1
|
Kost C, Scheffer U, Kalden E, Göbel MW. Efficient Cleavage of pUC19 DNA by Tetraaminonaphthols. ChemistryOpen 2024:e202400157. [PMID: 39460429 DOI: 10.1002/open.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 10/28/2024] Open
Abstract
In an attempt to create models of phosphodiesterases, we previously investigated bis(guanidinium) naphthols. Such metal-free anion receptors cleaved aryl phosphates and also plasmid DNA. Observed reaction rates, however, could not compete with those of highly reactive metal complexes. In the present study, we have replaced the guanidines by ethylene diamine side chains which accelerates the plasmid cleavage by compound 13 significantly (1 mM 13: t1/2=22 h). Further gains in reactivity are achieved by azo coupling of the naphthol unit. The electron accepting azo group decreases the pKa of the hydroxy group. It can also serve as a dye label and a handle for attaching DNA binding moieties. The resulting azo naphthol 17 not only nicks (1 mM 17: t1/2~1 h) but also linearizes pUC19 DNA. Although the high reactivity of 17 seems to result in part from aggregation, in the presence of EDTA azo naphthol 17 obeys first order kinetics (1 mM 17: t1/2=4.8 h), reacts four times faster than naphthol 13 and surpasses by far the former bis(guanidinium) naphthols 4 and 5.
Collapse
Affiliation(s)
- Catharina Kost
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Elisabeth Kalden
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Michael Wilhelm Göbel
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität, Frankfurt am Main, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Liew H, Tessonnier T, Mein S, Magro G, Glimelius L, Coniavitis E, Held T, Haberer T, Abdollahi A, Debus J, Dokic I, Mairani A. Robustness of carbon-ion radiotherapy against DNA damage repair associated radiosensitivity variation based on a biophysical model. Med Phys 2024; 51:3782-3795. [PMID: 38569067 DOI: 10.1002/mp.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Interpatient variation of tumor radiosensitivity is rarely considered during the treatment planning process despite its known significance for the therapeutic outcome. PURPOSE To apply our mechanistic biophysical model to investigate the biological robustness of carbon ion radiotherapy (CIRT) against DNA damage repair interference (DDRi) associated patient-to-patient variability in radiosensitivity and its potential clinical advantages against conventional radiotherapy approaches. METHODS AND MATERIALS The "UNIfied and VERSatile bio response Engine" (UNIVERSE) was extended by carbon ions and its predictions were compared to a panel of in vitro and in vivo data including various endpoints and DDRi settings within clinically relevant dose and linear energy transfer (LET) ranges. The implications of UNIVERSE predictions were then assessed in a clinical patient scenario considering DDRi variance. RESULTS UNIVERSE tests well against the applied benchmarks. While in vitro survival curves were predicted with an R2 > 0.92, deviations from in vivo RBE data were less than 5.6% The conducted paradigmatic patient plan study implies a markedly reduced significance of DDRi based radiosensitivity variability in CIRT (13% change ofD 50 ${{D}_{50}}$ in target) compared to conventional radiotherapy (62%) and that boosting the LET within the target further amplifies this robustness of CIRT (8%). In the case of heightened tumor radiosensitivity, a dose de-escalation strategy for photons allows a reduction of the maximum effective dose within the normal tissue (NT) from aD 2 ${{D}_2}$ of 2.65 to 1.64 Gy, which lies below the level found for CIRT (D 2 ${{D}_2}$ = 2.41 Gy) for the analyzed plan and parameters. However, even after de-escalation, the integral effective dose in the NT is found to be substantially higher for conventional radiotherapy in comparison to CIRT (D m e a n ${{D}_{mean}}$ of 0.75, 0.46, and 0.24 Gy for the conventional plan, its de-escalation and CIRT, respectively). CONCLUSIONS The framework offers adequate predictions of in vitro and in vivo radiation effects of CIRT while allowing the consideration of DRRi based solely on parameters derived from photon data. The results of the patient planning study underline the potential of CIRT to minimize important sources of interpatient divergence in therapy outcome, especially when combined with techniques that allow to maximize the LET within the tumor. Despite the potential of de-escalation strategies for conventional radiotherapy to reduce the maximum effective dose in the NT, CIRT appears to remain a more favorable option due to its ability to reduce the integral effective dose within the NT.
