1
|
Sun X, Lian Y, Tian T, Cui Z. Advancements in Functional Nanomaterials Inspired by Viral Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402980. [PMID: 39058214 DOI: 10.1002/smll.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Collapse
Affiliation(s)
- Xianxun Sun
- College of Life Science, Jiang Han University, Wuhan, 430056, China
| | - Yindong Lian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Tian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
2
|
Arul SS, Balakrishnan B, Handanahal SS, Venkataraman S. Viral nanoparticles: Current advances in design and development. Biochimie 2024; 219:33-50. [PMID: 37573018 DOI: 10.1016/j.biochi.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Viral nanoparticles (VNPs) are self-assembling, adaptable delivery systems for vaccines and other therapeutic agents used in a variety of biomedical applications. The potential of viruses to invade and infect various hosts and cells renders them suitable as potential nanocarriers, possessing distinct functional characteristics, immunogenic properties, and improved biocompatibility and biodegradability. VNPs are frequently produced through precise genetic or chemical engineering, which involves adding diverse sequences or functional payloads to the capsid protein (CP). Several spherical and helical plant viruses, bacteriophages, and animal viruses are currently being used as VNPs, or non-infectious virus-like particles (VLPs). In addition to their broad use in cancer therapy, vaccine technology, diagnostics, and molecular imaging, VNPs have made important strides in the realms of tissue engineering, biosensing, and antimicrobial prophylaxis. They are also being used in energy storage cells due to their binding and piezoelectric properties. The large-scale production of VNPs for research, preclinical testing, and clinical use is fraught with difficulties, such as those relating to cost-effectiveness, scalability, and purity. Consequently, many plants- and microorganism-based platforms are being developed, and newer viruses are being explored. The goal of the current review is to provide an overview of these advances.
Collapse
|
3
|
Zhang J, Li Y, Guo S, Zhang W, Fang B, Wang S. Moving beyond traditional therapies: the role of nanomedicines in lung cancer. Front Pharmacol 2024; 15:1363346. [PMID: 38389925 PMCID: PMC10883231 DOI: 10.3389/fphar.2024.1363346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Amidst a global rise in lung cancer occurrences, conventional therapies continue to pose substantial side effects and possess notable toxicities while lacking specificity. Counteracting this, the incorporation of nanomedicines can notably enhance drug delivery at tumor sites, extend a drug's half-life and mitigate inadvertent toxic and adverse impacts on healthy tissues, substantially influencing lung cancer's early detection and targeted therapy. Numerous studies signal that while the nano-characteristics of lung cancer nanomedicines play a pivotal role, further interplay with immune, photothermal, and genetic factors exist. This review posits that the progression towards multimodal combination therapies could potentially establish an efficacious platform for multimodal targeted lung cancer treatments. Current nanomedicines split into active and passive targeting. Active therapies focus on a single target, often with unsatisfactory results. Yet, developing combination systems targeting multiple sites could chart new paths in lung cancer therapy. Conversely, low drug delivery rates limit passive therapies. Utilizing the EPR effect to bind specific ligands on nanoparticles to tumor cell receptors might create a new regime combining active-passive targeting, potentially elevating the nanomedicines' concentration at target sites. This review collates recent advancements through the lens of nanomedicine's attributes for lung cancer therapeutics, the novel carrier classifications, targeted therapeutic modalities and their mechanisms, proposing that the emergence of multi-target nanocomposite therapeutics, combined active-passive targeting therapies and multimodal combined treatments will pioneer novel approaches and tools for future lung cancer clinical therapies.
