1
|
Deichmann M, Hansson FG, Jensen ED. Yeast-based screening platforms to understand and improve human health. Trends Biotechnol 2024; 42:1258-1272. [PMID: 38677901 DOI: 10.1016/j.tibtech.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Detailed molecular understanding of the human organism is essential to develop effective therapies. Saccharomyces cerevisiae has been used extensively for acquiring insights into important aspects of human health, such as studying genetics and cell-cell communication, elucidating protein-protein interaction (PPI) networks, and investigating human G protein-coupled receptor (hGPCR) signaling. We highlight recent advances and opportunities of yeast-based technologies for cost-efficient chemical library screening on hGPCRs, accelerated deciphering of PPI networks with mating-based screening and selection, and accurate cell-cell communication with human immune cells. Overall, yeast-based technologies constitute an important platform to support basic understanding and innovative applications towards improving human health.
Collapse
Affiliation(s)
- Marcus Deichmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Xu L, Bai X, Joong Oh E. Strategic approaches for designing yeast strains as protein secretion and display platforms. Crit Rev Biotechnol 2024:1-18. [PMID: 39138023 DOI: 10.1080/07388551.2024.2385996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.
Collapse
Affiliation(s)
- Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | | | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Yamada-Hunter SA, Theruvath J, McIntosh BJ, Freitas KA, Lin F, Radosevich MT, Leruste A, Dhingra S, Martinez-Velez N, Xu P, Huang J, Delaidelli A, Desai MH, Good Z, Polak R, May A, Labanieh L, Bjelajac J, Murty T, Ehlinger Z, Mount CW, Chen Y, Heitzeneder S, Marjon KD, Banuelos A, Khan O, Wasserman SL, Spiegel JY, Fernandez-Pol S, Kuo CJ, Sorensen PH, Monje M, Majzner RG, Weissman IL, Sahaf B, Sotillo E, Cochran JR, Mackall CL. Engineered CD47 protects T cells for enhanced antitumour immunity. Nature 2024; 630:457-465. [PMID: 38750365 PMCID: PMC11168929 DOI: 10.1038/s41586-024-07443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- CD47 Antigen/genetics
- CD47 Antigen/immunology
- CD47 Antigen/metabolism
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Macrophages/cytology
- Macrophages/immunology
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Microenvironment/immunology
- Antibodies/immunology
- Antibodies/therapeutic use
- Macrophage Activation
Collapse
Affiliation(s)
- Sean A Yamada-Hunter
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Johanna Theruvath
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Brianna J McIntosh
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine A Freitas
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Lin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Masters in Translational Research and Applied Medicine Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Molly T Radosevich
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Amaury Leruste
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shaurya Dhingra
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Naiara Martinez-Velez
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Huang
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Moksha H Desai
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zinaida Good
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Roel Polak
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Audre May
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Louai Labanieh
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jeremy Bjelajac
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Program in Biophysics, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Zach Ehlinger
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher W Mount
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Yiyun Chen
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabine Heitzeneder
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Omair Khan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Savannah L Wasserman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jay Y Spiegel
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Poul H Sorensen
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Michelle Monje
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Robbie G Majzner
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer R Cochran
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Martinusen SG, Denard CA. Leveraging yeast sequestration to study and engineer posttranslational modification enzymes. Biotechnol Bioeng 2024; 121:903-914. [PMID: 38079116 PMCID: PMC11229454 DOI: 10.1002/bit.28621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024]
Abstract
Enzymes that catalyze posttranslational modifications (PTMs) of peptides and proteins (PTM-enzymes)-proteases, protein ligases, oxidoreductases, kinases, and other transferases-are foundational to our understanding of health and disease and empower applications in chemical biology, synthetic biology, and biomedicine. To fully harness the potential of PTM-enzymes, there is a critical need to decipher their enzymatic and biological mechanisms, develop molecules that can probe and modulate them, and endow them with improved and novel functions. These objectives are contingent upon implementation of high-throughput functional screens and selections that interrogate large sequence libraries to isolate desired PTM-enzyme properties. This review discusses the principles of Saccharomyces cerevisiae organelle sequestration to study and engineer PTM-enzymes. These include outer membrane sequestration, specifically methods that modify yeast surface display, and cytoplasmic sequestration based on enzyme-mediated transcription activation. Furthermore, we present a detailed discussion of yeast endoplasmic reticulum sequestration for the first time. Where appropriate, we highlight the major features and limitations of different systems, specifically how they can measure and control enzyme catalytic efficiencies. Taken together, yeast-based high-throughput sequestration approaches significantly lower the barrier to understanding how PTM-enzymes function and how to reprogram them.