Collapse
Affiliation(s)
- Hans Liew
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giuseppe Magro
- National Center for Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | | | - Thomas Held
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Hata M, Ueno J, Hitomi Y, Kodera M. Roles of DNA Target in Cancer Cell-Selective Cytotoxicity by Dicopper Complexes with DNA Target/Ligand Conjugates. ACS OMEGA 2023; 8:28690-28701. [PMID: 37576680 PMCID: PMC10413468 DOI: 10.1021/acsomega.3c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
The DNA target/ligand conjugates (HLX, X = Pn and Mn, n = 1-3) were synthesized where various lengths of -CONH(CH2CH2O)nCH2CH2NHCO- linkers with a 9-phenanthrenyl (P) or methyl (M) terminal as DNA targets replace the methyl group of 2,6-di(amide-tether cyclen)-p-cresol ligand (HL). DNA binding, DNA cleavage, cellular uptake, and cytotoxicity of [Cu2(μ-OH)(LX)](ClO4)2 (1X) are examined and compared with those of [Cu2(μ-OH)(L)](ClO4)2 (1) to clarify roles of DNA targets. Upon reaction of 1X with H2O2, μ-1,1-O2H complexes are formed for DNA cleavage. 1P1, 1P2, and 1P3 are 22-, 11-, 3-fold more active for conversion of Form II to III in the cleavage of supercoiled plasmid DNA with H2O2 than 1, where the short P-linker may fix a dicopper moiety within a small number of base pairs to facilitate DNA double-strand breaks (dsb). This enhances the proapoptotic activity of 1P1, 1P2, and 1P3, which are 30-, 12-, and 9.9-fold cytotoxic against HeLa cells than 1. DNA dsb and cytotoxicity are 44% correlated in 1P1-3 but 5% in 1M1-3, suggesting specific DNA binding of P-linkers and nonspecific binding of M-linkers in biological cells. 1P1-3 exert cancer cell-selective cytotoxicity against lung and pancreas cancer and normal cells where the short P-linker enhances the selectivity, but 1M1-3 do not. Intracellular visualization, apoptosis assay, and caspase activity assay clarify mitochondrial apoptosis caused by 1P1-3. The highest cancer cell selectivity of 1P1 may be enabled by the short P-linker promoting dsb of mitochondrial DNA with H2O2 increased by mitochondrial dysfunction in cancer cells.
Collapse
Affiliation(s)
- Machi Hata
- Molecular Chemistry and Biochemistry, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe 610-0321, Japan
| | - Jin Ueno
- Molecular Chemistry and Biochemistry, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe 610-0321, Japan
| | - Yutaka Hitomi
- Molecular Chemistry and Biochemistry, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe 610-0321, Japan
| | - Masahito Kodera
- Molecular Chemistry and Biochemistry, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe 610-0321, Japan
| |
Collapse
|
4
|
Liew H, Meister S, Mein S, Tessonnier T, Kopp B, Held T, Haberer T, Abdollahi A, Debus J, Dokic I, Mairani A. Combined DNA Damage Repair Interference and Ion Beam Therapy: Development, Benchmark, and Clinical Implications of a Mechanistic Biological Model. Int J Radiat Oncol Biol Phys 2021; 112:802-817. [PMID: 34710524 DOI: 10.1016/j.ijrobp.2021.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Our purpose was to develop a mechanistic model that describes and predicts radiation response after combined DNA damage repair interference (DDRi) and particle radiation therapy. METHODS AND MATERIALS The heterogeneous dose distributions of protons and 4He ions were implemented into the "UNIfied and VERSatile bio-response Engine" (UNIVERSE). Predictions for monoenergetic and mixed fields over clinically relevant dose and linear energy transfer range were compared with experimental in vitro survival data measured in this work as well as data available in the literature, including different cell lines and DDR interferences. Ultimately, UNIVERSE predictions were investigated in a patient plan. RESULTS UNIVERSE accurately predicts survival of cell lines with and without DDRi in clinical settings of ion beam therapy based only on 3 parameters derived from photon data. With increasing dose or linear energy transfer, the radiosensitizing effect of DDRi decreases, resulting in diminished relative biological effect of ion beam radiation for cells subjected to DDRi in comparison to cells that are not. Similar trends were observed in patient plan recalculations; however, this analysis also suggests that DDRi + particle radiation therapy may better preserve the therapeutic window in comparison to DDRi + photon radiation therapy. CONCLUSIONS The presented framework represents the first mechanistic model of combined DDRi and particle radiation therapy comprehensively benchmarked in clinically relevant scenarios and a step toward more personalized treatment. It reveals potential differences between DDRi + photon radiation therapy versus DDRi + particle radiation therapy, which have not been described so far. UNIVERSE could aid in appraising the clinical viability of combined administration of radiosensitizing drugs and charged particle therapy, as well as the identification of patients with known DDR deficiencies in the tumor who might benefit from therapy with light ions, freeing limited space at heavy ion therapy centers.
