-regulating approach to other species for the biorefinery and bio-industry.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Way-Rong Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Noel EA, Weeks DP, Van Etten JL. Pursuit of chlorovirus genetic transformation and CRISPR/Cas9-mediated gene editing. PLoS One 2021; 16:e0252696. [PMID: 34673785 PMCID: PMC8530361 DOI: 10.1371/journal.pone.0252696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Genetic and molecular modifications of the large dsDNA chloroviruses, with genomes of 290 to 370 kb, would expedite studies to elucidate the functions of both identified and unidentified virus-encoded proteins. These plaque-forming viruses replicate in certain unicellular, eukaryotic chlorella-like green algae. However, to date, only a few of these algal species and virtually none of their viruses have been genetically manipulated due to lack of practical methods for genetic transformation and genome editing. Attempts at using Agrobacterium-mediated transfection of chlorovirus host Chlorella variabilis NC64A with a specially-designed binary vector resulted in successful transgenic cell selection based on expression of a hygromycin-resistance gene, initial expression of a green fluorescence gene and demonstration of integration of Agrobacterium T-DNA. However, expression of the integrated genes was soon lost. To develop gene editing tools for modifying specific chlorovirus CA-4B genes using preassembled Cas9 protein-sgRNA ribonucleoproteins (RNPs), we tested multiple methods for delivery of Cas9/sgRNA RNP complexes into infected cells including cell wall-degrading enzymes, electroporation, silicon carbide (SiC) whiskers, and cell-penetrating peptides (CPPs). In one experiment two independent virus mutants were isolated from macerozyme-treated NC64A cells incubated with Cas9/sgRNA RNPs targeting virus CA-4B-encoded gene 034r, which encodes a glycosyltransferase. Analysis of DNA sequences from the two mutant viruses showed highly targeted nucleotide sequence modifications in the 034r gene of each virus that were fully consistent with Cas9/RNP-directed gene editing. However, in ten subsequent experiments, we were unable to duplicate these results and therefore unable to achieve a reliable system to genetically edit chloroviruses. Nonetheless, these observations provide strong initial suggestions that Cas9/RNPs may function to promote editing of the chlorovirus genome, and that further experimentation is warranted and worthwhile.
Collapse
Affiliation(s)
- Eric A. Noel
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Donald P. Weeks
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - James L. Van Etten
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
19
|
Vavitsas K, Kugler A, Satta A, Hatzinikolaou DG, Lindblad P, Fewer DP, Lindberg P, Toivari M, Stensjö K. Doing synthetic biology with photosynthetic microorganisms. PHYSIOLOGIA PLANTARUM 2021; 173:624-638. [PMID: 33963557 DOI: 10.1111/ppl.13455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Mervi Toivari
- VTT, Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Cecchin M, Paloschi M, Busnardo G, Cazzaniga S, Cuine S, Li‐Beisson Y, Wobbe L, Ballottari M. CO 2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species. PLANT, CELL & ENVIRONMENT 2021; 44:2987-3001. [PMID: 33931891 PMCID: PMC8453743 DOI: 10.1111/pce.14074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 05/28/2023]
Abstract
Microalgae represent a potential solution to reduce CO2 emission exploiting their photosynthetic activity. Here, the physiologic and metabolic responses at the base of CO2 assimilation were investigated in conditions of high or low CO2 availability in two of the most promising algae species for industrial cultivation, Chlorella sorokiniana and Chlorella vulgaris. In both species, high CO2 availability increased biomass accumulation with specific increase of triacylglycerols in C. vulgaris and polar lipids and proteins in C. sorokiniana. Moreover, high CO2 availability caused only in C. vulgaris a reduced NAD(P)H/NADP+ ratio and reduced mitochondrial respiration, suggesting a CO2 dependent increase of reducing power consumption in the chloroplast, which in turn influences the redox state of the mitochondria. Several rearrangements of the photosynthetic machinery were observed in both species, differing from those described for the model organism Chlamydomonas reinhardtii, where adaptation to carbon availability is mainly controlled by the translational repressor NAB1. NAB1 homologous protein could be identified only in C. vulgaris but lacked the regulation mechanisms previously described in C. reinhardtii. Acclimation strategies to cope with a fluctuating inorganic carbon supply are thus diverse among green microalgae, and these results suggest new biotechnological strategies to boost CO2 fixation.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Matteo Paloschi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Stephan Cuine
- Aix‐Marseille Univ., CEA, CNRSInstitute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265, CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Yonghua Li‐Beisson
- Aix‐Marseille Univ., CEA, CNRSInstitute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265, CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Lutz Wobbe