Collapse
Affiliation(s)
- Jingjing Zhang
- Medical College of Qingdao Binhai University, Qingdao, China
- The Affiliated Hospital of Qindao Binhai University (Qingdao Military-Cvil Integration Hospital), Qingdao, China
| | - Yanzhi Li
- Medical College of Qingdao Binhai University, Qingdao, China
| | - Sa Guo
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weifen Zhang
- Medical College, Weifang University, Weifang, China
| | - Bing Fang
- The Affiliated Hospital of Qindao Binhai University (Qingdao Military-Cvil Integration Hospital), Qingdao, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Kim K, Kim G, Bae J, Song J, Kim H. A pH-Responsive Virus-Like Particle as a Protein Cage for a Targeted Delivery. Adv Healthc Mater 2024; 13:e2302656. [PMID: 37966427 PMCID: PMC11469083 DOI: 10.1002/adhm.202302656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/05/2023] [Indexed: 11/16/2023]
Abstract
A stimuli-responsive protein self-assembly offers promising utility as a protein nanocage for biotechnological and medical applications. Herein, the development of a virus-like particle (VLP) that undergoes a transition between assembly and disassembly under a neutral and acidic pH, respectively, for a targeted delivery is reported. The structure of the bacteriophage P22 coat protein is used for the computational design of coat subunits that self-assemble into a pH-responsive VLP. Subunit designs are generated through iterative computational cycles of histidine substitutions and evaluation of the interaction energies among the subunits under an acidic and neutral pH. The top subunit designs are tested and one that is assembled into a VLP showing the highest pH-dependent structural transition is selected. The cryo-EM structure of the VLP is determined, and the structural basis of a pH-triggered disassembly is delineated. The utility of the designed VLP is exemplified through the targeted delivery of a cytotoxic protein cargo into tumor cells in a pH-dependent manner. These results provide strategies for the development of self-assembling protein architectures with new functionality for diverse applications.
Collapse
Affiliation(s)
- Kwan‐Jip Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| | - Gijeong Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| | - Jin‐Ho Bae
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| | - Ji‐Joon Song
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| | - Hak‐Sung Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| |
Collapse
|
5
|
Chen YL, Bao CJ, Duan JL, Xie Y, Lu WL. Overcoming biological barriers by virus-like drug particles for drug delivery. Adv Drug Deliv Rev 2023; 203:115134. [PMID: 37926218 DOI: 10.1016/j.addr.2023.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Virus-like particles (VLPs) have natural structural antigens similar to those found in viruses, making them valuable in vaccine immunization. Furthermore, VLPs have demonstrated significant potential in drug delivery, and emerged as promising vectors for transporting chemical drug, genetic drug, peptide/protein, and even nanoparticle drug. With virus-like permeability and strong retention, they can effectively target specific organs, tissues or cells, facilitating efficient intracellular drug release. Further modifications allow VLPs to transfer across various physiological barriers, thus acting the purpose of efficient drug delivery and accurate therapy. This article provides an overview of VLPs, covering their structural classifications, deliverable drugs, potential physiological barriers in drug delivery, strategies for overcoming these barriers, and future prospects.
Collapse
Affiliation(s)
- Yu-Ling Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chun-Jie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia-Lun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
6
|
Wang Z, Wang X, Xu W, Li Y, Lai R, Qiu X, Chen X, Chen Z, Mi B, Wu M, Wang J. Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems. Pharmaceutics 2023; 15:2623. [PMID: 38004601 PMCID: PMC10674763 DOI: 10.3390/pharmaceutics15112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Biomimetic delivery systems (BDSs), inspired by the intricate designs of biological systems, have emerged as a groundbreaking paradigm in nanomedicine, offering unparalleled advantages in therapeutic delivery. These systems, encompassing platforms such as liposomes, protein-based nanoparticles, extracellular vesicles, and polysaccharides, are lauded for their targeted delivery, minimized side effects, and enhanced therapeutic outcomes. However, the translation of BDSs from research settings to clinical applications is fraught with challenges, including reproducibility concerns, physiological stability, and rigorous efficacy and safety evaluations. Furthermore, the innovative nature of BDSs demands the reevaluation and evolution of existing regulatory and ethical frameworks. This review provides an overview of BDSs and delves into the multifaceted translational challenges and present emerging solutions, underscored by real-world case studies. Emphasizing the potential of BDSs to redefine healthcare, we advocate for sustained interdisciplinary collaboration and research. As our understanding of biological systems deepens, the future of BDSs in clinical translation appears promising, with a focus on personalized medicine and refined patient-specific delivery systems.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| |
