1
|
Depenveiller C, Baud S, Belloy N, Bochicchio B, Dandurand J, Dauchez M, Pepe A, Pomès R, Samouillan V, Debelle L. Structural and physical basis for the elasticity of elastin. Q Rev Biophys 2024; 57:e3. [PMID: 38501287 DOI: 10.1017/s0033583524000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.
Collapse
Affiliation(s)
- Camille Depenveiller
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Stéphanie Baud
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Nicolas Belloy
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - Jany Dandurand
- CIRIMAT UMR 5085, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Manuel Dauchez
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Valérie Samouillan
- CIRIMAT UMR 5085, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Laurent Debelle
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
2
|
Cobb J, Zai-Rose V, Correia JJ, Janorkar AV. FT-IR Spectroscopic Analysis of the Secondary Structures Present during the Desiccation Induced Aggregation of Elastin-Like Polypeptide on Silica. ACS OMEGA 2020; 5:8403-8413. [PMID: 32309751 PMCID: PMC7161207 DOI: 10.1021/acsomega.0c00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/06/2020] [Indexed: 05/25/2023]
Abstract
Previously, we found that elastin-like polypeptide (ELP), when dried above the lower critical solution temperature on top of a hydrophilic fused silica disk, exhibited a dynamic coalescence behavior. The ELP initially wet the silica, but over the next 12 h, dewett the surface and formed aggregates of precise sizes and shapes. Using Fourier-transform infrared (FT-IR) spectroscopy, the present study explores the role of secondary structures present in ELP during this progressive desiccation and their effect on aggregate size. The amide I peak (1600-1700 cm-1) in the ELP's FT-IR spectrum was deconvoluted using the second derivative method into eight subpeaks (1616, 1624, 1635, 1647, 1657, 1666, 1680, 1695 cm-1). These peaks were identified to represent extended strands, β-turns, 3(10)-helix, polyproline I, and polyproline II using previous studies on ELP and molecules similar in peptide composition. Positive correlations were established between the various subpeaks, water content, and aggregate size to understand the contributions of the secondary structures in particle formation. The positive correlations suggest that type II β-turns, independent of the water content, contributed to the growth of the aggregates at earlier time points (1-3.5 h). At later time points (6-12 h), the aggregate growth was attributed to the formation of 3(10)-helices that relied on a decrease in water content. Understanding these relationships gives greater control in creating precisely sized aggregates and surface coatings with varying roughness.
Collapse
Affiliation(s)
- Jared
S. Cobb
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Valeria Zai-Rose
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - John J. Correia
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Amol V. Janorkar
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| |
Collapse
|
3
|
Vindin H, Mithieux SM, Weiss AS. Elastin architecture. Matrix Biol 2019; 84:4-16. [DOI: 10.1016/j.matbio.2019.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
4
|
Alterations of elastin in female reproductive tissues arising from advancing parity. Arch Biochem Biophys 2019; 666:127-137. [PMID: 30914253 DOI: 10.1016/j.abb.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 11/22/2022]
Abstract
Female reproductive tissues undergo significant alterations during pregnancy, which may compromise the structural integrity of extracellular matrix proteins. Here, we report on modifications of elastic fibers, which are primarily composed of elastin and believed to provide a scaffold to the reproductive tissues, due to parity and parturition. Elastic fibers from the upper vaginal wall of virgin Sprague Dawley rats were investigated and compared to rats having undergone one, three, or more than five pregnancies. Optical microscopy was used to study fiber level changes. Mass spectrometry, 13C and 2H NMR, was applied to study alterations of elastin from the uterine horns. Spectrophotometry was used to measure matrix metalloproteinases-2,9 and tissue inhibitor of metalloproteinase-1 concentration changes in the uterine horns. Elastic fibers were found to exhibit increase in tortuosity and fragmentation with increased pregnancies. Surprisingly, secondary structure, dynamics, and crosslinking of elastin from multiparous cohorts appear similar to healthy mammalian tissues, despite fragmentation observed at the fiber level. In contrast, elastic fibers from virgin and single pregnancy cohorts are less fragmented and comprised of elastin exhibiting structure and dynamics distinguishable from multiparous groups, with reduced crosslinking. These alterations were correlated to matrix metalloproteinases-2,9 and tissue inhibitor of metalloproteinase-1 concentrations. This work indicates that fiber level alterations resulting from pregnancy and/or parturition, such as fragmentation, rather than secondary structure (e.g. elastin crosslinking density), appear to govern scaffolding characteristics in the female reproductive tissues.
Collapse
|
5
|
Tarakanova A, Yeo GC, Baldock C, Weiss AS, Buehler MJ. Molecular model of human tropoelastin and implications of associated mutations. Proc Natl Acad Sci U S A 2018; 115:7338-7343. [PMID: 29946030 PMCID: PMC6048532 DOI: 10.1073/pnas.1801205115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein folding poses unique challenges for large, disordered proteins due to the low resolution of structural data accessible in experiment and on the basis of short time scales and limited sampling attainable in computation. Such molecules are uniquely suited to accelerated-sampling molecular dynamics algorithms due to a flat-energy landscape. We apply these methods to report here the folded structure in water from a fully extended chain of tropoelastin, a 698-amino acid molecular precursor to elastic fibers that confer elasticity and recoil to tissues, finding good agreement with experimental data. We then study a series of artificial and disease-related mutations, yielding molecular mechanisms to explain structural differences and variation in hierarchical assembly observed in experiment. The present model builds a framework for studying assembly and disease and yields critical insight into molecular mechanisms behind these processes. These results suggest that proteins with disordered regions are suitable candidates for characterization by this approach.
