1
|
Makrydaki E, Donini R, Krueger A, Royle K, Moya Ramirez I, Kuntz DA, Rose DR, Haslam SM, Polizzi KM, Kontoravdi C. Immobilized enzyme cascade for targeted glycosylation. Nat Chem Biol 2024; 20:732-741. [PMID: 38321209 PMCID: PMC11142912 DOI: 10.1038/s41589-023-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized β-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Roberto Donini
- Department of Life Sciences, Imperial College London, London, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, UK
| | - Kate Royle
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ignacio Moya Ramirez
- Department of Chemical Engineering, Imperial College London, London, UK
- Departamento de Ingeniería Química, Universidad de Granada, Granada, Spain
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David R Rose
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
2
|
Tong Y, Lu X, Shen D, Rao L, Zou L, Lyu S, Hou L, Sun G, Chen L. Identification and characterization of emGalaseE, a β-1,4 galactosidase from Elizabethkingia meningoseptica, and its application on living cell surface. Int J Biol Macromol 2024; 268:131766. [PMID: 38657932 DOI: 10.1016/j.ijbiomac.2024.131766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The biological function of terminal galactose on glycoprotein is an open field of research. Although progress had being made on enzymes that can remove the terminal galactose on glycoproteins, there is a lack of report on galactosidases that can work directly on living cells. In this study, a unique beta 1,4 galactosidase was isolated from Elizabethkingia meningoseptica (Em). It exhibited favorable stability at various temperatures (4-37 °C) and pH (5-8) levels and can remove β-1, 4 linked galactoses directly from glycoproteins. Using Alanine scanning, we found that two acidic residues (Glu-468, and Glu-531) in the predicted active pocket are critical for galactosidase activity. In addition, we also demonstrated that it could cleave galactose residues present on living cell surface. As this enzyme has a potential application for living cell glycan editing, we named it emGalaseE or glycan-editing galactosidase I (csgeGalaseI). In summary, our findings lay the groundwork for further investigation by presenting a simple and effective approach for the removal of galactose moieties from cell surface.
Collapse
Affiliation(s)
- Yongliang Tong
- Dept. of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinrong Lu
- Dept. of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Danfeng Shen
- Dept. of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Rao
- Dept. of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Zou
- Dept. of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shaoxian Lyu
- Dept. of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linlin Hou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China.
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.
| | - Li Chen
- Dept. of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Modulating antibody effector functions by Fc glycoengineering. Biotechnol Adv 2023; 67:108201. [PMID: 37336296 PMCID: PMC11027751 DOI: 10.1016/j.biotechadv.2023.108201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, galactosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.
Collapse
Affiliation(s)
- Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain
| | - Berre van Moer
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
4
|
Jaroentomeechai T, Kwon YH, Liu Y, Young O, Bhawal R, Wilson JD, Li M, Chapla DG, Moremen KW, Jewett MC, Mizrachi D, DeLisa MP. A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans. Nat Commun 2022; 13:6325. [PMID: 36280670 PMCID: PMC9592599 DOI: 10.1038/s41467-022-34029-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
The ability to reconstitute natural glycosylation pathways or prototype entirely new ones from scratch is hampered by the limited availability of functional glycoenzymes, many of which are membrane proteins that fail to express in heterologous hosts. Here, we describe a strategy for topologically converting membrane-bound glycosyltransferases (GTs) into water soluble biocatalysts, which are expressed at high levels in the cytoplasm of living cells with retention of biological activity. We demonstrate the universality of the approach through facile production of 98 difficult-to-express GTs, predominantly of human origin, across several commonly used expression platforms. Using a subset of these water-soluble enzymes, we perform structural remodeling of both free and protein-linked glycans including those found on the monoclonal antibody therapeutic trastuzumab. Overall, our strategy for rationally redesigning GTs provides an effective and versatile biosynthetic route to large quantities of diverse, enzymatically active GTs, which should find use in structure-function studies as well as in biochemical and biomedical applications involving complex glycomolecules.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Yong Hyun Kwon
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Yiwen Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Olivia Young
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Ruchika Bhawal
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua D Wilson
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, NY, 14850, USA
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL, 60208-3120, USA
| | - Dario Mizrachi
- Department of Physiology & Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA.