Collapse
Affiliation(s)
- Samantha G Martinusen
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Carl A Denard
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Cazier A, Irvin OM, Chávez LS, Dalvi S, Abraham H, Wickramanayake N, Yellayi S, Blazeck J. A Rapid Antibody Enhancement Platform in Saccharomyces cerevisiae Using an Improved, Diversifying CRISPR Base Editor. ACS Synth Biol 2023; 12:3287-3300. [PMID: 37873982 PMCID: PMC10661033 DOI: 10.1021/acssynbio.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
The yeast Saccharomyces cerevisiae is commonly used to interrogate and screen protein variants and to perform directed evolution studies to develop proteins with enhanced features. While several techniques have been described that help enable the use of yeast for directed evolution, there remains a need to increase their speed and ease of use. Here we present yDBE, a yeast diversifying base editor that functions in vivo and employs a CRISPR-dCas9-directed cytidine deaminase base editor to diversify DNA in a targeted, rapid, and high-breadth manner. To develop yDBE, we enhanced the mutation rate of an initial base editor by employing improved deaminase variants and characterizing several scaffolded guide constructs. We then demonstrate the ability of the yDBE platform to improve the affinity of a displayed antibody scFv, rapidly generating diversified libraries and isolating improved binders via cell sorting. By performing high-throughput sequencing analysis of the high-activity yDBE, we show that it enables a mutation rate of 2.13 × 10-4 substitutions/bp/generation over a window of 100 bp. As yDBE functions entirely in vivo and can be easily programmed to diversify nearly any such window of DNA, we posit that it can be a powerful tool for facilitating a variety of directed evolution experiments.
Collapse
Affiliation(s)
- Andrew
P. Cazier
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Olivia M. Irvin
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lizmarie S. Chávez
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Saachi Dalvi
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hannah Abraham
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nevinka Wickramanayake
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sreenivas Yellayi
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John Blazeck
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
He Y, Xu Z, Kasputis T, Zhao X, Ibañez I, Pavan F, Bok M, Malito JP, Parreno V, Yuan L, Wright RC, Chen J. Development of Nanobody-Displayed Whole-Cell Biosensors for the Colorimetric Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37184-37192. [PMID: 37489943 PMCID: PMC11216949 DOI: 10.1021/acsami.3c05900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The accurate and effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to preventing the spread of infectious diseases and ensuring human health. Herein, a nanobody-displayed whole-cell biosensor was developed for colorimetric detection of SARS-CoV-2 spike proteins. Serving as bioreceptors, yeast surfaces were genetically engineered to display SARS-CoV-2 binding of llama-derived single-domain antibodies (nanobodies) with high capture efficiency, facilitating the concentration and purification of SARS-CoV-2. Gold nanoparticles (AuNPs) employed as signal transductions were functionalized with horseradish peroxidase (HRP) and anti-SARS monoclonal antibodies to enhance the detection sensitivity. In the presence of SARS-CoV-2 spike proteins, the sandwiched binding will be formed by linking engineered yeast, SARS-CoV-2 spike proteins, and reporter AuNPs. The colorimetric signal was generated by the enzymatic reaction of HRP and its corresponding colorimetric substrate/chromogen system. At the optimal conditions, the developed whole-cell biosensor enables the sensitive detection of SARS-CoV-2 spike proteins in a linear range from 0.01 to 1 μg/mL with a limit of detection (LOD) of 0.037 μg/mL (about 4 × 108 virion particles/mL). Furthermore, the whole-cell biosensor was demonstrated to detect the spike protein of different SARS-CoV-2 variants in human serum, providing new possibilities for the detection of future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhiyuan Xu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tom Kasputis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Itati Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
| | - Viviana Parreno