- Bielefeld UniversityCenter for Biotechnology (CeBiTec), Faculty of BiologyBielefeldGermany
| | | |
Collapse
|
21
|
de Grahl I, Reumann S. Stramenopile microalgae as "green biofactories" for recombinant protein production. World J Microbiol Biotechnol 2021; 37:163. [PMID: 34453200 PMCID: PMC8397651 DOI: 10.1007/s11274-021-03126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022]
Abstract
Photoautotrophic microalgae have become intriguing hosts for recombinant protein production because they offer important advantages of both prokaryotic and eukaryotic expression systems. Advanced molecular tools have recently been established for the biotechnologically relevant group of stramenopile microalgae, particularly for several Nannochloropsis species and diatoms. Strategies for the selection of powerful genetic elements and for optimization of protein production have been reported. Much needed high-throughput techniques required for straight-forward identification and selection of the best expression constructs and transformants have become available and are discussed. The first recombinant proteins have already been produced successfully in stramenopile microalgae and include not only several subunit vaccines but also one antimicrobial peptide, a fish growth hormone, and an antibody. These research results offer interesting future applications in aquaculture and as biopharmaceuticals. In this review we highlight recent progress in genetic technology development for recombinant protein production in the most relevant Nannochloropsis species and diatoms. Diverse realistic biotechnological applications of these proteins are emphasized that have the potential to establish stramenopile algae as sustainable green factories for an economically competitive production of high-value biomolecules.
Collapse
Affiliation(s)
- Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| |
Collapse
|
22
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|
23
|
Jareonsin S, Pumas C. Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production. Front Bioeng Biotechnol 2021; 9:628597. [PMID: 33644020 PMCID: PMC7907617 DOI: 10.3389/fbioe.2021.628597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, most commercial recombinant technologies rely on host systems. However, each host has their own benefits and drawbacks, depending on the target products. Prokaryote host is lack of post-transcriptional and post-translational mechanisms, making them unsuitable for eukaryotic productions like phytochemicals. Even there are other eukaryote hosts (e.g., transgenic animals, mammalian cell, and transgenic plants), but those hosts have some limitations, such as low yield, high cost, time consuming, virus contamination, and so on. Thus, flexible platforms and efficient methods that can produced phytochemicals are required. The use of heterotrophic microalgae as a host system is interesting because it possibly overcome those obstacles. This paper presents a comprehensive review of heterotrophic microalgal expression host including advantages of heterotrophic microalgae as a host, genetic engineering of microalgae, genetic transformation of microalgae, microalgal engineering for phytochemicals production, challenges of microalgal hosts, key market trends, and future view. Finally, this review might be a directions of the alternative microalgae host for high-value phytochemicals production in the next few years.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
24
|
Kim J, Chang KS, Lee S, Jin E. Establishment of a Genome Editing Tool Using CRISPR-Cas9 in Chlorella vulgaris UTEX395. Int J Mol Sci 2021; 22:E480. [PMID: 33418923 PMCID: PMC7825080 DOI: 10.3390/ijms22020480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
To date, Chlorella vulgaris is the most used species of microalgae in the food and feed additive industries, and also considered as a feasible cell factory for bioproducts. However, the lack of an efficient genetic engineering tool makes it difficult to improve the physiological characteristics of this species. Therefore, the development of new strategic approaches such as genome editing is trying to overcome this hurdle in many research groups. In this study, the possibility of editing the genome of C. vulgaris UTEX395 using clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) has been proven to target nitrate reductase (NR) and adenine phosphoribosyltransferase (APT). Genome-edited mutants, nr and apt, were generated by a DNA-mediated and/or ribonucleoprotein (RNP)-mediated CRISPR-Cas9 system, and isolated based on the negative selection against potassium chlorate or 2-fluoroadenine in place of antibiotics. The null mutation of edited genes was demonstrated by the expression level of the correspondent proteins or the mutation of transcripts, and through growth analysis under specific nutrient conditions. In conclusion, this study offers relevant empirical evidence of the possibility of genome editing in C. vulgaris UTEX395 by CRISPR-Cas9 and the practical methods. Additionally, among the generated mutants, nr can provide an easier screening strategy during DNA transformation than the use of antibiotics owing to their auxotrophic characteristics. These results will be a cornerstone for further advancement of the genetics of C. vulgaris.