Collapse
Affiliation(s)
- Hans Liew
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sarah Meister
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biology, Heidelberg University, Heidelberg, Germany
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg Institute of Radiation Oncology (HIRO), University Hospital Heidelberg, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg Institute of Radiation Oncology (HIRO), University Hospital Heidelberg, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.
| |
Collapse
|
5
|
Parveen S, Cowan JA, Yu Z, Arjmand F. Enantiomeric copper based anticancer agents promoting sequence-selective cleavage of G-quadruplex telomeric DNA and non-random cleavage of plasmid DNA. Metallomics 2021; 12:988-999. [PMID: 32400839 DOI: 10.1039/d0mt00084a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Copper-based binuclear enantiomeric complexes 1S and 1R were synthesized as anticancer chemotherapeutic agents to target G-quadruplex rich region of DNA and thoroughly characterized by various spectroscopic and single X-ray crystal diffraction studies. The structure elucidation of Schiff base ligand LS and complexes 1S & 1R, was carried out by single crystal X-ray studies which showed that ligand crystallized in the monoclinic P21/n space group while complexes 1S and 1R crystallized in triclinic space groups P1[combining macron] and P1, respectively with two copper units connected to each other via an alkoxide bridge to exhibit square planar geometry which is in good agreement with other spectroscopic studies {IR, ESI-MS, EPR and magnetic moment values}. In vitro binding studies of complexes 1S and 1R were carried out with G-quadruplex DNA and CT-DNA which showed higher binding affinity and selectivity toward quadruplex DNA over the duplex DNA. To validate the potential of complexes to act as therapeutic drug candidates, the cleavage studies of complexes 1S and 1R were carried out with G-quadruplex telomeric DNA by PAGE Gel assay which showed sequence selective cleavage of 22G4via oxidative cleavage pathway. The major cleavage sites identified were G15, T6, G8, G9, G14 for complex 1S whereas for 1R G15, G20, G21, G14 cleavage sites were observed. Furthermore, these complexes were capable of cleaving pUC19 plasmid DNA in double-stranded non-random fashion which is considered to be more potent than single-strand cleavage as a source of lethal DNA lesions. Cellular studies of 1S and 1R were performed on a panel of human cancer cell lines; Huh7, MCF7, BxPC3 and AsPC1, which displayed significant cytotoxicity and differential responses toward different cancer phenotypes.
Collapse
Affiliation(s)
- Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Zhen Yu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Portelinha J, Angeles-Boza AM. The Antimicrobial Peptide Gad-1 Clears Pseudomonas aeruginosa Biofilms under Cystic Fibrosis Conditions. Chembiochem 2021; 22:1646-1655. [PMID: 33428273 DOI: 10.1002/cbic.202000816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specifically Pseudomonas aeruginosa biofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo-antimicrobial peptide Gaduscidin-1 (Gad-1) eradicates established P. aeruginosa biofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad-1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad-1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA.,Institute of Material Science, University of Connecticut, 97 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| |
Collapse
|
7
|
Singh P, Kumar R, Singh AK, Yadav P, Khanna RS, Vinayak M, Tewari AK. Synthesis and crystal structure of quinolinium salt: Assignment on nonsteroidal anti-inflammatory activity and DNA cleavage activity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Zhou H, Gao J, Chen Z, Duan S, Li C, Qiao R. Double-strand cleavage of DNA by a polyamide-phenazine-di-N-oxide conjugate. Bioorg Med Chem Lett 2017; 28:284-288. [PMID: 29292228 DOI: 10.1016/j.bmcl.2017.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/23/2017] [Indexed: 11/15/2022]
Abstract
Phenazine and its derivatives have been widely applied as nucleic acid cleavage agents due to active oxygen activating the C-H bond of the substrate. However, diffusion of oxygen radicals limits their potential applications in the DNA-targeted metal-free drug. Introduction of groove binder moiety such as polyamide enhanced the regional stability of radical molecules and reduced cytotoxicity of the drugs. In this work, we described the design and synthesis of a polyamide-modified phenazine-di-N-oxide as a DNA double-strand cleavage agent. The gel assays showed the hybrid conjugates can effectively break DNA double strands in a non-random manner under physiological conditions. The probable binding mode to DNA was investigated by sufficient spectral experiments, revealing weak interaction between hybrid ligand and nucleic acid molecules. The results of our study have implications on the design of groove-binding hybrid molecules as new artificial nucleases and may provide a strategy for developing efficient and safe DNA cleavage reagents.