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Mahour R, Lee JW, Grimpe P, Boecker S, Grote V, Klamt S, Seidel‐Morgenstern A, Rexer TFT, Reichl U. Cell-Free Multi-Enzyme Synthesis and Purification of Uridine Diphosphate Galactose. Chembiochem 2022; 23:e202100361. [PMID: 34637168 PMCID: PMC9299652 DOI: 10.1002/cbic.202100361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/10/2021] [Indexed: 11/26/2022]
Abstract
High costs and low availability of UDP-galactose hampers the enzymatic synthesis of valuable oligosaccharides such as human milk oligosaccharides. Here, we report the development of a platform for the scalable, biocatalytic synthesis and purification of UDP-galactose. UDP-galactose was produced with a titer of 48 mM (27.2 g/L) in a small-scale batch process (200 μL) within 24 h using 0.02 genzyme /gproduct . Through in-situ ATP regeneration, the amount of ATP (0.6 mM) supplemented was around 240-fold lower than the stoichiometric equivalent required to achieve the final product yield. Chromatographic purification using porous graphic carbon adsorbent yielded UDP-galactose with a purity of 92 %. The synthesis was transferred to 1 L preparative scale production in a stirred tank bioreactor. To further reduce the synthesis costs here, the supernatant of cell lysates was used bypassing expensive purification of enzymes. Here, 23.4 g/L UDP-galactose were produced within 23 h with a synthesis yield of 71 % and a biocatalyst load of 0.05 gtotal_protein /gproduct . The costs for substrates per gram of UDP-galactose synthesized were around 0.26 €/g.
Collapse
Affiliation(s)
- Reza Mahour
- Max Planck Institute for Dynamics of Complex Technical SystemsDepartment of Bioprocess EngineeringSandtorstrasse 139106MagdeburgGermany
- Present Address: c-LEcta GmbHLeipzigGermany
| | - Ju Weon Lee
- Max Planck Institute for Dynamics of Complex Technical SystemsDepartment of Physical and Chemical Foundations of Process EngineeringSandtorstrasse 139106MagdeburgGermany
| | - Pia Grimpe
- Max Planck Institute for Dynamics of Complex Technical SystemsDepartment of Bioprocess EngineeringSandtorstrasse 139106MagdeburgGermany
| | - Simon Boecker
- Max Planck Institute for Dynamics of Complex Technical SystemsResearch group Analysis and Redesign of Biological NetworksSandtorstrasse 139106MagdeburgGermany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical SystemsDepartment of Bioprocess EngineeringSandtorstrasse 139106MagdeburgGermany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical SystemsResearch group Analysis and Redesign of Biological NetworksSandtorstrasse 139106MagdeburgGermany
| | - Andreas Seidel‐Morgenstern
- Max Planck Institute for Dynamics of Complex Technical SystemsDepartment of Physical and Chemical Foundations of Process EngineeringSandtorstrasse 139106MagdeburgGermany
- Otto-von-Guericke University MagdeburgChair of Chemical Process EngineeringUniversitätsplatz 239106MagdeburgGermany
| | - Thomas F. T. Rexer
- Max Planck Institute for Dynamics of Complex Technical SystemsDepartment of Bioprocess EngineeringSandtorstrasse 139106MagdeburgGermany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsDepartment of Bioprocess EngineeringSandtorstrasse 139106MagdeburgGermany
- Otto-von-Guericke University MagdeburgChair of Bioprocess EngineeringUniversitätsplatz 239106MagdeburgGermany
| |
Collapse
|
6
|
Mota LM, Tayi VS, Butler M. Cell Free Remodeling of Glycosylation of Antibodies. Methods Mol Biol 2022; 2370:117-146. [PMID: 34611867 DOI: 10.1007/978-1-0716-1685-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The N-glycosylation profile of a monoclonal antibody (mAb) is a critical quality attribute in relation to its therapeutic application. The control of this profile during biomanufacture is difficult because of the multiple parameters that affect the glycosylation metabolism within the cell and the environment in which the cell is grown. One of the approaches that can be used to produce a preferred glycan profile or a single glycoform is through chemoenzymatic remodeling during the isolation of a mAb. Here we describe protocols that can be utilized to produce preferred glycoforms that include galactosylated, agalactosylated, or sialylated glycoforms following isolation of a mAb. Methods for analysis and assignment of structures of the samples following glycoengineering are also described. Chemoenzymatic modeling of mAb glycans has the potential for scale-up and to be introduced into biomanufacturing of mAbs with higher specific therapeutic activities.