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Shibasaki S, Ueda M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms 2023; 11:1499. [PMID: 37375001 DOI: 10.3390/microorganisms11061499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve sustainable development, alternative resources should replace conventional resources such as fossil fuels. In marine ecosystems, many macroalgae grow faster than terrestrial plants. Macroalgae are roughly classified as green, red, or brown algae based on their photosynthetic pigments. Brown algae are considered to be a source of physiologically active substances such as polyphenols. Furthermore, some macroalgae can capture approximately 10 times more carbon dioxide from the atmosphere than terrestrial plants. Therefore, they have immense potential for use in the environment. Recently, macroalgae have emerged as a biomass feedstock for bioethanol production owing to their low lignin content and applicability to biorefinery processes. Herein, we provided an overview of the bioconversion of macroalgae into bioactive substances and biofuels using microbial biotechnology, including engineered yeast designed using molecular display technology.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Laboratory of Natural Science, Faculty of Economics, Toyo University, Hakusan Bunkyo-ku, Tokyo 112-8606, Japan
| | - Mitsuyoshi Ueda
- Office of Society-Academia Collaboration for Innovation (SACI), Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol 2022; 208:421-442. [PMID: 35339499 DOI: 10.1016/j.ijbiomac.2022.03.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Antibodies as ideal therapeutic and diagnostic molecules are among the top-selling drugs providing considerable efficacy in disease treatment, especially in cancer therapy. Limitations of the hybridoma technology as routine antibody generation method in conjunction with numerous developments in molecular biology led to the development of alternative approaches for the streamlined identification of most effective antibodies. In this regard, display selection technologies such as phage display, bacterial display, and yeast display have been widely promoted over the past three decades as ideal alternatives to traditional methods. The display of antibodies on phages is probably the most widespread of these methods, although surface display on bacteria or yeast have been employed successfully, as well. These methods using various sizes of combinatorial antibody libraries and different selection strategies possessing benefits in screening potency, generating, and isolation of high affinity antibodies with low risk of immunogenicity. Knowing the basics of each method assists in the design and retrieval process of antibodies suitable for different diseases, including cancer. In this review, we aim to outline the basics of each library construction and its display method, screening and selection steps. The advantages and disadvantages in comparison to alternative methods, and their applications in antibody engineering will be explained. Finally, we will review approved or non-approved therapeutic antibodies developed by employing these methods, which may serve as therapeutic antibodies in cancer therapy.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Hejazi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China..
| |
Collapse
|
9
|
Incorporating, Quantifying, and Leveraging Noncanonical Amino Acids in Yeast. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2394:377-432. [PMID: 35094338 DOI: 10.1007/978-1-0716-1811-0_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic code expansion has allowed for extraordinary advances in enhancing protein chemical diversity and functionality, but there remains a critical need for understanding and engineering genetic code expansion systems for improved efficiency. Incorporation of noncanonical amino acids (ncAAs) at stop codons provides a site-specific method for introducing unique chemistry into proteins, though often at reduced yields compared to wild-type proteins. A powerful platform for ncAA incorporation supports both the expression and evaluation of chemically diverse proteins for a broad range of applications. In yeast, ncAAs have been used to study dynamic cellular processes such as protein-protein interactions and also allow for exploration of eukaryotic-specific biology such as epigenetics. Furthermore, yeast display is an advantageous technology for engineering and screening the properties of proteins in high throughput. The protocols presented in this chapter describe detailed methods for the yeast-based genetic encoding of ncAAs in proteins intracellularly or on the yeast surface. In addition, methods are presented for modifying proteins on the yeast surface using bioorthogonal chemical reactions and evaluating reaction efficiency. Finally, protocols are included for the preparation of libraries that involve genetic code expansion. Libraries of proteins that contain ncAAs or libraries of the cellular machinery required to encode ncAAs can be constructed and screened in high throughput for many biological and chemical applications. Efficient incorporation of ncAAs facilitates elucidation of fundamental eukaryotic biology and advances tools for enzyme and genome engineering to evolve host cells that are better able to accommodate alternative genetic codes.