Collapse
Affiliation(s)
| | | | | | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; (J.K.); (K.S.C.); (S.L.)
| |
Collapse
|
25
|
Kato Y, Hasunuma T. Metabolic Engineering for Carotenoid Production Using Eukaryotic Microalgae and Prokaryotic Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1261:121-135. [PMID: 33783735 DOI: 10.1007/978-981-15-7360-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic microalgae and prokaryotic cyanobacteria are diverse photosynthetic organisms that produce various useful compounds. Due to their rapid growth and efficient biomass production from carbon dioxide and solar energy, microalgae and cyanobacteria are expected to become cost-effective, sustainable bioresources in the future. These organisms also abundantly produce various carotenoids, but further improvement in carotenoid productivity is needed for a successful commercialization. Metabolic engineering via genetic manipulation and mutational breeding is a powerful tool for generating carotenoid-rich strains. This chapter focuses on carotenoid production in microalgae and cyanobacteria, as well as strategies and potential target genes for metabolic engineering. Recent achievements in metabolic engineering that improved carotenoid production in microalgae and cyanobacteria are also reviewed.
Collapse
Affiliation(s)
- Yuichi Kato
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe-city, Hyogo, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe-city, Hyogo, Japan.
| |
Collapse
|
26
|
Lee H, Shin WS, Kim YU, Jeon S, Kim M, Kang NK, Chang YK. Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in Chlorella sp. HS2. J Microbiol Biotechnol 2020; 30:1597-1606. [PMID: 32807753 PMCID: PMC9728203 DOI: 10.4014/jmb.2005.05048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in Chlorella sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in Chlorella sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in Chlorella sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRTPCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in Chlorella sp. HS2 under heterotrophic conditions.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 344, Republic of Korea
| | - Won-Sub Shin
- Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea
| | - Young Uk Kim
- Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea
| | - Seungjib Jeon
- Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea,Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansan 15629, Republic of Korea
| | - Minsik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 344, Republic of Korea,Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea
| | - Nam Kyu Kang
- Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Corresponding authors N.K.Kang Phone: +1-217-607-3151 E-mail:
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 344, Republic of Korea,Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea,Y.K.Chang Phone: +82-42-350-3927 Fax: +82-42-350-3910 E-mail:
| |
Collapse
|
27
|
Shin JH, Choi J, Jeon J, Kumar M, Lee J, Jeong WJ, Kim SR. The establishment of new protein expression system using N starvation inducible promoters in Chlorella. Sci Rep 2020; 10:12713. [PMID: 32728100 PMCID: PMC7391781 DOI: 10.1038/s41598-020-69620-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
Chlorella is a unicellular green microalga that has been used in fields such as bioenergy production and food supplementation. In this study, two promoters of N (nitrogen) deficiency-inducible Chlorella vulgaris N Deficiency Inducible (CvNDI) genes were isolated from Chlorella vulgaris UTEX 395. These promoters were used for the production of a recombinant protein, human granulocyte-colony stimulating factor (hG-CSF) in Chlorella vulgaris UTEX 395 and Chlorella sp. ArM0029B. To efficiently secrete the hG-CSF, the protein expression vectors incorporated novel signal peptides obtained from a secretomics analysis of Chlorella spp. After a stable transformation of those vectors with a codon-optimized hG-CSF sequence, hG-CSF polypeptides were successfully produced in the spent media of the transgenic Chlorella. To our knowledge, this is the first report of recombinant protein expression using endogenous gene components of Chlorella.
Collapse
Affiliation(s)
- Jun-Hye Shin
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Juyoung Choi
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Jeongmin Jeon
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Manu Kumar
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Juhyeon Lee
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Won-Joong Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul, South Korea.
| |
Collapse
|
28
|
Tatara H, Sato Y, Kasai Y, Hagiwara D, Makino A, Imamura S, Abe J, Yoshimitsu Y, Harayama S. A method for the preparation of electrocompetent cells to transform unicellular green algae, Coccomyxa (Trebouxiophyceae, Chlorophyta) strains Obi and KJ. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Abstract
Biotechnology uses microorganisms and/or enzymes to obtain specific products through fermentative processes and/or genetic engineering techniques. Examples of these products are active ingredients, such as hyaluronic acid, kojic acid, resveratrol, and some enzymes, which are used in skin anti-aging products. In addition, certain growth factors, algae, stem cells, and peptides have been included in cosmetics and aesthetic medicines. Thus, biotechnology, cosmetics and aesthetic medicines are now closely linked, through the production of high-quality active ingredients, which are more effective and safer. This work describes the most used active ingredients that are produced from biotechnological processes. Although there are a vast number of active ingredients, the number of biotechnological active ingredients reported in the literature is not significantly high.