Collapse
Affiliation(s)
- Letícia Martins Mota
- Cell Technology Group, National Institute for Bioprocessing, Research and Training (NIBRT), Dublin, Ireland
| | - Venkata S Tayi
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Michael Butler
- National Institute for Bioprocessing, Research and Training (NIBRT), Dublin, Ireland.
| |
Collapse
|
7
|
Anderson KW, Bergonzo C, Scott K, Karageorgos IL, Gallagher ES, Tayi VS, Butler M, Hudgens JW. HDX-MS and MD Simulations Provide Evidence for Stabilization of the IgG1-FcγRIa (CD64a) Immune Complex Through Intermolecular Glycoprotein Bonds. J Mol Biol 2021; 434:167391. [PMID: 34890647 DOI: 10.1016/j.jmb.2021.167391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Previous reports present different models for the stabilization of the Fc-FcγRI immune complex. Although accord exists on the importance of L235 in IgG1 and some hydrophobic contacts for complex stabilization, discord exists regarding the existence of stabilizing glycoprotein contacts between glycans of IgG1 and a conserved FG-loop (171MGKHRY176) of FcγRIa. Complexes formed from the FcγRIa receptor and IgG1s containing biantennary glycans with N-acetylglucosamine, galactose, and α2,6-N-acetylneuraminic terminations were measured by hydrogen-deuterium exchange mass spectrometry (HDX-MS), classified for dissimilarity with Welch's ANOVA and Games-Howell post hoc procedures, and modeled with molecular dynamics (MD) simulations. For each glycoform of the IgG1-FcγRIa complex peptic peptides of Fab, Fc and FcγRIa report distinct H/D exchange rates. MD simulations corroborate the differences in the peptide deuterium content through calculation of the percent of time that transient glycan-peptide bonds exist. These results indicate that stability of IgG1-FcγRIa complexes correlate with the presence of intermolecular glycoprotein interactions between the IgG1 glycans and the 173KHR175 motif within the FG-loop of FcγRIa. The results also indicate that intramolecular glycan-protein bonds stabilize the Fc region in isolated and complexed IgG1. Moreover, HDX-MS data evince that the Fab domain has glycan-protein binding contacts within the IgG1-FcγRI complex.
Collapse
Affiliation(s)
- Kyle W Anderson
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA; National Institute of Standards and Technology, Biomolecular Structure and Function Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Kerry Scott
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA; National Institute of Standards and Technology, Bioanalytical Science Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Ioannis L Karageorgos
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Elyssia S Gallagher
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Venkata S Tayi
- University of Manitoba, Department of Microbiology, Winnipeg, MB R3T 2N2, Canada.
| | - Michael Butler
- University of Manitoba, Department of Microbiology, Winnipeg, MB R3T 2N2, Canada; National Institute for Bioprocessing Research and Training, 26 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 F5D5, Ireland.