Collapse
|
10
|
Teymennet-Ramírez KV, Martínez-Morales F, Trejo-Hernández MR. Yeast Surface Display System: Strategies for Improvement and Biotechnological Applications. Front Bioeng Biotechnol 2022; 9:794742. [PMID: 35083204 PMCID: PMC8784408 DOI: 10.3389/fbioe.2021.794742] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Yeast surface display (YSD) is a “whole-cell” platform used for the heterologous expression of proteins immobilized on the yeast’s cell surface. YSD combines the advantages eukaryotic systems offer such as post-translational modifications, correct folding and glycosylation of proteins, with ease of cell culturing and genetic manipulation, and allows of protein immobilization and recovery. Additionally, proteins displayed on the surface of yeast cells may show enhanced stability against changes in temperature, pH, organic solvents, and proteases. This platform has been used to study protein-protein interactions, antibody design and protein engineering. Other applications for YSD include library screening, whole-proteome studies, bioremediation, vaccine and antibiotics development, production of biosensors, ethanol production and biocatalysis. YSD is a promising technology that is not yet optimized for biotechnological applications. This mini review is focused on recent strategies to improve the efficiency and selection of displayed proteins. YSD is presented as a cutting-edge technology for the vectorial expression of proteins and peptides. Finally, recent biotechnological applications are summarized. The different approaches described herein could allow for a better strategy cascade for increasing protein/peptide interaction and production.
Collapse
Affiliation(s)
- Karla V Teymennet-Ramírez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| | - María R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| |
Collapse
|
11
|
Raeeszadeh-Sarmazdeh M, Boder ET. Yeast Surface Display: New Opportunities for a Time-Tested Protein Engineering System. Methods Mol Biol 2022; 2491:3-25. [PMID: 35482182 DOI: 10.1007/978-1-0716-2285-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display has proven to be a powerful tool for the discovery of antibodies and other novel binding proteins and for engineering the affinity and selectivity of existing proteins for their targets. In the decades since the first demonstrations of the approach, the range of yeast display applications has greatly expanded to include many different protein targets and has grown to encompass methods for rapid protein characterization. Here, we briefly summarize the development of yeast display methodologies and highlight several selected examples of recent applications to timely and challenging protein engineering and characterization problems.
Collapse
Affiliation(s)
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
12
|
Baek DS, Park SW, Adams C, Dimitrov DS, Kim YS. Yeast Mating as a Tool for Highly Effective Discovery and Engineering of Antibodies via Display Methodologies. Methods Mol Biol 2022; 2491:313-333. [PMID: 35482198 DOI: 10.1007/978-1-0716-2285-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display (YSD) is a powerful methodology for discovery and engineering of antibodies, and the yeast mating has been used to overcome low transformation efficiency of yeast in antibody library generation. We developed an optimized method of yeast mating for generating a large, combinatorial antibody fragment library and heterodimeric protein library by cellular fusion between two haploid cells carrying different library each other. This method allows for increased diversity in screening of target-specific fragment antigen-binding (Fab) antibodies as well as in the development of heterodimeric Fc variants for bi-specific antibody generation and T-cell receptor (TCR). Here we describe the efficient isolation of human antibodies against the activated GTP-bound form of the oncogenic Ras mutant (KRasG12D-GTP) by sequential isolation of their heavy chains (HCs) followed by combination with light chains (LCs) via the yeast mating process. This strategy facilitates guided selection of the antigen-specific HC with either a fixed functional LC, which has cytosol penetrating ability, or an LC library to generate the Fab. It also allows for deeper exploration of a sequence space with fixed diversity, leading to a higher probability of successful isolation of human antibodies with high specificity and affinity.