Collapse
|
30
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
31
|
Torres-Tiji Y, Fields FJ, Mayfield SP. Microalgae as a future food source. Biotechnol Adv 2020; 41:107536. [PMID: 32194145 DOI: 10.1016/j.biotechadv.2020.107536] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
One of the key challenges that we face in the 21st century is the need to feed an ever-increasing human population with increasingly limited natural resources. Even today it is estimated that roughly 1 out of 9 people in the world are undernourished, of which the most important factor is protein-energy malnutrition. By establishing microalgae as a new food and feed platform, we have the opportunity to increase the supply of these essential products to address global demands in a more efficient and environmentally sustainable way. Many types of algae are nutritionally complete foods, their yields outperform most plant crops, and there is a growing set of tools to develop improved strains of algae. Similar improvements were achieved in traditional crops through thousands of years of breeding and strain selection, whereas with the newest genetic engineering tools and advanced strain selection techniques, similar changes can be implemented in microalgae in just a few years. Here we describe different strategies that could be used to enhance the nutritional content, productivity, and organoleptic traits of algae to help drive development of this new crop. Clearly developing more efficient, sustainable, and nutritious foods and feed would be an enormous benefit for the planet, and algae represents an opportunity to develop a new crop that would complement traditional agriculture, and one that could potential result in a more efficient means to meet the world's food and feed supply.
Collapse
Affiliation(s)
- Yasin Torres-Tiji
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Francis J Fields
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Stephen P Mayfield
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Zhang J, Zhou F, Liu Y, Huang F, Zhang C. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135368. [PMID: 31831249 DOI: 10.1016/j.scitotenv.2019.135368] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 05/27/2023]
Abstract
Inorganic arsenic (iAs) in its dominant dissolved phase in the environment is known to pose major threats to ecological and human health. While the biological effects in many arsenic-bearing freshwaters have been extensively studied, the behavior and bioaccumulation of dissolved iAS in the presence of extracellular polymeric substances (EPS) still remains to be a critical knowledge gap. In this study, the uptakes and kinetic characteristics of iAs were studied using Chlorella pyrenoidosa (a typical freshwater green algae) by addressing the different effects of EPS on arsenite (AsШ) and arsenate (AsV). The arsenic uptake capacity increased as the exposure concentration increased from 0 to 300 µmol L-1, and the uptake rate constants (Ku) in the Bio-dynamic model were greater for AsV than AsШ (0.63-11.57 L g-1 h-1 vs. 0.44-5.43 L g-1 h-1). The toxic effects as mitigated by EPS were observed through the morphological changes of algal cells by TEM and SEM. When compared with the EPS-free algal cells (EPS-F), EPS-covered cells (EPS-C) had a higher arsenic adsorption capacity through EPS-enhanced surface adsorption and reduced intracellular uptake. The overall decrease (35% and 23.3% for AsШ and AsV, respectively) in the maximum uptake capacity in intact algae cells favors cell's tolerance to the toxic effects of iAs. These observed discrepancies between AsШ and AsV and between EPS-C and EPS-F were further elucidated through morphological images (TEM and SEM) and molecular/atomic spectroscopic data that combine three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Altogether, the spectroscopic evidence revealed the interactions of iAs with C-O-C, C-O-H and -NH2 functional groups in EPS' tyrosine- and tryptophan-like proteins as the binding sites. Overall, this study for the first time provides comprehensive evidence on the iAs-EPS interactions. Such insights will benefit our understanding of the biogeochemical processes of iAs and the strategic development of bioremediation techniques involving microalgae in the natural and engineered systems.
Collapse
Affiliation(s)
- Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China; National Demonstration Center for Experimental Environment and Resources Education (Zhejiang University), Hangzhou 310058, China.
| | - Fang Zhou
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Yaoxuan Liu
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Fei Huang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Chunlong Zhang
- Department of Environmental Science, University of Houston-Clear Lake, Houston, TX 77058, United States
| |
Collapse
|
33
|
Mócsai R, Blaukopf M, Svehla E, Kosma P, Altmann F. The N-glycans of Chlorella sorokiniana and a related strain contain arabinose but have strikingly different structures. Glycobiology 2020; 30:663-676. [PMID: 32039451 DOI: 10.1093/glycob/cwaa012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
The many emerging applications of microalgae such as Chlorella also instigate interest in their ability to conduct protein modifications such as N-glycosylation. Chlorella vulgaris has recently been shown to equip its proteins with highly O-methylated oligomannosidic N-glycans. Two other frequently occurring species names are Chlorella sorokiniana and Chlorella pyrenoidosa-even though the latter is taxonomically ill defined. We analyzed by mass spectrometry and nuclear magnetic resonance spectroscopy the N-glycans of type culture collection strains of C. sorokiniana and of a commercial product labeled C. pyrenoidosa. Both samples contained arabinose, which has hitherto not been found in N-glycans. Apart from this only commonality, the structures differed fundamentally from each other and from that of N-glycans of land plants. Despite these differences, the two algae lines exhibited considerable homology in their ITS1-5.8S-ITS2 rDNA sequences. These drastic differences of N-glycan structures between species belonging to the very same genus provoke questions as to the biological function on a unicellular organism.