| | - Jeffrey W Hudgens
- National Institute of Standards and Technology, Bioprocess Measurements Group, Biomolecular Measurement Division, 9600 Gudelsky Drive, Rockville, MD 20850, USA; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| |
Collapse
|
8
|
Anderson KW, Scott K, Karageorgos IL, Gallagher ES, Tayi VS, Butler M, Hudgens JW. Dataset from HDX-MS Studies of IgG1 Glycoforms and Their Interactions with the FcγRIa (CD64) Receptor. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2021; vol:126010. [PMID: 36474595 PMCID: PMC9681196 DOI: 10.6028/jres.126.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 05/17/2023]
Abstract
This document presents hydrogen-deuterium exchange mass spectrometry (HDX-MS) data from measurements of three purified IgG1 glycoform samples, predominantly G0F, G2F, and SAF, in isolation and in complexation with the high-affinity receptor, FcγRIa (CD64). The IgG1 antibody used in this study, aIL8hFc, is a murine-human chimeric IgG1, which inhibits IL-8 binding to human neutrophils.
Collapse
Affiliation(s)
- Kyle W. Anderson
- National Institute of Standards and Technology, Gaithersburg, MD 20899,
USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850,
USA
| | - Kerry Scott
- National Institute of Standards and Technology, Gaithersburg, MD 20899,
USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850,
USA
| | - Ioannis L. Karageorgos
- National Institute of Standards and Technology, Gaithersburg, MD 20899,
USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850,
USA
| | - Elyssia S. Gallagher
- National Institute of Standards and Technology, Gaithersburg, MD 20899,
USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850,
USA
| | - Venkata S. Tayi
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2,
Canada
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2,
Canada
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin,
Ireland
| | - Jeffrey W. Hudgens
- National Institute of Standards and Technology, Gaithersburg, MD 20899,
USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850,
USA
| |
Collapse
|
9
|
O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv 2020; 43:107552. [DOI: 10.1016/j.biotechadv.2020.107552] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
|
10
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
11
|
Voruganti S, Xu J, Li X, Balakrishnan G, Singh SM, Kar SR, Das TK. A Detailed Protocol for Generation of Therapeutic Antibodies with Galactosylated Glycovariants at Laboratory Scale Using In-Vitro Glycoengineering Technology. J Pharm Sci 2020; 110:935-945. [PMID: 33039440 DOI: 10.1016/j.xphs.2020.09.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
N-linked glycosylation is an important post translational modification that occurs on Asparagine 297 residue or a homologous position on the Fc portion of monoclonal antibodies (mAbs). mAb Fc glycans play important roles in antibody structure, stability, and function including effector function and pharmacokinetics. The Fc glycans are made up of a wide variety of sugars including galactose, mannose, and sialic acid. The role of galactose in mediating antibody effector functions is not well understood. Hence, there is widespread interest in the antibody research community to understand the role of galactose in antibody effector functions as galactose is a major constituent of antibody glycans. This requires generation of highly enriched galactosylated variants that has been very challenging via cell culture process. To tackle this challenge, we developed a laboratory scale biochemical process to produce highly enriched galactosylated variants. In this article, we report optimized lab-scale workflows and detailed protocols for generation of deglycosylated, hypo-galactosylated and hyper-galactosylated variants of IgG therapeutic antibodies using the in-vitro glycoengineering technology. The optimized workflows offer short turnaround time and produce highly enriched deglycosylated/hypo-galactosylated/hyper-galactosylated IgG glycovariants, with high purity & molecular integrity as demonstrated by data from an example IgG.
Collapse
Affiliation(s)
- Sudhakar Voruganti
- Bristol Myers Squibb, Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Jiahui Xu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States; Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Xue Li
- Bristol Myers Squibb, Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Gurusamy Balakrishnan
- Bristol Myers Squibb, Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Surinder M Singh
- Bristol Myers Squibb, Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Sambit R Kar
- Bristol Myers Squibb, Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Tapan K Das
- Bristol Myers Squibb, Analytical Development and Attribute Sciences, New Brunswick, NJ, USA.