Collapse
Affiliation(s)
- Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Giselle C Yeo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Anthony S Weiss
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239;
| |
Collapse
|
6
|
Tatsubo D, Suyama K, Miyazaki M, Maeda I, Nose T. Stepwise Mechanism of Temperature-Dependent Coacervation of the Elastin-like Peptide Analogue Dimer, (C(WPGVG) 3) 2. Biochemistry 2018; 57:1582-1590. [PMID: 29388768 DOI: 10.1021/acs.biochem.7b01144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Elastin-like peptides (ELPs) are distinct, repetitive, hydrophobic sequences, such as (VPGVG) n, that exhibit coacervation, the property of reversible, temperature-dependent self-association and dissociation. ELPs can be found in elastin and have been developed as new scaffold biomaterials. However, the detailed relationship between their amino acid sequences and coacervation properties remains obscure because of the structural flexibility of ELPs. In this study, we synthesized a novel, dimeric ELP analogue (H-C(WPGVG)3-NH2)2, henceforth abbreviated (CW3)2, and analyzed its self-assembly properties and structural factors as indicators of coacervation. Turbidity measurements showed that (CW3)2 demonstrated coacervation at a concentration much lower than that of its monomeric form and another ELP. In addition, the coacervate held water-soluble dye molecules. Thus, potent and distinct coacervation was obtained with a remarkably short sequence of (CW3)2. Furthermore, fluorescence microscopy, dynamic light scattering, and optical microscopy revealed that the coacervation of (CW3)2 was a stepwise process. The structural factors of (CW3)2 were analyzed by molecular dynamics simulations and circular dichroism spectroscopy. These measurements indicated that helical structures primarily consisting of proline and glycine became more disordered at high temperatures with concurrent, significant exposure of their hydrophobic surfaces. This extreme change in the hydrophobic surface contributes to the potent coacervation observed for (CW3)2. These results provide important insights into more efficient applications of ELPs and their analogues, as well as the coacervation mechanisms of ELP and elastin.
Collapse
Affiliation(s)
- Daiki Tatsubo
- Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , Fukuoka 819-0395 , Japan
| | - Keitaro Suyama
- Faculty of Arts and Science , Kyushu University , Fukuoka 819-0395 , Japan
| | - Masaya Miyazaki
- Advanced Manufacturing Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tosu , Saga 841-0052 , Japan
| | - Iori Maeda
- Department of Bioscience and Bioinformatics , Kyushu Institute of Technology , Iizuka , Fukuoka 820-8502 , Japan
| | - Takeru Nose
- Department of Chemistry, Faculty and Graduate School of Science , Kyushu University , Fukuoka 819-0395 , Japan.,Faculty of Arts and Science , Kyushu University , Fukuoka 819-0395 , Japan
| |
Collapse
|
7
|
Cai H, Gabryelczyk B, Manimekalai MSS, Grüber G, Salentinig S, Miserez A. Self-coacervation of modular squid beak proteins - a comparative study. SOFT MATTER 2017; 13:7740-7752. [PMID: 29043368 DOI: 10.1039/c7sm01352c] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The beak of the Humboldt squid is a biocomposite material made solely of organic components - chitin and proteins - which exhibits 200-fold stiffness and hardness gradients from the soft base to the exceptionally hard tip (rostrum). The outstanding mechanical properties of the squid beak are achieved via controlled hydration and impregnation of the chitin-based scaffold by protein coacervates. Molecular-based understanding of these proteins is essential to mimic the natural beak material. Here, we present detailed studies of two histidine-rich beak proteins (HBP-1 and -2) that play central roles during beak bio-fabrication. We show that both proteins have the ability to self-coacervate, which is governed intrinsically by the sequence modularity of their C-terminus and extrinsically by pH and ionic strength. We demonstrate that HBPs possess dynamic structures in solution and achieve maximum folding in the coacervate state, and propose that their self-coacervation is driven by hydrophobic interactions following charge neutralization through salt-screening. Finally, we show that subtle differences in the modular repeats of HBPs result in significant changes in the rheological response of the coacervates. This knowledge may be exploited to design self-coacervating polypeptides for a wide range of engineering and biomedical applications, for example bio-inspired composite materials, smart hydrogels and adhesives, and biomedical implants.
Collapse
Affiliation(s)
- Hao Cai
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553.