Collapse
Affiliation(s)
- Réka Mócsai
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Markus Blaukopf
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Elisabeth Svehla
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
34
|
Hao L, Wang Y, Chen X, Zheng X, Chen S, Li S, Zhang Y, Xu Y. Exploring the Potential of Natural Products From Mangrove Rhizosphere Bacteria as Biopesticides Against Plant Diseases. PLANT DISEASE 2019; 103:2925-2932. [PMID: 31449436 DOI: 10.1094/pdis-11-18-1958-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With increasing concerns of the environmental problems associated with current fungicide application, investigation of alternative, environmentally compatible biopesticides for plant disease management is needed. A total of 113 strains associated with Acanthus ilicifolius Linn in the Maipo Reserve, Hong Kong, were isolated and identified. In vitro assay with crude extracts of bacterial fermentation cultures identified ∼26% of the isolates producing antimicrobial compounds against a variety of agriculturally important phytopathogens. Selected crude extracts with inhibition to Colletotrichum fructicola and Magnaporthe oryzae growth significantly suppressed anthracnose and rice blast development in pear fruits and rice plants, respectively, when applied at 50 μg ml-1. Furthermore, 10 of 14 selected crude extracts with good antimicrobial activities had no significant differences in toxicity to the genus Chlorella compared with the control when used at 25 μg ml-1, whereas Amistar Top and Mancozeb completely killed the alga under the same concentration. These data illustrate the potential of natural products from mangrove rhizosphere bacteria in future agricultural application.
Collapse
Affiliation(s)
- Lingyun Hao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xinqi Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoli Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Si Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
35
|
Lin WR, Tan SI, Hsiang CC, Sung PK, Ng IS. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121932. [PMID: 31387837 DOI: 10.1016/j.biortech.2019.121932] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Microalgae and cyanobacteria are easy to culture, with higher growth rates and photosynthetic efficiencies compared to terrestrial plants, and thus generating higher productivity. The concept of microalgal biorefinery is to assimilate carbon dioxide and convert it to chemical energy/value-added products, such as vitamins, carotenoids, fatty acids, proteins and nucleic acids, to be applied in bioenergy, health foods, aquaculture feed, pharmaceutical and medical fields. Therefore, microalgae are annotated as the third generation feedstock in bioenergy and biorefinery. In past decades, many studies thrived to improve the carbon sequestration efficiency as well as enhance value-added compounds from different algae, especially via genetic engineering, synthetic biology, metabolic design and regulation. From the traditional Agrobacterium-mediated transformation DNA to novel CRISPR (clustered regularly interspaced short palindromic repeats) technology applied in microalgae and cyanobacteria, this review has highlighted the genome editing technology for biorefinery that is a highly environmental friendly trend to sustainable and renewable development.
Collapse
Affiliation(s)
- Way-Rong Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Po-Kuei Sung
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| |
Collapse
|
36
|
Abstract
Microalgae are unicellular organisms that act as the crucial primary producers all over the world, typically found in marine and freshwater environments. Most of them can live photo-autotrophically, reproduce rapidly, and accumulate biomass in a short period efficiently. To adapt to the uninterrupted change of the environment, they evolve and differentiate continuously. As a result, some of them evolve special abilities such as toleration of extreme environment, generation of sophisticated structure to adapt to the environment, and avoid predators. Microalgae are believed to be promising bioreactors because of their high lipid and pigment contents. Genetic engineering technologies have given revolutions in the microalgal industry, which decoded the secrets of microalgal genes, express recombinant genes in microalgal genomes, and largely soar the accumulation of interested components in transgenic microalgae. However, owing to several obstructions, the industry of transgenic microalgae is still immature. Here, we provide an overview to emphasize the advantage and imperfection of the existing transgenic microalgal bioreactors.