Collapse
Affiliation(s)
- Du-San Baek
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Seong-Wook Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Cynthia Adams
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
13
|
Zahradník J, Dey D, Marciano S, Kolářová L, Charendoff CI, Subtil A, Schreiber G. A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets. ACS Synth Biol 2021; 10:3445-3460. [PMID: 34809429 PMCID: PMC8689690 DOI: 10.1021/acssynbio.1c00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Here, we enhanced the popular yeast display method by multiple rounds of DNA and protein engineering. We introduced surface exposure-tailored reporters, eUnaG2 and DnbALFA, creating a new platform of C and N terminal fusion vectors. The optimization of eUnaG2 resulted in five times brighter fluorescence and 10 °C increased thermostability than UnaG. The optimized DnbALFA has 10-fold the level of expression of the starting protein. Following this, different plasmids were developed to create a complex platform allowing a broad range of protein expression organizations and labeling strategies. Our platform showed up to five times better separation between nonexpressing and expressing cells compared with traditional pCTcon2 and c-myc labeling, allowing for fewer rounds of selection and achieving higher binding affinities. Testing 16 different proteins, the enhanced system showed consistently stronger expression signals over c-myc labeling. In addition to gains in simplicity, speed, and cost-effectiveness, new applications were introduced to monitor protein surface exposure and protein retention in the secretion pathway that enabled successful protein engineering of hard-to-express proteins. As an example, we show how we optimized the WD40 domain of the ATG16L1 protein for yeast surface and soluble bacterial expression, starting from a nonexpressing protein. As a second example, we show how using the here-presented enhanced yeast display method we rapidly selected high-affinity binders toward two protein targets, demonstrating the simplicity of generating new protein-protein interactions. While the methodological changes are incremental, it results in a qualitative enhancement in the applicability of yeast display for many applications.
Collapse
Affiliation(s)
- Jiří Zahradník
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Debabrata Dey
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Shir Marciano
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Lucie Kolářová
- Institute
of Biotechnology, CAS v.v.i., Prumyslova 595, Vestec 252 50 Prague region, Czech Republic
| | - Chloé I. Charendoff
- Institut
Pasteur, Unité de Biologie cellulaire de l’infection
microbienne, 25 rue du Dr Roux, Paris 75015, France
| | - Agathe Subtil
- Institut
Pasteur, Unité de Biologie cellulaire de l’infection
microbienne, 25 rue du Dr Roux, Paris 75015, France
| | - Gideon Schreiber
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Ch'ng ACW, Lam P, Alassiri M, Lim TS. Application of phage display for T-cell receptor discovery. Biotechnol Adv 2021; 54:107870. [PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The immune system is tasked to keep our body unharmed and healthy. In the immune system, B- and T-lymphocytes are the two main components working together to stop and eliminate invading threats like virus particles, bacteria, fungi and parasite from attacking our healthy cells. The function of antibodies is relatively more direct in target recognition as compared to T-cell receptors (TCR) which recognizes antigenic peptides being presented on the major histocompatibility complex (MHC). Although phage display has been widely applied for antibody presentation, this is the opposite in the case of TCR. The cell surface TCR is a relatively large and complex molecule, making presentation on phage surfaces challenging. Even so, recombinant versions and modifications have been introduced to allow the growing development of TCR in phage display. In addition, the increasing application of TCR for immunotherapy has made it an important binding motif to be developed by phage display. This review will emphasize on the application of phage display for TCR discovery as well as the engineering aspect of TCR for improved characteristics.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Paula Lam
- CellVec Private Limited, 118518, Singapore; National University of Singapore, Department of Physiology, 117597, Singapore; Duke-NUS Graduate Medical School, Cancer and Stem Cells Biology Program, 169857, Singapore
| | - Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
15
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
16
|