| | | | | | | | | | | |
Collapse
|
8
|
Bianco PR, Pottinger S, Tan HY, Nguyenduc T, Rex K, Varshney U. The IDL of E. coli SSB links ssDNA and protein binding by mediating protein-protein interactions. Protein Sci 2017; 26:227-241. [PMID: 28127816 DOI: 10.1002/pro.3072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022]
Abstract
The E. coli single strand DNA binding protein (SSB) is essential to viability where it functions in two seemingly disparate roles: it binds to single stranded DNA (ssDNA) and to target proteins that comprise the SSB interactome. The link between these roles resides in a previously under-appreciated region of the protein known as the intrinsically disordered linker (IDL). We present a model wherein the IDL is responsible for mediating protein-protein interactions critical to each role. When interactions occur between SSB tetramers, cooperative binding to ssDNA results. When binding occurs between SSB and an interactome partner, storage or loading of that protein onto the DNA takes place. The properties of the IDL that facilitate these interactions include the presence of repeats, a putative polyproline type II helix and, PXXP motifs that may facilitate direct binding to the OB-fold in a manner similar to that observed for SH3 domain binding of PXXP ligands in eukaryotic systems.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Sasheen Pottinger
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Hui Yin Tan
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Trong Nguyenduc
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, New York, 14214
| | - Kervin Rex
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Bianco PR. The tale of SSB. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 127:111-118. [PMID: 27838363 DOI: 10.1016/j.pbiomolbio.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/04/2016] [Indexed: 01/07/2023]
Abstract
The E. coli single stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism. Here, it has two seemingly disparate but equally important roles: it binds rapidly and cooperatively to single stranded DNA (ssDNA) and it binds to partner proteins that constitute the SSB interactome. These two roles are not disparate but are instead, intimately linked. A model is presented wherein the intrinsically disordered linker (IDL) is directly responsible for mediating protein-protein interactions. It does this by binding, via PXXP motifs, to the OB-fold (aka SH3 domain) of a nearby protein. When the nearby protein is another SSB tetramer, this leads to a highly efficient ssDNA binding reaction that rapidly and cooperatively covers and protects the exposed nucleic acid from degradation. Alternatively, when the nearby protein is a member of the SSB interactome, loading of the enzyme onto the DNA takes places.
Collapse
Affiliation(s)
- Piero R Bianco
- Center for Single Molecule Biophysics, Department of Biochemistry, University at Buffalo, Buffalo, NY, 14214, USA; Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
10
|
The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration. Nat Commun 2015; 5:3078. [PMID: 24452013 PMCID: PMC4146490 DOI: 10.1038/ncomms4078] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/06/2013] [Indexed: 01/15/2023] Open
Abstract
Alternative splicing of pre-messenger RNA (mRNA) is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA-binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The carboxy-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA. This domain is phosphorylated by the MEK/Erk (extracellular signal-regulated protein kinase) pathway and this modification is essential for the splicing regulatory activity and the nuclear/cytoplasmic translocation of DAZAP1. Using mRNA-seq, we identify endogenous splicing events regulated by DAZAP1, many of which are involved in maintaining cell growth. Knockdown or over-expression of DAZAP1 causes a cell proliferation defect. Taken together, these studies reveal a molecular mechanism that integrates splicing control into MEK/Erk-regulated cell proliferation.
Collapse
|
11
|
Perticaroli S, Ehlers G, Jalarvo N, Katsaras J, Nickels JD. Elasticity and Inverse Temperature Transition in Elastin. J Phys Chem Lett 2015; 6:4018-4025. [PMID: 26722771 DOI: 10.1021/acs.jpclett.5b01890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Elastin is a structural protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. We also measured the collective vibrations of elastin gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.
Collapse
Affiliation(s)
- Stefania Perticaroli
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Chemical and Materials Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Georg Ehlers
- Quantum Condensed Matter Division, Oak Ridge National Laboratory , P.O. Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Niina Jalarvo
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich , D-52425 Jülich, Germany
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, and JCNS Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Jonathan D Nickels
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- The Department of Physics and Astronomy, University of Tennessee, Knoxville , Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
Green EM, Peter Winlove C. The structure and mechanical properties of the proteins of lamprey cartilage. Biopolymers 2015; 103:187-202. [DOI: 10.1002/bip.22583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Ellen M. Green
- College of Engineering, Mathematics and Physical Sciences, School of Physics; University of Exeter, Exeter, EX4 4QL; United Kingdom
| | - C. Peter Winlove
- College of Engineering, Mathematics and Physical Sciences, School of Physics; University of Exeter, Exeter, EX4 4QL; United Kingdom
| |
Collapse
|
13
|
Heinz A, Schräder CU, Baud S, Keeley FW, Mithieux SM, Weiss AS, Neubert RHH, Schmelzer CEH. Molecular-level characterization of elastin-like constructs and human aortic elastin. Matrix Biol 2014; 38:12-21. [PMID: 25068896 DOI: 10.1016/j.matbio.2014.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
This study aimed to characterize the structures of two elastin-like constructs, one composed of a cross-linked elastin-like polypeptide and the other one of cross-linked tropoelastin, and native aortic elastin. The structures of the insoluble materials and human aortic elastin were investigated using scanning electron microscopy. Additionally, all samples were digested with enzymes of different specificities, and the resultant peptide mixtures were characterized by ESI mass spectrometry and MALDI mass spectrometry. The MS(2) data was used to sequence linear peptides, and cross-linked species were analyzed with the recently developed software PolyLinX. This enabled the identification of two intramolecularly cross-linked peptides containing allysine aldols in the two constructs. The presence of the tetrafunctional cross-link desmosine was shown for all analyzed materials and its quantification revealed that the cross-linking degree of the two in vitro cross-linked materials was significantly lower than that of native elastin. Molecular dynamics simulations were performed, based on molecular species identified in the samples, to follow the formation of elastin cross-links. The results provide evidence for the significance of the GVGTP hinge region of domain 23 for the formation of elastin cross-links. Overall, this work provides important insight into structural similarities and differences between elastin-like constructs and native elastin. Furthermore, it represents a step toward the elucidation of the complex cross-linking pattern of mature elastin.