| |
Collapse
|
12
|
Donald LJ, Spearman M, Mishra N, Komatsu E, Butler M, Perreault H. Mass spectrometric analysis of core fucosylation and sequence variation in a human-camelid monoclonal antibody. Mol Omics 2020; 16:221-230. [PMID: 32163054 DOI: 10.1039/c9mo00168a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospray mass spectrometry (ESI-MS) was used to measure the masses of an intact dimeric monoclonal antibody (Mab) and assess the fucosylation level. The Mab under study was EG2-hFc, a chimeric human-camelid antibody of about 80 kDa (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90). It was obtained from cell culture with and without a fucosylation inhibitor, and treated with EndoS which cleaves between the two core N-acetyl glucosamine (GlcNAc) residues. It is the first time that this combined approach with a unique mass spectrometer was used to measure 146 Da differences as part of a large intact dimeric antibody. Results showed that in the dimer, both heavy chains were fucosylated on the core GlcNAc of the Fc Asn site equivalent to Asn297. In the presence of the fucosylation inhibitor, fucosylation was lost on both subunits. Following reduction, monomers were analyzed and the masses obtained corroborated the dimer results. Dimeric EG2-hFc Mab treated with PNGase F, to deglycosylate the protein, was also measured by MS for mass comparison. In spite of the success of fucosylation level measurements, the experimental masses of deglycosylated dimers and GlcNAc-Fuc bearing dimers did not correspond to masses of our sequence of reference (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90; ; ), which prompted experiments to determine the protein backbone sequence. Digest mixtures from trypsin, GluC, as well as trypsin + GluC proteolysis were analyzed by matrix-assisted laser desorption/ionization (MALDI) MS and MS/MS. A few variations were found relative to the reference sequence, which are discussed in detail herein. These measurements allowed us to build a new "experimental" sequence for the EG2-hFc samples investigated in this work, although there are still ambiguities to be resolved in this new sequence. MALDI-MS/MS also confirmed the fucosylation pattern in the Fc tryptic peptide EEQYNSTYR.
Collapse
Affiliation(s)
- Lynda J Donald
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Mastrangeli R, Palinsky W, Bierau H. Glycoengineered antibodies: towards the next-generation of immunotherapeutics. Glycobiology 2019; 29:199-210. [PMID: 30289453 DOI: 10.1093/glycob/cwy092] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies (mAbs) are currently the largest and fastest growing class of biopharmaceuticals, and they address unmet medical needs, e.g., in oncology and in auto-immune diseases. Their clinical efficacy and safety is significantly affected by the structure and composition of their glycosylation profile which is commonly heterogeneous, heavily dependent on the manufacturing process, and thus susceptible to variations in the cell culture conditions. Glycosylation is therefore considered a critical quality attribute for mAbs. Commonly, in currently marketed therapeutic mAbs, the glycosylation profile is suboptimal in terms of biological properties such as antibody-dependent cell-mediated cytotoxicity or may give rise to safety concerns due to the presence of non-human glycans. This article will review recent innovative developments in chemo-enzymatic glycoengineering, which allow generating mAbs carrying single, well-defined, uniform Fc glycoforms, which confers the desired biological properties for the target application. This approach offers significant benefits such as enhanced Fc effector functions, improved safety profiles, higher batch-to-batch consistency, decreased risks related to immunogenicity and manufacturing process changes, and the possibility to manufacture mAbs, in an economical manner, in non-mammalian expression systems. Overall, this approach could facilitate and reduce mAb manufacturing costs which in turn would translate into tangible benefits for both patients and manufacturers. The first glycoengineered mAbs are about to enter clinical trials and it is expected that, once glycoengineering reagents are available at affordable costs, and in-line with regulatory requirements, that targeted remodeling of antibody Fc glycosylation will become an integral part in manufacturing the next-generation of immunotherapeutics.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany. Via Luigi Einaudi, 11. Guidonia Montecelio (Roma), Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma, an affiliate of Merck KgaA, Darmstadt, Germany. Zone Industrielle de l'Ouriettaz, Aubonne, Switzerland
| | - Horst Bierau
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany. Via Luigi Einaudi, 11. Guidonia Montecelio (Roma), Italy
| |
Collapse
|