Collapse
Affiliation(s)
- Hang Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Juanhong Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhaohang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shan Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences, Peking University Health Sciences Center, Beijing 100083, PR China.
| |
Collapse
|
9
|
Libardo MDJ, Bahar AA, Ma B, Fu R, McCormick LE, Zhao J, McCallum SA, Nussinov R, Ren D, Angeles-Boza AM, Cotten ML. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS J 2017; 284:3662-3683. [PMID: 28892294 PMCID: PMC6361529 DOI: 10.1111/febs.14263] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
Host-defense peptides (HDPs) feature evolution-tested potency against life-threatening pathogens. While piscidin 1 (p1) and piscidin 3 (p3) are homologous and potent fish HDPs, only p1 is strongly membranolytic. Here, we hypothesize that another mechanism imparts p3 strong potency. We demonstrate that the N-termini of both peptides coordinate Cu2+ and p3-Cu cleaves isolated DNA at a rate on par with free Cu2+ but significantly faster than p1-Cu. On planktonic bacteria, p1 is more antimicrobial but only p3 features copper-dependent DNA cleavage. On biofilms and persister cells, p3-Cu is more active than p1-Cu, commensurate with stronger peptide-induced DNA damage. Molecular dynamics and NMR show that more DNA-peptide interactions exist with p3 than p1, and the peptides adopt conformations simultaneously poised for metal- and DNA-binding. These results generate several important conclusions. First, homologous HDPs cannot be assumed to have identical mechanisms since p1 and p3 eradicate bacteria through distinct relative contributions of membrane and DNA-disruptive effects. Second, the nuclease and membrane activities of p1 and p3 show that naturally occurring HDPs can inflict not only physicochemical but also covalent damage. Third, strong nuclease activity is essential for biofilm and persister cell eradication, as shown by p3, the homolog more specific toward bacteria and more expressed in vascularized tissues. Fourth, p3 combines several physicochemical properties (e.g., Amino Terminal Copper and Nickel binding motif; numerous arginines; moderate hydrophobicity) that confer low membranolytic effects, robust copper-scavenging capability, strong interactions with DNA, and fast nuclease activity. This new knowledge could help design novel therapeutics active against hard-to-treat persister cells and biofilms.
Collapse
Affiliation(s)
| | - Ali A Bahar
- Department of Biomedical and Chemical Engineering, Syracuse University, NY, USA
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | | | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Scott A McCallum
- Rennselaer Polytechnic Institute, Center for Biotechnology & Interdisciplinary Studies, Troy, NY, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Israel
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, NY, USA
- Syracuse Biomaterials Institute, Syracuse University, NY, USA
- Department of Civil and Environmental Engineering, Syracuse University, NY, USA
- Department of Biology, Syracuse University, NY, USA
| | | | - Myriam L Cotten
- Department of Applied Science, College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
10
|
Buch T, Scifoni E, Krämer M, Durante M, Scholz M, Friedrich T. Modeling Radiation Effects of Ultrasoft X Rays on the Basis of Amorphous Track Structure. Radiat Res 2017; 189:32-43. [PMID: 29073360 DOI: 10.1667/rr14653.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is experimental evidence that ultrasoft X rays (0.1-5 keV) show a higher biological effectiveness than high-energy photons. Similar to high-LET radiation, this is attributed to a rather localized dose distribution associated with a considerably smaller range of secondary electrons, which results in an increasing yield of double-strand breaks (DSBs) and potentially more complex lesions. We previously reported on the application of the Giant LOop Binary LEsion (GLOBLE) model to ultrasoft X rays, in which experimental values of the relative biological effectiveness (RBE) for DSB induction were used to show that this increasing DSB yield was sufficient to explain the enhanced effectiveness in the cell inactivation potential of ultrasoft X rays. Complementary to GLOBLE, we report here on a modeling approach to predict the increased DSB yield of ultrasoft X rays on the basis of amorphous track structure formed by secondary electrons, which was derived from Monte Carlo track structure simulations. This procedure is associated with increased production of single-strand break (SSB) clusters, which are caused by the highly localized energy deposition pattern induced by low-energy photons. From this, the RBE of ultrasoft X rays can be determined and compared to experimental data, showing that the inhomogeneity of the energy deposition pattern represents the key variable to describe the increased biological effectiveness of ultrasoft X rays. Thus, this work demonstrates an extended applicability of the amorphous track structure concept and tests its limits with respect to its predictive power. The employed model mechanism offers a possible explanation for how the cellular response to ultrasoft X rays is directly linked to the energy deposition properties on the nanometric scale.