Collapse
Affiliation(s)
- Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Christoph U Schräder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stéphanie Baud
- Laboratoire SiRMa, FRE CNRS/URCA 3481, Université de Reims Champagne-Ardenne, Reims, France; Plateforme de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Fred W Keeley
- Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| | | | - Anthony S Weiss
- School of Molecular Bioscience, University of Sydney, Sydney, Australia; Bosch Institute, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Reinhard H H Neubert
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
Tozzi S, Zanna N, Taddei P. Study on the interaction between gliadins and a coumarin as molecular model system of the gliadins-anthocyanidins complexes. Food Chem 2013; 141:3586-97. [PMID: 23993525 DOI: 10.1016/j.foodchem.2013.05.136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/20/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022]
Abstract
To clarify the conformational changes of gliadins (Glia) upon complexation with anthocyanidins (in particular cyanidin, Cya), the interaction of Glia with a coumarin derivative (3-ethoxycarbonylcoumarin, 3-EcC), having a benzocondensed structure similar to that of Cya, has been investigated by NMR, IR, and Raman spectroscopy under acidic and neutral conditions. Raman spectra showed that both molecules produce a similar effect on the Glia structure, i.e. an increase in the α-helix conformation and a decrease in β-sheet and β-turns content. In the presence of both molecules, this effect is more marked; the spectroscopic results showed that both Cya and 3-EcC interact with Glia and 3-EcC favors the complex formation with Glia. The results obtained in this study provide new insights into anthocyanidins-Glia interactions and may have relevance to human health, in the field of the attempts to modify gluten proteins to decrease allergen immunoreactivity.
Collapse
Affiliation(s)
- Silvia Tozzi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy.
| | | | | |
Collapse
|
15
|
Malinovska L, Kroschwald S, Alberti S. Protein disorder, prion propensities, and self-organizing macromolecular collectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:918-31. [PMID: 23328411 DOI: 10.1016/j.bbapap.2013.01.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/12/2012] [Accepted: 01/03/2013] [Indexed: 12/24/2022]
Abstract
Eukaryotic cells are partitioned into functionally distinct self-organizing compartments. But while the biogenesis of membrane-surrounded compartments is beginning to be understood, the organizing principles behind large membrane-less structures, such as RNA-containing granules, remain a mystery. Here, we argue that protein disorder is an essential ingredient for the formation of such macromolecular collectives. Intrinsically disordered regions (IDRs) do not fold into a well-defined structure but rather sample a range of conformational states, depending on the local conditions. In addition to being structurally versatile, IDRs promote multivalent and transient interactions. This unique combination of features turns intrinsically disordered proteins into ideal agents to orchestrate the formation of large macromolecular assemblies. The presence of conformationally flexible regions, however, comes at a cost, for many intrinsically disordered proteins are aggregation-prone and cause protein misfolding diseases. This association with disease is particularly strong for IDRs with prion-like amino acid composition. Here, we examine how disease-causing and normal conformations are linked, and discuss the possibility that the dynamic order of the cytoplasm emerges, at least in part, from the collective properties of intrinsically disordered prion-like domains. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
Affiliation(s)
- Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
16
|
Bochicchio B, Pepe A, Delaunay F, Lorusso M, Baud S, Dauchez M. Amyloidogenesis of proteolytic fragments of human elastin. RSC Adv 2013. [DOI: 10.1039/c3ra41893f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
17
|
Bochicchio B, Pepe A. Role of polyproline II conformation in human tropoelastin structure. Chirality 2012; 23:694-702. [PMID: 22135799 DOI: 10.1002/chir.20979] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this review, we present a comprehensive overview of the molecular studies on human tropoelastin domains accomplished by Tamburro and co-workers in the last decade. The used approach is the reductionist approach applied to human tropoelastin and is based on the observation that the tropoelastin gene exhibits a cassette-like organization, with a regular alternation of cross-linking and hydrophobic domains putatively responsible for the elasticity of the protein. The peculiar structure of human tropoelastin gene prompted us to study the isolated domains encoded by the exons of tropoelastin, with the perspective to get deep insights into the structural properties of the whole protein. At the molecular level, the results clearly evidence large flexibility of the polypeptide chains in the hydrophobic domains, which oscillate between rather extended and folded conformations. An important role was assigned to poly-proline II conformation considered as the hinge structure in the dynamic conformational equilibrium suggested for the hydrophobic domains. For the lysine-rich cross-linking domains, the structural studies exactly localized α-helix along the polypeptide sequence. Furthermore, at supramolecular level, these studies showed that several domains are able to self-assemble in two different aggregation patterns, the fibrous elastin-like structure for some proline-rich hydrophobic domains and the amyloid-like for some glycine-rich hydrophobic domains. Accordingly, the studies suggest that the reductionist approach was a valid tool for studying a complex protein, such as elastin, elucidating not only the structure but also the specific role played by its constituent domains.
Collapse
Affiliation(s)
- Brigida Bochicchio
- Laboratory of Protein Chemistry, Department of Chemistry A. M. Tamburro, University of Basilicata, Potenza, Italy.