Collapse
|
7
|
Barkovich KJ, Wu Z, Zhao Z, Simms A, Chang EY, Steinmetz NF. Physalis Mottle Virus-Like Nanocarriers with Expanded Internal Loading Capacity. Bioconjug Chem 2023; 34:1585-1595. [PMID: 37615599 PMCID: PMC10538386 DOI: 10.1021/acs.bioconjchem.3c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An ongoing challenge in precision medicine is the efficient delivery of therapeutics to tissues/organs of interest. Nanoparticle delivery systems have the potential to overcome traditional limitations of drug and gene delivery through improved pharmacokinetics, tissue targeting, and stability of encapsulated cargo. Physalis mottle virus (PhMV)-like nanoparticles are a promising nanocarrier platform which can be chemically targeted on the exterior and interior surfaces through reactive amino acids. Cargo-loading to the internal cavity is achieved with thiol-reactive small molecules. However, the internal loading capacity of these nanoparticles is limited by the presence of a single reactive cysteine (C75) per coat protein with low inherent reactivity. Here, we use structure-based design to engineer cysteine-added mutants of PhMV VLPs that display increased reactivity toward thiol-reactive small molecules. Specifically, the A31C and S137C mutants show a greater than 10-fold increased rate of reactivity towards thiol-reactive small molecules, and PhMV Cys1 (A31C), PhMV Cys2 (S137C), and PhMV Cys1+2 (double mutant) VLPs display up to three-fold increased internal loading of the small molecule chemotherapeutics aldoxorubicin and vcMMAE and up to four-fold increased internal loading of the MRI imaging reagent DOTA(Gd). These results further improve upon a promising plant virus-based nanocarrier system for use in targeted delivery of small-molecule drugs and imaging reagents in vivo.
Collapse
Affiliation(s)
- Krister J Barkovich
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrea Simms
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Barkovich KJ, Zhao Z, Steinmetz NF. iRGD-targeted Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Delivery. SMALL SCIENCE 2023; 3:2300067. [PMID: 38465197 PMCID: PMC10923535 DOI: 10.1002/smsc.202300067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Nanomedicine provides a promising platform for the molecular treatment of disease. An ongoing challenge in nanomedicine is the targeted delivery of intravenously administered nanoparticles to particular tissues, which is of special interest in cancer. In this study, we show that the conjugation of iRGD peptides, which specifically target tumor neovasculature, to the surface of Physalis mottle virus (PhMV)-like nanoparticles leads to rapid cellular uptake in vitro and tumor homing in vivo. We then show that iRGD-targeted PhMV loaded with the chemotherapeutic doxorubicin shows increased potency in a murine flank xenograft model of cancer. Our results validate that PhMV-like nanoparticles can be targeted to tumors through iRGD-peptide conjugation and suggest that iRGD-PhMV provides a promising platform for the targeted delivery of molecular cargo to tumors.
Collapse
Affiliation(s)
| | - Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, San Diego, CA
- Center for Nano-ImmunoEngineering, University of California, San Diego, San Diego, CA
| | - Nicole F. Steinmetz
- Department of Radiology, University of California, San Diego, San Diego, CA
- Department of NanoEngineering, University of California, San Diego, San Diego, CA
- Center for Nano-ImmunoEngineering, University of California, San Diego, San Diego, CA
- Department of Bioengineering, University of California, San Diego, San Diego, CA
- Institute for Materials Discovery and Design, University of California, San Diego, CA
- Moores Cancer Center, University of California, San Diego, San Diego, CA
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, San Diego, CA
| |
Collapse
|
10
|
Shahgolzari M, Venkataraman S, Osano A, Akpa PA, Hefferon K. Plant Virus Nanoparticles Combat Cancer. Vaccines (Basel) 2023; 11:1278. [PMID: 37631846 PMCID: PMC10459942 DOI: 10.3390/vaccines11081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Plant virus nanoparticles (PVNPs) have garnered considerable interest as a promising nanotechnology approach to combat cancer. Owing to their biocompatibility, stability, and adjustable surface functionality, PVNPs hold tremendous potential for both therapeutic and imaging applications. The versatility of PVNPs is evident from their ability to be tailored to transport a range of therapeutic agents, including chemotherapy drugs, siRNA, and immunomodulators, thereby facilitating targeted delivery to the tumor microenvironment (TME). Furthermore, PVNPs may be customized with targeting ligands to selectively bind to cancer cell receptors, reducing off-target effects. Additionally, PVNPs possess immunogenic properties and can be engineered to exhibit tumor-associated antigens, thereby stimulating anti-tumor immune responses. In conclusion, the potential of PVNPs as a versatile platform for fighting cancer is immense, and further research is required to fully explore their potential and translate them into clinical applications.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Anne Osano