Islam M, Kehoe HP, Lissoos JB, Huang M, Ghadban CE, Sánchez GB, Lane HZ, Van Deventer JA. Chemical Diversification of Simple Synthetic Antibodies. ACS Chem Biol 2021; 16:344-359. [PMID: 33482061 PMCID: PMC8096149 DOI: 10.1021/acschembio.0c00865] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibodies possess properties that make them valuable as therapeutics, diagnostics, and basic research tools. However, antibody chemical reactivity and covalent antigen binding are constrained, or even prevented, by the narrow range of chemistries encoded in canonical amino acids. In this work, we investigate strategies for leveraging an expanded range of chemical functionality using yeast displayed antibodies containing noncanonical amino acids (ncAAs) in or near antibody complementarity determining regions (CDRs). To enable systematic characterization of the effects of ncAA incorporation on antibody function, we first investigated whether diversification of a single antibody loop would support the isolation of binding clones against immunoglobulins from three species. We constructed and screened a billion-member library containing canonical amino acid diversity and loop length diversity only within the third complementarity determining region of the heavy chain (CDR-H3). Isolated clones exhibited moderate affinities (double- to triple-digit nanomolar affinities) and, in several cases, single-species specificity, confirming that antibody specificity can be mediated by a single CDR. This constrained diversity enabled the utilization of additional CDRs for the installation of chemically reactive and photo-cross-linkable ncAAs. Binding studies of ncAA-substituted antibodies revealed that ncAA incorporation is reasonably well tolerated, with observed changes in affinity occurring as a function of ncAA side chain identity, substitution site, and the ncAA incorporation machinery used. Multiple azide-containing ncAAs supported copper-catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC) without the abrogation of binding function. Similarly, several alkyne substitutions facilitated CuAAC without the apparent disruption of binding. Finally, antibodies substituted with a photo-cross-linkable ncAA were evaluated for ultraviolet-mediated cross-linking on the yeast surface. Competition-based assays revealed position-dependent covalent linkages, strongly suggesting successful cross-linking. Key findings regarding CuAAC reactions and photo-cross-linking on the yeast surface were confirmed using soluble forms of ncAA-substituted clones. The consistency of findings on the yeast surface and in solution suggest that chemical diversification can be incorporated into yeast display screening approaches. Taken together, our results highlight the power of integrating the use of yeast display and ncAAs in search of proteins with "chemically augmented" binding functions. This includes strategies for systematically introducing small molecule functionality within binding protein structures and evaluating protein-based covalent target binding. The efficient preparation and chemical diversification of antibodies on the yeast surface open up new possibilities for discovering "drug-like" protein leads in high throughput.
Collapse
Affiliation(s)
- Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Haixing P. Kehoe
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Jacob B. Lissoos
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Christopher E. Ghadban
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Greg B. Sánchez
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Hanan Z. Lane
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
17
|
Denard CA, Paresi C, Yaghi R, McGinnis N, Bennett Z, Yi L, Georgiou G, Iverson BL. YESS 2.0, a Tunable Platform for Enzyme Evolution, Yields Highly Active TEV Protease Variants. ACS Synth Biol 2021; 10:63-71. [PMID: 33401904 DOI: 10.1021/acssynbio.0c00452] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we describe YESS 2.0, a highly versatile version of the yeast endoplasmic sequestration screening (YESS) system suitable for engineering and characterizing protein/peptide modifying enzymes such as proteases with desired new activities. By incorporating features that modulate gene transcription as well as substrate and enzyme spatial sequestration, YESS 2.0 achieves a significantly higher operational and dynamic range compared with the original YESS. To showcase the new advantages of YESS 2.0, we improved an already efficient TEV protease variant (TEV-EAV) to obtain a variant (eTEV) with a 2.25-fold higher catalytic efficiency, derived almost entirely from an increase in turnover rate (kcat). In our analysis, eTEV specifically digests a fusion protein in 2 h at a low 1:200 enzyme to substrate ratio. Structural modeling indicates that the increase in catalytic efficiency of eTEV is likely due to an enhanced interaction between the catalytic Cys151 with the P1 substrate residue (Gln). Furthermore, the modeling showed that the ENLYFQS peptide substrate is buried to a larger extent in the active site of eTEV compared with WT TEV. The new eTEV variant is functionally the fastest TEV variant reported to date and could potentially improve efficiency in any TEV application.