| | | |
Collapse
|
18
|
Yeo GC, Keeley FW, Weiss AS. Coacervation of tropoelastin. Adv Colloid Interface Sci 2011; 167:94-103. [PMID: 21081222 DOI: 10.1016/j.cis.2010.10.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/14/2022]
Abstract
The coacervation of tropoelastin represents the first major stage of elastic fiber assembly. The process has been modeled in vitro by numerous studies, initially with mixtures of solubilized elastin, and subsequently with synthetic elastin peptides that represent hydrophobic repeat units, isolated hydrophobic domains, segments of alternating hydrophobic and cross-linking domains, or the full-length monomer. Tropoelastin coacervation in vitro is characterized by two stages: an initial phase separation, which involves a reversible inverse temperature transition of monomer to n-mer; and maturation, which is defined by the irreversible coalescence of coacervates into large species with fibrillar structures. Coacervation is an intrinsic ability of tropoelastin. It is primarily influenced by the number, sequence, and contextual arrangement of hydrophobic domains, although hydrophilic sequences can also affect the behavior of the hydrophobic domains and thus affect coacervation. External conditions including ionic strength, pH, and temperature also directly influence the propensity of tropoelastin to self-associate. Coacervation is an endothermic, entropically-driven process driven by the cooperative interactions of hydrophobic domains following destabilization of the clathrate-like water shielding these regions. The formation of such assemblies is believed to follow a helical nucleation model of polymerization. Coacervation is closely associated with conformational transitions of the monomer, such as increased β-structures in hydrophobic domains and α-helices in cross-linking domains. Tropoelastin coacervation in vivo is thought to mainly involve the central hydrophobic domains. In addition, cell-surface glycosaminoglycans and microfibrillar proteins may regulate the process. Coacervation is essential for progression to downstream elastogenic stages, and impairment of the process can result in elastin haploinsufficiency disorders such as supravalvular aortic stenosis.
Collapse
|
19
|
Muiznieks LD, Keeley FW. Proline periodicity modulates the self-assembly properties of elastin-like polypeptides. J Biol Chem 2010; 285:39779-89. [PMID: 20947499 PMCID: PMC3000959 DOI: 10.1074/jbc.m110.164467] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/23/2010] [Indexed: 11/06/2022] Open
Abstract
Elastin is a self-assembling protein of the extracellular matrix that provides tissues with elastic extensibility and recoil. The monomeric precursor, tropoelastin, is highly hydrophobic yet remains substantially disordered and flexible in solution, due in large part to a high combined threshold of proline and glycine residues within hydrophobic sequences. In fact, proline-poor elastin-like sequences are known to form amyloid-like fibrils, rich in β-structure, from solution. On this basis, it is clear that hydrophobic elastin sequences are in general optimized to avoid an amyloid fate. However, a small number of hydrophobic domains near the C terminus of tropoelastin are substantially depleted of proline residues. Here we investigated the specific contribution of proline number and spacing to the structure and self-assembly propensities of elastin-like polypeptides. Increasing the spacing between proline residues significantly decreased the ability of polypeptides to reversibly self-associate. Real-time imaging of the assembly process revealed the presence of smaller colloidal droplets that displayed enhanced propensity to cluster into dense networks. Structural characterization showed that these aggregates were enriched in β-structure but unable to bind thioflavin-T. These data strongly support a model where proline-poor regions of the elastin monomer provide a unique contribution to assembly and suggest a role for localized β-sheet in mediating self-assembly interactions.
Collapse
Affiliation(s)
- Lisa D. Muiznieks
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 and
| | - Fred W. Keeley
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 and
- the Department of Biochemistry, the University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
20
|
Muiznieks LD, Weiss AS, Keeley FW. Structural disorder and dynamics of elastin. Biochem Cell Biol 2010; 88:239-50. [PMID: 20453927 DOI: 10.1139/o09-161] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elastin is a self-assembling, extracellular-matrix protein that is the major provider of tissue elasticity. Here we review structural studies of elastin from over four decades, and draw together evidence for solution flexibility and conformational disorder that is inherent in all levels of structural organization. The characterization of disorder is consistent with an entropy-driven mechanism of elastic recoil. We conclude that conformational disorder is a constitutive feature of elastin structure and function.
Collapse
Affiliation(s)
- Lisa D Muiznieks
- Research Institute, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada.
| | | | | |
Collapse
|
21
|
Green E, Ellis R, Winlove P. The molecular structure and physical properties of elastin fibers as revealed by Raman microspectroscopy. Biopolymers 2008; 89:931-40. [DOI: 10.1002/bip.21037] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Nairn KM, Lyons RE, Mulder RJ, Mudie ST, Cookson DJ, Lesieur E, Kim M, Lau D, Scholes FH, Elvin CM. A synthetic resilin is largely unstructured. Biophys J 2008; 95:3358-3365. [PMID: 18586853 PMCID: PMC2547447 DOI: 10.1529/biophysj.107.119107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Proresilin is the precursor protein for resilin, an extremely elastic, hydrated, cross-linked insoluble protein found in insects. We investigated the secondary-structure distribution in solution of a synthetic proresilin (AN16), based on 16 units of the consensus proresilin repeat from Anopheles gambiae. Raman spectroscopy was used to verify that the secondary-structure distributions in cross-linked AN16 resilin and in AN16 proresilin are similar, and hence that solution techniques (such as NMR and circular dichroism) may be used to gain information about the structure of the cross-linked solid. The synthetic proresilin AN16 is an intrinsically unstructured protein, displaying under native conditions many of the characteristics normally observed in denatured proteins. There are no apparent alpha-helical or beta-sheet features in the NMR spectra, and the majority of backbone protons and carbons exhibit chemical shifts characteristic of random-coil configurations. Relatively few peaks are observed in the nuclear Overhauser effect spectra, indicating that overall the protein is dynamic and unstructured. The radius of gyration of AN16 corresponds to the value expected for a denatured protein of similar chain length. This high degree of disorder is also consistent with observed circular dichroism and Raman spectra. The temperature dependences of the NH proton chemical shifts were also measured. Most values were indicative of protons exposed to water, although smaller dependences were observed for glycine and alanine within the Tyr-Gly-Ala-Pro sequence conserved in all resilins found to date, which is the site of dityrosine cross-link formation. This result implies that these residues are involved in hydrogen bonds, possibly to enable efficient self-association and subsequent cross-linking. The beta-spiral model for elastic proteins, where the protein is itself shaped like a spring, is not supported by the results for AN16. Both the random-network elastomer model and the sliding beta-turn model are consistent with the data. The results indicate a flat energy landscape for AN16, with very little energy required to switch between conformations. This ease of switching is likely to lead to the extremely low energy loss on deformation of resilin.