- Department of Natural Sciences, Bowie State University, Bowie, MD 20715, USA
| | - Paul Achile Akpa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
11
|
Tan JS, Jaffar Ali MNB, Gan BK, Tan WS. Next-generation viral nanoparticles for targeted delivery of therapeutics: Fundamentals, methods, biomedical applications, and challenges. Expert Opin Drug Deliv 2023; 20:955-978. [PMID: 37339432 DOI: 10.1080/17425247.2023.2228202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Viral nanoparticles (VNPs) are virus-based nanocarriers that have been studied extensively and intensively for biomedical applications. However, their clinical translation is relatively low compared to the predominating lipid-based nanoparticles. Therefore, this article describes the fundamentals, challenges, and solutions of the VNP-based platform, which will leverage the development of next-generation VNPs. AREAS COVERED Different types of VNPs and their biomedical applications are reviewed comprehensively. Strategies and approaches for cargo loading and targeted delivery of VNPs are examined thoroughly. The latest developments in controlled release of cargoes from VNPs and their mechanisms are highlighted too. The challenges faced by VNPs in biomedical applications are identified, and solutions are provided to overcome them. EXPERT OPINION In the development of next-generation VNPs for gene therapy, bioimaging and therapeutic deliveries, focus must be given to reduce their immunogenicity, and increase their stability in the circulatory system. Modular virus-like particles (VLPs) which are produced separately from their cargoes or ligands before all the components are coupled can speed up clinical trials and commercialization. In addition, removal of contaminants from VNPs, cargo delivery across the blood brain barrier (BBB), and targeting of VNPs to organelles intracellularly are challenges that will preoccupy researchers in this decade.
Collapse
Affiliation(s)
- Jia Sen Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhamad Norizwan Bin Jaffar Ali
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bee Koon Gan
- Department of Biological Science, Faculty of Science, National University of Singapore, Singapore
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2023; 10:1106767. [PMID: 36714624 PMCID: PMC9878189 DOI: 10.3389/fbioe.2022.1106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Virus-like nanoparticles (VLPs) are natural polymer-based nanomaterials that mimic viral structures through the hierarchical assembly of viral coat proteins, while lacking viral genomes. VLPs have received enormous attention in a wide range of nanotechnology-based medical diagnostics and therapies, including cancer therapy, imaging, and theranostics. VLPs are biocompatible and biodegradable and have a uniform structure and controllable assembly. They can encapsulate a wide range of therapeutic and diagnostic agents, and can be genetically or chemically modified. These properties have led to sophisticated multifunctional theranostic platforms. This article reviews the current progress in developing and applying engineered VLPs for molecular imaging, drug delivery, and multifunctional theranostics in cancer research.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hye Ryoung Heo
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea,School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| |
Collapse
|
13
|
Yang Z, Chi Y, Bao J, Zhao X, Zhang J, Wang L. Virus-like Particles for TEM Regulation and Antitumor Therapy. J Funct Biomater 2022; 13:304. [PMID: 36547564 PMCID: PMC9788044 DOI: 10.3390/jfb13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor development and metastasis are intimately associated with the tumor microenvironment (TME), and it is difficult for vector-restricted drugs to act on the TME for long-term cancer immunotherapy. Virus-like particles (VLPs) are nanocage structures self-assembled from nucleic acid free viral proteins. Most VLPs range from 20-200 nm in diameter and can naturally drain into lymph nodes to induce robust humoral immunity. As natural nucleic acid nanocarriers, their surfaces can also be genetically or chemically modified to achieve functions such as TME targeting. This review focuses on the design ideas of VLP as nanocarriers and the progress of their research in regulating TME.