Collapse
Affiliation(s)
- Zhi-Cong Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ming-Hua Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
37
|
Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 2019; 18:178. [PMID: 31638987 PMCID: PMC6805540 DOI: 10.1186/s12934-019-1228-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
The use of fossil fuels has been strongly related to critical problems currently affecting society, such as: global warming, global greenhouse effects and pollution. These problems have affected the homeostasis of living organisms worldwide at an alarming rate. Due to this, it is imperative to look for alternatives to the use of fossil fuels and one of the relevant substitutes are biofuels. There are different types of biofuels (categories and generations) that have been previously explored, but recently, the use of microalgae has been strongly considered for the production of biofuels since they present a series of advantages over other biofuel production sources: (a) they don’t need arable land to grow and therefore do not compete with food crops (like biofuels produced from corn, sugar cane and other plants) and; (b) they exhibit rapid biomass production containing high oil contents, at least 15 to 20 times higher than land based oleaginous crops. Hence, these unicellular photosynthetic microorganisms have received great attention from researches to use them in the large-scale production of biofuels. However, one disadvantage of using microalgae is the high economic cost due to the low-yields of lipid content in the microalgae biomass. Thus, development of different methods to enhance microalgae biomass, as well as lipid content in the microalgae cells, would lead to the development of a sustainable low-cost process to produce biofuels. Within the last 10 years, many studies have reported different methods and strategies to induce lipid production to obtain higher lipid accumulation in the biomass of microalgae cells; however, there is not a comprehensive review in the literature that highlights, compares and discusses these strategies. Here, we review these strategies which include modulating light intensity in cultures, controlling and varying CO2 levels and temperature, inducing nutrient starvation in the culture, the implementation of stress by incorporating heavy metal or inducing a high salinity condition, and the use of metabolic and genetic engineering techniques coupled with nanotechnology.
Collapse
|
38
|
Tokunaga S, Sanda S, Uraguchi Y, Nakagawa S, Sawayama S. Overexpression of the DOF-Type Transcription Factor Enhances Lipid Synthesis in Chlorella vulgaris. Appl Biochem Biotechnol 2019; 189:116-128. [PMID: 30877635 DOI: 10.1007/s12010-019-02990-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023]
Abstract
In the present study, DNA binding with one finger (DOF)-type transcription factors were screened from the Chlorella vulgaris genome database. The candidate DOF transcription factor was endogenously overexpressed in C. vulgaris to improve neutral lipid production. The protein expression vector contains the heat shock protein 70 and ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit promoters and self-cleaving 2A peptide to reduce the transgene-silencing effect of C. vulgaris. A total of 74 phleomycin-resistant transformants were obtained. Under nitrogen-deficient conditions, the transformant CvDOF#3 showed approximately 1.5-fold higher neutral lipid content per cell compared to the original strain and also showed a His-tagged DOF candidate protein expression of 0.6%. Microscopic observations revealed that CvDOF#3 cells were larger in size. However, the observed differences in average cell diameter between CvDOF#3 and control cells were not statistically significant. These results indicated that the protein expression vector harboring the dual promoters and the 2A peptide, when used in combination with enzymatic cell wall degradation and glass bead transformation, could be useful for transgene and protein expression in C. vulgaris. Further experiment is necessary to confirm the expression efficiency of the HSP70 and RBCS dual promoter and 2A peptide strategy after construction of homologous recombination system in C. vulgaris. Our findings suggested that the overexpression of the endogenous DOF-type transcription factor can be used for improving the lipid content in C. vulgaris.
Collapse
Affiliation(s)
- Saki Tokunaga
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shohei Sanda
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yusuke Uraguchi
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
39
|
Chakravarti LJ, Negri AP, van Oppen MJH. Thermal and Herbicide Tolerances of Chromerid Algae and Their Ability to Form a Symbiosis With Corals. Front Microbiol 2019; 10:173. [PMID: 30809207 PMCID: PMC6379472 DOI: 10.3389/fmicb.2019.00173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Reef-building corals form an obligate symbiosis with photosynthetic microalgae in the family Symbiodiniaceae that meet most of their energy requirements. This symbiosis is under threat from the unprecedented rate of ocean warming as well as the simultaneous pressure of local stressors such as poor water quality. Only 1°C above mean summer sea surface temperatures (SSTs) on the Great Barrier Reef (GBR) can trigger the loss of Symbiodiniaceae from the host, and very low concentrations of the most common herbicide, diuron, can disrupt the photosynthetic activity of microalgae. In an era of rapid environmental change, investigation into the assisted evolution of the coral holobiont is underway in an effort to enhance the resilience of corals. Apicomplexan-like microalgae were discovered in 2008 and the Phylum Chromerida (chromerids) was created. Chromerids have been isolated from corals and contain a functional photosynthetic plastid. Their discovery therefore opens a new avenue of research into the use of alternative/additional photosymbionts of corals. However, only two studies to-date have investigated the symbiotic nature of Chromera velia with corals and thus little is known about the coral-chromerid relationship. Furthermore, the response of chromerids to environmental stressors has not been examined. Here we tested the performance of four chromerid strains and the common dinoflagellate symbiont Cladocopium goreaui (formerly Symbiodinium goreaui, ITS2 type C1) in response to elevated temperature, diuron and their combined exposure. Three of the four chromerid strains exhibited high thermal tolerances and two strains showed exceptional herbicide tolerances, greater than observed for any photosynthetic microalgae, including C. goreaui. We also investigated the onset of symbiosis between the chromerids and larvae of two common GBR coral species under ambient and stress conditions. Levels of colonization of coral larvae with the chromerid strains were low compared to colonization with C. goreaui. We did not observe any overall negative or positive larval fitness effects of the inoculation with chromerid algae vs. C. goreaui. However, we cannot exclude the possibility that chromerid algae may have more important roles in later coral life stages and recommend this be the focus of future studies.