Collapse
Affiliation(s)
- Kate M Nairn
- CSIRO Materials Science and Engineering, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Romuald Poteau
- Laboratoire de Physique et Chimie des Nano-Objets (UMR5215, CNRS-UPS-INSA), IRSAMC, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4, France
| | - Georges Trinquier
- Laboratoire de Physique et Chimie des Nano-Objets (UMR5215, CNRS-UPS-INSA), IRSAMC, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4, France
| |
Collapse
|
24
|
Dyksterhuis LB, Baldock C, Lammie D, Wess TJ, Weiss AS. Domains 17–27 of tropoelastin contain key regions of contact for coacervation and contain an unusual turn-containing crosslinking domain. Matrix Biol 2007; 26:125-35. [PMID: 17129717 DOI: 10.1016/j.matbio.2006.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/19/2006] [Accepted: 10/11/2006] [Indexed: 11/27/2022]
Abstract
The central region of tropoelastin including domains 19-25 of human tropoelastin forms a hot-spot for contacts during the inter-molecular association of tropoelastin by coacervation [Wise, S.G., Mithieux, S.M., Raftery, M.J. and Weiss, A.S (2005). "Specificity in the coacervation of tropoelastin: solvent exposed lysines." Journal of Structural Biology 149: 273-81.]. We explored the physical properties of this central region using a sub-fragment bordered by domains 17-27 of human tropoelastin (SHEL 17-27) and identified the intra- and inter-molecular contacts it forms during coacervation. A homobifunctional amine reactive crosslinker (with a maximum reach of 11 A, corresponding to approximately 7 residues in an extended polypeptide chain) was used to capture these contacts and crosslinked regions were identified after protease cleavage and mass spectrometry (MS) with MS/MS verification. An intermolecular crosslink formed between the lysines at positions 353 of each strand of tropoelastin at the lowest of crosslinker concentrations and was observed in all samples tested, suggesting that this residue forms an important initial contact during coacervation. At higher crosslinker concentrations, residues K425 and K437 showed the highest levels of involvement in crosslinks. An intramolecular crosslink between these K425 and K437, separated by 11 residues, indicated that a structural bend must serve to bring these residues into close proximity. These studies were complemented by small angle X-ray scattering studies that confirmed a bend in this important subfragment of the tropoelastin molecule.
Collapse
Affiliation(s)
- L B Dyksterhuis
- School of Molecular and Microbial Biosciences, University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
25
|
Shi Z, Chen K, Liu Z, Sosnick TR, Kallenbach NR. PII structure in the model peptides for unfolded proteins: studies on ubiquitin fragments and several alanine-rich peptides containing QQQ, SSS, FFF, and VVV. Proteins 2007; 63:312-21. [PMID: 16362932 DOI: 10.1002/prot.20788] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A great deal of attention has been paid lately to the structures in unfolded proteins due to the recent discovery of many biologically functional but natively unfolded proteins and the far-reaching implications of order in unfolded states for protein folding. Recently, studies on oligo-Ala, oligo-Lys, oligo-Asp, and oligo-Glu, as well as oligo-Pro, have indicated that the left-handed polyproline II (PII) is the major local structure in these short peptides. Here, we show by NMR and CD studies that ubiquitin fragments, model unfolded peptides composed of nonrepeating amino acids, and four alanine-rich peptides containing QQQ, SSS, FFF, and VVV sequences are all present in aqueous solution predominantly in the extended PII or beta conformation. The results from this and related studies indicate that PII might be a major backbone conformation in unfolded proteins. The presence of defined local backbone structure in unfolded proteins is inconsistent with predictions from random coil models.