Collapse
Affiliation(s)
- Zhu Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Bao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xin Zhao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Jing Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Ikwuagwu B, Tullman-Ercek D. Virus-like particles for drug delivery: a review of methods and applications. Curr Opin Biotechnol 2022; 78:102785. [PMID: 36099859 DOI: 10.1016/j.copbio.2022.102785] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Virus-like particles (VLPs) are self-assembling protein nanoparticles that have great promise as vectors for drug delivery. VLPs are derived from viruses but retain none of their infection or replication capabilities. These protein particles have defined surface chemistries, uniform sizes, and stability properties that make them attractive starting points for drug-delivery scaffolds. Here, we review recent advances in tailoring VLPs for drug-delivery applications, including VLP platform engineering approaches as well as methods for cargo loading, activation, and release. Finally, we highlight several successes using VLPs for drug delivery in model systems.
Collapse
Affiliation(s)
- Bon Ikwuagwu
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL 60208, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, IL 60208, USA.
| |
Collapse
|
15
|
Zhao Z, Simms A, Steinmetz NF. Cisplatin-Loaded Tobacco Mosaic Virus for Ovarian Cancer Treatment. Biomacromolecules 2022; 23:4379-4387. [PMID: 36053908 PMCID: PMC9831511 DOI: 10.1021/acs.biomac.2c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ovarian cancer is the foremost cause of gynecological cancer and a major cause of cancer death in women. Treatment for advanced stage is surgical debulking followed by chemotherapy; however, most patients relapse with more aggressive and therapy-resistant tumors. There is a need to develop drug delivery approaches to deliver platinum therapies to tumors to increase efficacy while maintaining safety. Toward this goal, we utilized the protein nanotubes from the plant virus, tobacco mosaic virus (TMV), as a drug carrier. Specifically, the nanochannel of TMV was loaded with the active dication form of cisplatin (cisPt2+), making use of the negatively charged Glu acid side chains that line the interior channel of TMV. We achieved a loading efficiency with ∼2700 cisPt2+ per TMV; formulation stability was established with drug complexes stably loaded into the carrier for 2 months under refrigerated storage. TMV-cisPt maintained its efficacy against ovarian tumor cells with an IC50 of ∼40 μM. TMV-cisPt exhibited superior efficacy vs free cisPt in ovarian tumor mouse models using intraperitoneal ID8-Defb29/Vegf-a-Luc (mouse) tumors and subcutaneous A2780 (human) xenografts. TMV-cisPt treatment led to reduced tumor burden and increased survival. Using ID8-Defb29/Vegf-a-Luc-bearing C57BL/6 mice, we also noted reduced tumor growth when animals were treated with TMV alone, which may indicate antitumor immunity induced by the immunomodulatory nature of the plant virus nanoparticle. Biodistribution studies supported the efficacy data, showing increased cisPt accumulation within tumors when delivered via the TMV carrier vs free cisPt administration. Finally, good safety profiles were noted. The study highlights the potential of TMV as a drug carrier against cancer and points to the opportunity to explore plant viruses as chemo-immuno combination cancer therapeutics.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrea Simms
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States; Center for Nano-ImmunoEngineering, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States; Institute for Materials Discovery and Design, University of California, La Jolla, California 92093, United States
| |
Collapse
|
16
|
González-Gamboa I, Caparco AA, McCaskill JM, Steinmetz NF. Bioconjugation Strategies for Tobacco Mild Green Mosaic Virus. Chembiochem 2022; 23:e202200323. [PMID: 35835718 PMCID: PMC9624232 DOI: 10.1002/cbic.202200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Indexed: 11/06/2022]
Abstract
Tobacco mild green mosaic virus (TMGMV) is a plant virus closely related to Tobacco mosaic virus (TMV), sharing many of its structural and chemical features. These rod-shaped viruses, comprised of 2130 identical coat protein subunits, have been utilized as nanotechnological platforms for a myriad of applications, ranging from drug delivery to precision agriculture. This versatility for functionalization is due to their chemically active external and internal surfaces. While both viruses are similar, they do exhibit some key differences in their surface chemistry, suggesting the reactive residue distribution on TMGMV should not overlap with TMV. In this work, we focused on the establishment and refinement of chemical bioconjugation strategies to load molecules into or onto TMGMV for targeted delivery. A combination of NHS, EDC, and diazo coupling reactions in combination with click chemistry were used to modify the N-terminus, glutamic/aspartic acid residues, and tyrosines in TMGMV. We report loading with over 600 moieties per TMGMV via diazo-coupling, which is a >3-fold increase compared to previous studies. We also report that cargo can be loaded to the solvent-exposed N-terminus and carboxylates on the exterior/interior surfaces. Mass spectrometry revealed the most reactive sites to be Y12 and Y72, both tyrosine side chains are located on the exterior surface. For the carboxylates, interior E106 (66.53 %) was the most reactive for EDC-propargylamine coupled reactions, with the exterior E145 accounting for >15 % reactivity, overturning previous assumptions that only interior glutamic acid residues are accessible. A deeper understanding of the chemical properties of TMGMV further enables its functionalization and use as a multifunctional nanocarrier platform for applications in medicine and precision farming.