Collapse
Affiliation(s)
- Leela J. Chakravarti
- Australian Institute of Marine Science, Townsville MC, QLD, Australia
- AIMS@JCU, Australian Institute of Marine Science, College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia
| | - Andrew P. Negri
- Australian Institute of Marine Science, Townsville MC, QLD, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville MC, QLD, Australia
- School of BioSciences University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
40
|
N-glycans of the microalga Chlorella vulgaris are of the oligomannosidic type but highly methylated. Sci Rep 2019; 9:331. [PMID: 30674946 PMCID: PMC6344472 DOI: 10.1038/s41598-018-36884-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/23/2018] [Indexed: 11/08/2022] Open
Abstract
Microalgae of the genus Chlorella vulgaris are candidates for the production of lipids for biofuel production. Besides that, Chlorella vulgaris is marketed as protein and vitamin rich food additive. Its potential as a novel expression system for recombinant proteins inspired us to study its asparagine-linked oligosaccharides (N-glycans) by mass spectrometry, chromatography and gas chromatography. Oligomannosidic N-glycans with up to nine mannoses were the structures found in culture collection strains as well as several commercial products. These glycans co-eluted with plant N-glycans in the highly shape selective porous graphitic carbon chromatography. Thus, Chlorella vulgaris generates oligomannosidic N-glycans of the structural type known from land plants and animals. In fact, Man5 (Man5GlcNAc2) served as substrate for GlcNAc-transferase I and a trace of an endogenous structure with terminal GlcNAc was seen. The unusual more linear Man5 structure recently found on glycoproteins of Chlamydomonas reinhardtii occurred - if at all - in traces only. Notably, a majority of the oligomannosidic glycans was multiply O-methylated with 3-O-methyl and 3,6-di-O-methyl mannoses at the non-reducing termini. This modification has so far been neither found on plant nor vertebrate N-glycans. It's possible immunogenicity raises concerns as to the use of C. vulgaris for production of pharmaceutical glycoproteins.
Collapse
|
41
|
Lauersen KJ. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production. PLANTA 2019; 249:155-180. [PMID: 30467629 DOI: 10.1007/s00425-018-3048-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/14/2018] [Indexed: 05/21/2023]
Abstract
Eukaryotic microalgae hold incredible metabolic potential for the sustainable production of heterologous isoprenoid products. Recent advances in algal engineering have enabled the demonstration of prominent examples of heterologous isoprenoid production. Isoprenoids, also known as terpenes or terpenoids, are the largest class of natural chemicals, with a vast diversity of structures and biological roles. Some have high-value in human-use applications, although may be found in their native contexts in low abundance or be difficult to extract and purify. Heterologous production of isoprenoid compounds in heterotrophic microbial hosts such as bacteria or yeasts has been an active area of research for some time and is now a mature technology. Eukaryotic microalgae represent sustainable alternatives to these hosts for biotechnological production processes as their cultivation can be driven by light and freely available CO2 as a carbon source. Their photosynthetic lifestyles require metabolic architectures structured towards the generation of associated isoprenoids (carotenoids, phytol) which participate in photon capture, energy dissipation, and electron transfer. Eukaryotic microalgae should, therefore, contain inherently high capacities for the generation of heterologous isoprenoid products. Although engineering strategies in eukaryotic microalgae have lagged behind the more genetically tractable bacteria and yeasts, recent advances in algal engineering concepts have demonstrated prominent examples of light-driven heterologous isoprenoid production from these photosynthetic hosts. This work seeks to provide practical insights into the choice of eukaryotic microalgae as biotechnological chassis. Recent reports of advances in algal engineering for heterologous isoprenoid production are highlighted as encouraging examples that promote their expanded use as sustainable green-cell factories. Current state of the art, limitations, and future challenges are also discussed.