Collapse
Affiliation(s)
- Zhengshuang Shi
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
26
|
Rauscher S, Baud S, Miao M, Keeley FW, Pomès R. Proline and Glycine Control Protein Self-Organization into Elastomeric or Amyloid Fibrils. Structure 2006; 14:1667-76. [PMID: 17098192 DOI: 10.1016/j.str.2006.09.008] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/28/2022]
Abstract
Elastin provides extensible tissues, including arteries and skin, with the propensity for elastic recoil, whereas amyloid fibrils are associated with tissue-degenerative diseases, such as Alzheimer's. Although both elastin-like and amyloid-like materials result from the self-organization of proteins into fibrils, the molecular basis of their differing physical properties is poorly understood. Using molecular simulations of monomeric and aggregated states, we demonstrate that elastin-like and amyloid-like peptides are separable on the basis of backbone hydration and peptide-peptide hydrogen bonding. The analysis of diverse sequences, including those of elastin, amyloids, spider silks, wheat gluten, and insect resilin, reveals a threshold in proline and glycine composition above which amyloid formation is impeded and elastomeric properties become apparent. The predictive capacity of this threshold is confirmed by the self-assembly of recombinant peptides into either amyloid or elastin-like fibrils. Our findings support a unified model of protein aggregation in which hydration and conformational disorder are fundamental requirements for elastomeric function.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular Structure and Function Programme, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
27
|
D'Souza AJM, Hart DS, Middaugh CR, Gehrke SH. Characterization of the Changes in Secondary Structure and Architecture of Elastin−Mimetic Triblock Polypeptides during Thermal Gelation. Macromolecules 2006. [DOI: 10.1021/ma060915j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ajit Joseph M. D'Souza
- Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and Chemical and Petroleum Engineering and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - David S. Hart
- Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and Chemical and Petroleum Engineering and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - C. Russell Middaugh
- Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and Chemical and Petroleum Engineering and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - Stevin H. Gehrke
- Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and Chemical and Petroleum Engineering and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
28
|
Sallach RE, Wei M, Biswas N, Conticello VP, Lecommandoux S, Dluhy RA, Chaikof EL. Micelle Density Regulated by a Reversible Switch of Protein Secondary Structure. J Am Chem Soc 2006; 128:12014-9. [PMID: 16953644 DOI: 10.1021/ja0638509] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein secondary structures may exhibit reversible transitions that occur in an abrupt and controllable manner. In this report, we demonstrate that such transitions may be utilized in the design of a "smart" protein micellar system, in which a stimulus-induced change in protein structure triggers a rapid change in micelle compacticity and size. Specifically, recombinant DNA methods were used to prepare a protein triblock copolymer containing a central hydrophilic block and two hydrophobic end blocks derived from elastin-mimetic peptide sequences. Below the copolymer inverse transition temperature (T(t)), dilute solutions of this amphiphilic protein formed monodispersed micelles in a narrow range of R(H) of approximately 100 nm. When the the temperature was raised above T(t), an abrupt increase in micelle internal density was observed with a concomitant reduction in micelle size. This reversible change in micelle compacticity was triggered by helix-to-sheet protein folding transition. Significantly, these protein polymer-based micelles, which are rapidly responsive to environmental stimuli, establish a new mechanism for the design of controlled drug delivery vehicles.
Collapse
Affiliation(s)
- Rory E Sallach
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Zhengshuang Shi
- Department of Chemistry, New York University, 100 Washington Place, New York, New York 10003-5180, USA
| | | | | | | |
Collapse
|
30
|
Tamburro AM, Bochicchio B, Pepe A. The dissection of human tropoelastin: from the molecular structure to the self-assembly to the elasticity mechanism. ACTA ACUST UNITED AC 2005; 53:383-9. [PMID: 16085114 DOI: 10.1016/j.patbio.2004.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
After a historical introduction the authors describe their most recent results on the structure, assembly and elasticity of elastin. Recent results obtained by analyzing the conformation of polypeptide sequences encoded by the single exons of human tropoelastin demonstrated the presence of labile conformations such as poly-proline II helix (PPII) and beta-turns whose stability is strongly dependent on the microenvironment. Stable, periodic structures, such as alpha-helices, are only present in the poly-alanine cross-linking domains. These findings give a strong experimental basis to the understanding of the molecular mechanism of elasticity of elastin. In particular, they strongly support the description of the native relaxed state of the protein in terms of trans-conformational equilibria between extended and folded structures as previously proposed [Int. J. Biochem. Cell. Biol. 31 (1999) 261]. The same polypeptide sequences have been analyzed for their ability to coacervate and to self-assembly. Although the great majority of them were shown to be able to adopt more or less organized structures, only a few were indeed able to coacervate. Studies carried out by transmission electron microscopy showed the polypeptides to adopt a variety of supramolecular structures going from a filamentous organization (typical of elastin) to amyloid-like fibers. On the whole, the results obtained gave significant insight to the roles played by specific polypeptide sequences in self-assembly and possibly in elasticity.
Collapse
|
31
|
Ramachandran S, Tseng Y, Yu YB. Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus. Biomacromolecules 2005; 6:1316-21. [PMID: 15877347 PMCID: PMC1475511 DOI: 10.1021/bm049284w] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pair of mutually attractive but self-repulsive decapeptides, with alternating charged/neutral amino acid sequence patterns, was found to co-assemble into a viscoelastic material upon mixing at a low total peptide concentration of 0.25 wt %. Circular dichroism spectroscopy of individual decapeptide solutions revealed their random coil conformation. Transmission electron microscopy images showed the nanofibrillar network structure of the hydrogel. Dynamic rheological characterization revealed its high elasticity and shear-thinning nature. Furthermore, the co-assembled hydrogel was capable of rapid recoveries from repeated shear-induced breakdowns, a property desirable for designing injectable biomaterials for controlled drug delivery and tissue engineering applications. A systematic variation of the neutral amino acids in the sequence revealed some of the design principles for this class of biomaterials. First, viscoelastic properties of the hydrogels can be tuned through adjusting the hydrophobicity of the neutral amino acids. Second, the beta-sheet propensity of the neutral amino acid residue in the peptides is critical for hydrogelation.