Collapse
Affiliation(s)
- Carl A. Denard
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chelsea Paresi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Rasha Yaghi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Natalie McGinnis
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary Bennett
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Li Yi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brent L. Iverson
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Moliner-Morro A, J. Sheward D, Karl V, Perez Vidakovics L, Murrell B, McInerney GM, Hanke L. Picomolar SARS-CoV-2 Neutralization Using Multi-Arm PEG Nanobody Constructs. Biomolecules 2020; 10:biom10121661. [PMID: 33322557 PMCID: PMC7764822 DOI: 10.3390/biom10121661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/29/2022] Open
Abstract
Multivalent antibody constructs have a broad range of clinical and biotechnological applications. Nanobodies are especially useful as components for multivalent constructs as they allow increased valency while maintaining a small molecule size. We here describe a novel, rapid method for the generation of bi- and multivalent nanobody constructs with oriented assembly by Cu-free strain promoted azide-alkyne click chemistry (SPAAC). We used sortase A for ligation of click chemistry functional groups site-specifically to the C-terminus of nanobodies before creating C-to-C-terminal nanobody fusions and 4-arm polyethylene glycol (PEG) tetrameric nanobody constructs. We demonstrated the viability of this approach by generating constructs with the SARS-CoV-2 neutralizing nanobody Ty1. We compared the ability of the different constructs to neutralize SARS-CoV-2 pseudotyped virus and infectious virus in neutralization assays. The generated dimers neutralized the virus similarly to a nanobody-Fc fusion variant, while a 4-arm PEG based tetrameric Ty1 construct dramatically enhanced neutralization of SARS-CoV-2, with an IC50 in the low picomolar range.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
- Division of Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | - Vivien Karl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
- Correspondence:
| |
Collapse
|
19
|
Glasgow A, Glasgow J, Limonta D, Solomon P, Lui I, Zhang Y, Nix MA, Rettko NJ, Zha S, Yamin R, Kao K, Rosenberg OS, Ravetch JV, Wiita AP, Leung KK, Lim SA, Zhou XX, Hobman TC, Kortemme T, Wells JA. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc Natl Acad Sci U S A 2020; 117:28046-28055. [PMID: 33093202 PMCID: PMC7668070 DOI: 10.1073/pnas.2016093117] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An essential mechanism for severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here, we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest-affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human immunoglobulin crystallizable fragment (Fc) domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2-pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50s) in the 10- to 100-ng/mL range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-using coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated from convalescent patients.
Collapse
Affiliation(s)
- Anum Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Daniel Limonta
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Paige Solomon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Yang Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Matthew A Nix
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Nicholas J Rettko
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Shoshana Zha
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Rachel Yamin
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065
| | - Kevin Kao
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065
| | - Oren S Rosenberg
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Shion A Lim
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Xin X Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Tom C Hobman
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158;
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
20
|
Glasgow A, Glasgow J, Limonta D, Solomon P, Lui I, Zhang Y, Nix MA, Rettko NJ, Lim SA, Zha S, Yamin R, Kao K, Rosenberg OS, Ravetch JV, Wiita AP, Leung KK, Zhou XX, Hobman TC, Kortemme T, Wells JA. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.31.231746. [PMID: 32766586 PMCID: PMC7402043 DOI: 10.1101/2020.07.31.231746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An essential mechanism for SARS-CoV-1 and -2 infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human Fc domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2 pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50) in the 10-100 ng/ml range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-utilizing coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated or generated from convalescent patients.