Collapse
Affiliation(s)
- Ivonne González-Gamboa
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Adam A Caparco
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Justin M McCaskill
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines (Basel) 2022; 10:vaccines10091431. [PMID: 36146510 PMCID: PMC9502313 DOI: 10.3390/vaccines10091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer treatment using plant-virus-based nanoparticles (PVNPs) has achieved considerable success in preclinical studies. PVNP-based breast cancer therapies include non-targeted and targeted nanoplatforms for delivery of anticancer therapeutic chemo and immune agents and cancer vaccines for activation of local and systemic antitumor immunity. Interestingly, PVNP platforms combined with other tumor immunotherapeutic options and other modalities of oncotherapy can improve tumor efficacy treatment. These applications can be achieved by encapsulation of a wide range of active ingredients and conjugating ligands for targeting immune and tumor cells. This review presents the current breast cancer treatments based on PVNP platforms.
Collapse
|
18
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
19
|
Targeted Cancer Therapy via pH-Functionalized Nanoparticles: A Scoping Review of Methods and Outcomes. Gels 2022; 8:gels8040232. [PMID: 35448133 PMCID: PMC9030880 DOI: 10.3390/gels8040232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: In recent years, several studies have described various and heterogenous methods to sensitize nanoparticles (NPs) to pH changes; therefore, in this current scoping review, we aimed to map current protocols for pH functionalization of NPs and analyze the outcomes of drug-loaded pH-functionalized NPs (pH-NPs) when delivered in vivo in tumoral tissue. (2) Methods: A systematic search of the PubMed database was performed for all published studies relating to in vivo models of anti-tumor drug delivery via pH-responsive NPs. Data on the type of NPs, the pH sensitization method, the in vivo model, the tumor cell line, the type and name of drug for targeted therapy, the type of in vivo imaging, and the method of delivery and outcomes were extracted in a separate database. (3) Results: One hundred and twenty eligible manuscripts were included. Interestingly, 45.8% of studies (n = 55) used polymers to construct nanoparticles, while others used other types, i.e., mesoporous silica (n = 15), metal (n = 8), lipids (n = 12), etc. The mean acidic pH value used in the current literature is 5.7. When exposed to in vitro acidic environment, without exception, pH-NPs released drugs inversely proportional to the pH value. pH-NPs showed an increase in tumor regression compared to controls, suggesting better targeted drug release. (4) Conclusions: pH-NPs were shown to improve drug delivery and enhance antitumoral effects in various experimental malignant cell lines.