Collapse
Affiliation(s)
- Sivakumar Ramachandran
- Department of Pharmaceutics and Pharmaceutical Chemistry and Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
32
|
Mackay JP, Muiznieks LD, Toonkool P, Weiss AS. The hydrophobic domain 26 of human tropoelastin is unstructured in solution. J Struct Biol 2005; 150:154-62. [PMID: 15866738 DOI: 10.1016/j.jsb.2005.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 02/07/2005] [Indexed: 11/24/2022]
Abstract
Elastin is the protein responsible for the elastic properties of vertebrate tissue. Very little is currently known about the structure of elastin or of its soluble precursor tropoelastin. We have used high-resolution solution NMR methods to probe the conformational preferences of a conserved hydrophobic region in tropoelastin, domain 26 (D26). Using a combination of homonuclear, 15N-separated and triple resonance experiments, we have obtained essentially full chemical shift assignments for D26 at 278K. An analysis of secondary chemical shift changes, as well as NOE and 15N relaxation data, leads us to conclude that this domain is essentially unstructured in solution and does not interact with intact tropoelastin. D26 does not display exposed hydrophobic clusters, as expected for a fully unfolded protein and commensurate with an absence of flexible structural motifs, as identified by lack of binding of the fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. Sedimentation equilibrium data establish that this domain is strictly monomeric in solution. NMR spectra recorded at 278 and 308K indicate that no significant structural changes occur for this domain over the temperature range 278-308K, in contrast to the characteristic coacervation behavior that is observed for the full-length protein.
Collapse
Affiliation(s)
- Joel P Mackay
- School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
33
|
Tamburro AM, Pepe A, Bochicchio B, Quaglino D, Ronchetti IP. Supramolecular Amyloid-like Assembly of the Polypeptide Sequence Coded by Exon 30 of Human Tropoelastin. J Biol Chem 2005; 280:2682-90. [PMID: 15550396 DOI: 10.1074/jbc.m411617200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elastin is known to self-aggregate in twisted-rope filaments. However, an ultrastructural organization different from the fibrils typical of elastin, but rather similar to those shown by amyloid networks, is shown by the polypeptide sequence encoded by exon 30 of human tropoelastin. To better understand the molecular properties of this sequence to give amyloid fibers, we used CD, NMR, and FTIR (Fourier transform infrared spectroscopy) to identify the structural characteristics of the peptide. In this study, we have demonstrated, by FTIR, that antiparallel beta-sheet conformation is predominant in the exon 30 fibers. These physical-chemical studies were combined with transmission electron microscopy and atomic force microscopy to analyze the supramolecular structure of the self-assembled aggregate. These studies show the presence of fibrils that interact side-by-side probably originating from an extensive self-interaction of elemental cross beta-structures. Similar sequences, of the general type XGGZG(X, Z = V, L, A, I), are widely found in many proteins such as collagens IV and XVII, major prion protein precursor, amyloid beta A4 precursor protein-binding family, etc., thus suggesting that this sequence could be involved in contributing to the self-assembly of amyloid fibers even in other proteins.
Collapse
Affiliation(s)
- Antonio Mario Tamburro
- Department of Chemistry, Università della Basilicata, Via N. Sauro 85, 85100 Potenza, Italy
| | | | | | | | | |
Collapse
|
34
|
Moroy G, Alix AJP, Héry-Huynh S. Structural characterization of human elastin derived peptides containing the GXXP sequence. Biopolymers 2005; 78:206-20. [PMID: 15812830 DOI: 10.1002/bip.20276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The degradation of elastin, the insoluble biopolymer of tropoelastin, can lead to the production of small peptides. These elastin-derived peptides (EDPs) are playing a key role in cellular behavior within the extracellular matrix, showing a great variety of biological effects such as chemotaxis, stimulation of cell proliferation, ion flux modifications, vasorelaxation, and inflammatory enzymes secretion. It has also been demonstrated recently that EDPs containing the GXXPG motif could induce pro-MMP1 and pro-MMP3 upregulation. Elastolysis could then cause collagen degradation and play an important role in the aging process. Many experimental studies have been devoted to EDPs, but their structure/activity relationships are not well elucidated yet. However, the assumption that their active conformation is a type VIII beta-turn on GXXP was highly suggested on the basis of predictive statistical calculations. Investigation of the EDPs three-dimensional (3D) structure would provide useful information for drug-design strategies to propose specific inhibitors. The work presented here reports theoretical results obtained from molecular dynamics simulations performed over 128 human EDPs containing the GXXP motif. We show that all the peptides, for which the central residues are not glycines, adopt a canonical (or very close to) type VIII beta-turn structure on the GXXP sequence. Amino acids surrounding this motif are also important for the structural behavior. Any residue located before the GXXP motif (XGXXP) increases the beta-turn stabilization, whereas the residue located after GXXP (GXXPX) has no significant structural effect. Moreover, we show their biological activity can be correlated with their ability to exhibit a type VIII beta-turn conformation.
Collapse
Affiliation(s)
- Gautier Moroy
- Laboratoire de Spectroscopies et Structures BioMoléculaires (LSSBM), IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | | | | |
Collapse
|
35
|
Abstract
Elastin is a key extracellular matrix protein that is critical to the elasticity and resilience of many vertebrate tissues including large arteries, lung, ligament, tendon, skin, and elastic cartilage. Tropoelastin associates with multiple tropoelastin molecules during the major phase of elastogenesis through coacervation, where this process is directed by the precise patterning of mostly alternating hydrophobic and hydrophilic sequences that dictate intermolecular alignment. Massively crosslinked arrays of tropoelastin (typically in association with microfibrils) contribute to tissue structural integrity and biomechanics through persistent flexibility, allowing for repeated stretch and relaxation cycles that critically depend on hydrated environments. Elastin sequences interact with multiple proteins found in or colocalized with microfibrils, and bind to elastogenic cell surface receptors. Knowledge of the major stages in elastin assembly has facilitated the construction of in vitro models of elastogenesis, leading to the identification of precise molecular regions that are critical to elastin-based protein interactions.
Collapse
Affiliation(s)
- Suzanne M Mithieux
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|