Collapse
Affiliation(s)
- Anum Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, CA
| | - Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California at San Francisco, CA
| | - Daniel Limonta
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Paige Solomon
- Department of Pharmaceutical Chemistry, University of California at San Francisco, CA
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California at San Francisco, CA
| | - Yang Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, CA
| | - Matthew A. Nix
- Department of Laboratory Medicine, University of California at San Francisco, CA
| | - Nicholas J. Rettko
- Department of Pharmaceutical Chemistry, University of California at San Francisco, CA
| | - Shion A. Lim
- Department of Pharmaceutical Chemistry, University of California at San Francisco, CA
| | - Shoshana Zha
- Department of Medicine, University of California at San Francisco, CA
| | - Rachel Yamin
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - Kevin Kao
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - Oren S. Rosenberg
- Department of Medicine, University of California at San Francisco, CA
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California at San Francisco, CA
| | - Kevin K. Leung
- Department of Pharmaceutical Chemistry, University of California at San Francisco, CA
| | - Xin X. Zhou
- Department of Pharmaceutical Chemistry, University of California at San Francisco, CA
| | - Tom C. Hobman
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, CA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California at San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, CA
| |
Collapse
|
21
|
Linciano S, Pluda S, Bacchin A, Angelini A. Molecular evolution of peptides by yeast surface display technology. MEDCHEMCOMM 2019; 10:1569-1580. [PMID: 31803399 PMCID: PMC6836575 DOI: 10.1039/c9md00252a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Genetically encoded peptides possess unique properties, such as a small molecular weight and ease of synthesis and modification, that make them suitable to a large variety of applications. However, despite these favorable qualities, naturally occurring peptides are often limited by intrinsic weak binding affinities, poor selectivity and low stability that ultimately restrain their final use. To overcome these limitations, a large variety of in vitro display methodologies have been developed over the past few decades to evolve genetically encoded peptide molecules with superior properties. Phage display, mRNA display, ribosome display, bacteria display, and yeast display are among the most commonly used methods to engineer peptides. While most of these in vitro methodologies have already been described in detail elsewhere, this review describes solely the yeast surface display technology and its valuable use for the evolution of a wide range of peptide formats.
Collapse
Affiliation(s)
- Sara Linciano
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Stefano Pluda
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- Fidia Farmaceutici S.p.A , Via Ponte della Fabbrica 3/A , Abano Terme 35031 , Italy
| | - Arianna Bacchin
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- European Centre for Living Technology (ECLT) , Ca' Bottacin, Dorsoduro 3911, Calle Crosera , Venice 30123 , Italy .
| |
Collapse
|
22
|
Wang X, Feng X, Lv B, Zhou A, Hou Y, Li C. Enhanced yeast surface display of β‐glucuronidase using dual anchor motifs for high‐temperature glycyrrhizin hydrolysis. AIChE J 2019. [DOI: 10.1002/aic.16629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xudong Wang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Anqi Zhou
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Yuhui Hou
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| |
Collapse
|
23
|
Raeeszadeh-Sarmazdeh M, Patel N, Cruise S, Owen L, O'Neill H, Boder ET. Identifying Stable Fragments of Arabidopsis thaliana Cellulose Synthase Subunit 3 by Yeast Display. Biotechnol J 2018; 14:e1800353. [PMID: 30171735 DOI: 10.1002/biot.201800353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Determining structures of large, complex proteins remains challenging, especially for transmembrane proteins, as the protein size increases. Arabidopsis thaliana cellulose synthesis complex is a large, multimeric complex located in the plant cell membrane that synthesizes cellulose microfibrils in the plant cell wall. Despite the biological and economic importance of cellulose and therefore cellulose synthesis, many aspects of the cellulase synthase complex (CSC) structure and function are still unknown. Here, yeast surface display (YSD) is used to determine the full-length expression of A. thaliana cellulose synthase 3 (AtCesA3) fragments. The level of stably-folded AtCesA3 fragments displayed on the yeast surface are determined using flow cytometric analysis of differential surface expression of epitopes flanking the AtCesA3 fragment. This technique provides a fast and simple method for examining folding and expression of protein domains and fragments of complex proteins.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Nikhil Patel
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Sarah Cruise
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Leila Owen
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Hugh O'Neill
- Center for Structural Molecular Biology and Neutron Scsattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| |
Collapse
|
24
|
Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol 2018; 102:2543-2561. [PMID: 29435617 DOI: 10.1007/s00253-018-8827-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n. 46100 Burjassot, València, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, València, Spain.
| |
Collapse
|
25
|
Longwell CK, Labanieh L, Cochran JR. High-throughput screening technologies for enzyme engineering. Curr Opin Biotechnol 2017. [DOI: 10.1016/j.copbio.2017.05.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|