Collapse
Affiliation(s)
- Kyle J Lauersen
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
42
|
Yoshimitsu Y, Abe J, Harayama S. Cas9-guide RNA ribonucleoprotein-induced genome editing in the industrial green alga Coccomyxa sp. strain KJ. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:326. [PMID: 30555532 PMCID: PMC6287348 DOI: 10.1186/s13068-018-1327-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Oxygen-evolving photosynthetic microorganisms, collectively termed as microalgae, are gaining attention as alternative fuel sources. The unicellular alga Coccomyxa sp. strain KJ that belongs to the class Trebouxiophyceae can grow rapidly in minimal mineral media and accumulate triacylglycerols at levels > 60% (w/w) of its dry weight under nitrogen depletion conditions. Thus, the strain can be a good candidate for biofuel production. Still, substantial improvements in lipid productivity and other traits of this strain are needed to meet commercial production requirements. Consequently, the development of new genetic tools including genome editing that are applicable to this strain is highly desired. RESULTS In this paper, we report successful genome editing of strain KJ by intracellular delivery of a ribonucleoprotein complex comprising recombinant Cas9 protein and guide RNA. For introduction of Cas9-guide RNA ribonucleoprotein into strain KJ cells, we used an electroporator with a short (2.5 ms) electric pulse at a high field strength (7500 V cm-1) followed by multiple 50-ms electric pulses at low field strength (250 V cm-1). Under these conditions, we successfully isolated several knockout lines of the FTSY gene of strain KJ, encoding a signal recognition particle-docking protein at a frequency of 0.01%. CONCLUSIONS Our study shows applicability of DNA-free genome editing in Coccomyxa, which may be applicable in other Trebouxiophyceae species.
Collapse
Affiliation(s)
- Yuya Yoshimitsu
- Advanced Research and Innovation Center, DENSO CORPORATION, Komenoki-cho, Nisshin-Shi, Aichi 470-0111 Japan
| | - Jun Abe
- Research and Development Initiative, Chuo University, Bunkyo-ku, Tokyo, 112-8551 Japan
| | - Shigeaki Harayama
- Research and Development Initiative, Chuo University, Bunkyo-ku, Tokyo, 112-8551 Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, 112-8551 Japan
| |
Collapse
|
43
|
Lin WR, Lai YC, Sung PK, Tan SI, Chang CH, Chen CY, Chang JS, Ng IS. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Kim J, Liu L, Hu Z, Jin E. Identification and Functional Analysis of the psaD Promoter of Chlorella vulgaris Using Heterologous Model Strains. Int J Mol Sci 2018; 19:E1969. [PMID: 29986409 PMCID: PMC6073903 DOI: 10.3390/ijms19071969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/22/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Chlorella has great potential as a bio-factory for production of value-added compounds. To produce the desired chemicals more efficiently in Chlorella, genetic tools for modification of Chlorella need to be developed, especially an endogenous promoter. In this study, the promoter of photosystem I protein D (psaD) from Chlorella vulgaris UTEX395 was identified. Computational analysis revealed the presence of several putative cis-acting elements, including a potential core element, and light-responsive or stress-responsive elements. Gene expression analysis in heterologous expression system in Chlamydomonasreinhardtii and Nicotianabenthamiana showed that CvpsaD promoter can be used to drive the expression of genes. Functional analysis of this promoter suggested that the initiator element (Inr) is important for its function (i.e., TATA-less promoter) and that an additional factor (e.g., downstream of the transcriptional start site) might be needed for light response. We have shown that the CvpsaD promoter is functional, but not sufficiently strong, both in microalgae and higher plant.
Collapse
Affiliation(s)
- Jongrae Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Linpo Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - EonSeon Jin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
45
|
Ng I, Tan S, Kao P, Chang Y, Chang J. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio‐Based Chemicals. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600644] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/24/2017] [Indexed: 12/15/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Pei‐Hsun Kao
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Kaung Chang
- Graduate School of Biochemical EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
| | - Jo‐Shu Chang
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
46
|
Damjanovic K, Blackall LL, Webster NS, van Oppen MJH. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb Biotechnol 2017; 10:1236-1243. [PMID: 28696067 PMCID: PMC5609283 DOI: 10.1111/1751-7915.12769] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
The decline of coral reefs due to anthropogenic disturbances is having devastating impacts on biodiversity and ecosystem services. Here we highlight the potential and challenges of microbial manipulation strategies to enhance coral tolerance to stress and contribute to coral reef restoration and protection.
![]()
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.,Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.,Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia
| |
Collapse
|