Collapse
Affiliation(s)
- Tamara Buch
- a GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany.,b Technische Universität Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Emanuele Scifoni
- c Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), Trento, Italy
| | - Michael Krämer
- a GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
| | - Marco Durante
- c Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), Trento, Italy
| | - Michael Scholz
- a GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
| | - Thomas Friedrich
- a GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany
| |
Collapse
|
11
|
Abstract
(-)-Lomaiviticin A (4) is a complex C2-symmetric bacterial metabolite that contains two diazofluorene functional groups. The diazofluorene consists of naphthoquinone, cyclopentadiene, and diazo substituents fused through a σ- and π-bonding network. Additionally, (-)-lomaiviticin A (4) is a potent cytotoxin, with half-maximal inhibitory potency (IC50) values in the low nanomolar range against many cancer cell lines. Because of limitations in supply, its mechanism of action had remained a "black box" since its isolation in the early 2000s. In this Account, I describe how studies directed toward the total synthesis of (-)-lomaiviticin A (4) provided a platform to elucidate the emergent properties of this metabolite and thereby connect chemical reactivity with cellular phenotype. We first developed a convergent strategy to prepare the diazofluorene (9 + 10 → 13). We then adapted this chemistry to the synthesis of lomaiviticin aglycon (21/22) and the natural monomeric diazofluorene (-)-kinamycin F (3). The key step in the lomaiviticin aglycon (21/22) synthesis involved the stereoselective oxidative coupling of two monomeric diazofluorenes (2 × 18 → 20) to establish the cojoining carbon-carbon bond of the target. As the absolute stereochemistry of the aglycon and carbohydrate residues of (-)-lomaiviticin A (4) were unknown, we developed a semisynthetic route to the metabolite that proceeds in one step and 42% yield by diazo transfer to the more abundant isolate (-)-lomaiviticin C (6). This allowed us to complete the stereochemical assignment of (-)-lomaiviticin A (4) and provided a renewable source of material. Using this material, we established that the remarkable cytotoxic effects of (-)-lomaiviticin A (4) derive from the induction of highly toxic double-strand breaks (DSBs) in DNA. At the molecular level, 1,7-nucleophilic additions to each electrophilic diazofluorene trigger homolytic decomposition pathways that produce sp2 radicals at the carbon atoms of each diazo group. These radicals abstract hydrogen atoms from the deoxyribose of DNA, a process known to initiate strand cleavage. NMR spectroscopy and molecular mechanics simulations were used to elucidate the mode of DNA binding. These studies showed that both diazofluorenes of (-)-lomaiviticin A (4) penetrate into the duplex. This mode of non-covalent binding places each diazo carbon atom in close proximity to each DNA strand. Throughout these studies, isolates containing one diazofluorene, such as (-)-lomaiviticin C (6) and (-)-kinamycin C (2), were used as controls. Consistent with our mechanistic model, these compounds do not induce DSBs in DNA and are several orders of magnitude less potent. Reactivity studies suggest that (-)-lomaiviticin A (4) is more electrophilic than simple monomeric diazofluorenes. We attribute this to through-space delocalization of the developing negative charge in the transition state for 1,7-addition. Consistent with this mechanism of action, (-)-lomaiviticin A (4) displays selective low-picomolar potencies toward DNA DSB repair-deficient cell types. The emergent properties of (-)-lomaiviticin A (4) derive from the specific arrangement of diazo, naphthoquinone, cyclopentadiene, and ketone functional groups. These functional groups work together to yield, essentially, a masked vinyl radical that can be exposed under biological conditions. Furthermore, the rotational symmetry of the metabolite, deriving from dimerization, allows it to interact with the antiparallel symmetry of DNA and affect cleavage of the duplex.