Collapse
|
20
|
Alvandi N, Rajabnejad M, Taghvaei Z, Esfandiari N. New generation of viral nanoparticles for targeted drug delivery in cancer therapy. J Drug Target 2021; 30:151-165. [PMID: 34210232 DOI: 10.1080/1061186x.2021.1949600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanoscale engineering is one of the novel methods to cure multitudes of diseases, such as types of cancers, neurological disorders, and infectious illnesses. Viruses can play a vital role in nanoscale engineering due to their specific properties like minuscule size, high stability in different body conditions, and large-scale production. Viral-like particles (VLPs) as specific nanoscale scaffolds can encapsulate a wide range of cargos, including nucleic acids, proteins, peptides, and drugs. The Exterior portion of VLPs can be changed by genetical or chemical conjugation as well as targeting ligands or peptides. The aforementioned features of VLPs can be used in several applications, such as drug delivery, bioimaging, tissue engineering, vaccine production, and disease detection. This review article attempts to investigate appearance characteristics, modification strategies, and manufacturing methods of VLPs. Additionally, drug delivery to cancer cells as one of the VLPs applications along with different cellular uptake mechanisms of VLPs by cancer cells are chosen for investigation. This review also tries to gather most of the recent studies of drug delivery to cancer cells by VLPs.
Collapse
Affiliation(s)
- Nikta Alvandi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Rajabnejad
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zeynab Taghvaei
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
21
|
Hu H, Steinmetz NF. Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine. Cancers (Basel) 2021; 13:2909. [PMID: 34200802 PMCID: PMC8230452 DOI: 10.3390/cancers13122909] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
To develop a human epidermal growth factor receptor-2 (HER2)-specific cancer vaccine, using a plant virus-like particle (VLP) platform. Copper-free click chemistry and infusion encapsulation protocols were developed to prepare VLPs displaying the HER2-derived CH401 peptide epitope, with and without Toll-like receptor 9 (TLR9) agonists loaded into the interior cavity of the VLPs; Physalis mottle virus (PhMV)-based VLPs were used. After prime-boost immunization of BALB/c mice through subcutaneous administration of the vaccine candidates, sera were collected and analyzed by enzyme-linked immunosorbent assay (ELISA) for the CH401-specific antibodies; Th1 vs. Th2 bias was determined by antibody subtyping and splenocyte assay. Efficacy was assessed by tumor challenge using DDHER2 tumor cells. We successful developed two VLP-based anti-HER2 vaccine candidates-PhMV-CH401 vs. CpG-PhMV-CH401; however, the addition of the CpG adjuvant did not confer additional immune priming. Both VLP-based vaccine candidates elicited a strong immune response, including high titers of HER2-specific immunoglobulins and increased toxicity of antisera to DDHER2 tumor cells. DDHER2 tumor growth was delayed, leading to prolonged survival of the vaccinated vs. naïve BALB/C mice. The PhMV-based anti-HER2 vaccine PhMV-CH401, demonstrated efficacy as an anti-HER2 cancer vaccine. Our studies highlight that VLPs derived from PhMV are a promising platform to develop cancer vaccines.
Collapse
Affiliation(s)
- He Hu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA;
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA;
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Center for Nano Immuno-Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92039, USA
| |
Collapse
|
22
|
Carrasco-Esteban E, Domínguez-Rullán JA, Barrionuevo-Castillo P, Pelari-Mici L, Leaman O, Sastre-Gallego S, López-Campos F. Current role of nanoparticles in the treatment of lung cancer. J Clin Transl Res 2021; 7:140-155. [PMID: 34104817 PMCID: PMC8177846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Worldwide, lung cancer is one of the leading causes of cancer death. Nevertheless, new therapeutic agents have been developed to treat lung cancer that could change this mortality-rate. Interestingly, incredible advances have occurred in recent years in the development and application of nanotechnology in the detection, diagnosis, and treatment of lung cancer. AIM Nanoparticles (NPs) have the ability to incorporate multiple drugs and targeting agents and therefore lead to an improved bioavailability, sustained delivery, solubility, and intestinal absorption. RELEVANCE FOR PATIENTS This review briefly summarizes the latest innovations in therapeutic nanomedicine in lung cancer with examples on magnetic, lipid, and polymer NP. Emphasis will be placed on future studies and ongoing clinical trials in this field.
Collapse
Affiliation(s)
| | | | | | - Lira Pelari-Mici
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olwen Leaman
- Department of Radiation Oncology, Hospital Universitario Gregorio Marañon, Madrid, Spain
| | - Sara Sastre-Gallego
- Department of Radiation Oncology, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - Fernando López-Campos
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
23
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
24
|
|