Collapse
Affiliation(s)
- Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States. Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Hilbert BJ, Hayes JA, Stone NP, Xu RG, Kelch BA. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain. Nucleic Acids Res 2017; 45:3591-3605. [PMID: 28082398 PMCID: PMC5389665 DOI: 10.1093/nar/gkw1356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/05/2017] [Indexed: 01/07/2023] Open
Abstract
Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA.
Collapse
Affiliation(s)
- Brendan J. Hilbert
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Janelle A. Hayes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas P. Stone
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rui-Gang Xu
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA,To whom correspondence should be addressed. Tel: +1 508 856 8322; Fax: +1 508 856 6464;
| |
Collapse
|
13
|
Kaya K, Roy S, Nogues JC, Rojas JC, Sokolikj Z, Zorio DAR, Alabugin IV. Optimizing Protonation States for Selective Double-Strand DNA Photocleavage in Hypoxic Tumors: pH-Gated Transitions of Lysine Dipeptides. J Med Chem 2016; 59:8634-47. [DOI: 10.1021/acs.jmedchem.6b01164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kemal Kaya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
- Department
of Chemistry, Dumlupınar University, Kütahya, 43100 Turkey
| | - Saumya Roy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Juan Carlos Nogues
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Juan Camilo Rojas
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Zlatko Sokolikj
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Diego A. R. Zorio
- Department of Biomedical Sciences, College
of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
14
|
Ida S, Iwamaru K, Fujita M, Okamoto Y, Kudo Y, Kurosaki H, Otsuka M. l-Histidyl-glycyl-glycyl-l-histidine. Amino-acid structuring of the bleomycin-type pentadentate metal-binding environment capable of efficient double-strand cleavage of plasmid DNA. Bioorg Chem 2015; 62:8-14. [DOI: 10.1016/j.bioorg.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/09/2015] [Accepted: 06/29/2015] [Indexed: 11/28/2022]
|
15
|
A pyrene dihydrodioxin with pyridinium “arms”: A photochemically active DNA cleaving agent with unusual duplex stabilizing and electron trapping properties. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Hybrid peptide ATCUN-sh-Buforin: Influence of the ATCUN charge and stereochemistry on antimicrobial activity. Biochimie 2015; 113:143-55. [PMID: 25891844 DOI: 10.1016/j.biochi.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/08/2015] [Indexed: 11/21/2022]
Abstract
The emergence of antibiotic resistant strains of bacteria has resulted in the need to develop more potent antimicrobials that target microorganisms in a novel manner. Antimicrobial Peptides (AMPs) show great potential for drug development because of their broad activity and unique mechanism of action. Several AMPs contain an Amino Terminal Copper and Nickel (ATCUN) binding motif; however, its function has not yet been determined. We have previously demonstrated that the activity of a truncated version of Buforin II (sh-Buforin, RAGLQFPVGRVHRLLRK-NH2) increases by the addition of an ATCUN motif. We now focus our current studies on understanding the effect of: 1) a positively charged ATCUN sequence, and 2) l-to-d amino acid substitution on the hybrid peptides. We identified that the addition of a positively charged ATCUN motif increases the affinity of the ATCUN-AMP for DNA but does not always result in an enhanced antimicrobial activity over a neutral ATCUN motif. The all-d peptides exhibited up to a 32-fold increase in antimicrobial activity compared to the all-l peptides. The larger activity of the all-d peptides is the result of a larger DNA cleavage activity and higher stability towards proteolysis. Cytotoxicity assays determined that, at their MIC, these peptides caused less than 8% hemolysis and, at 128 μM, no toxicity to HeLa and HEK293 cell lines. These results indicate that the ATCUN-AMP hybrids are an attractive alternative for treating infectious diseases and provide key insights into the role of the ATCUN motif in naturally-occurring AMPs.
Collapse
|
17
|
Chitrapriya N, Shin JH, Hwang IH, Kim Y, Kim C, Kim SK. Synthesis, DNA binding profile and DNA cleavage pathway of divalent metal complexes. RSC Adv 2015. [DOI: 10.1039/c5ra10695h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Divalent metal complexes of dipyridylamine ligand with an anthracene moiety induced considerable oxidative DNA cleavage in the presence hydrogen peroxide and dioxygen.
Collapse
Affiliation(s)
| | - Jong Heon Shin
- Department of Chemistry
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - In Hong Hwang
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Republic of Korea
| | - Youngmee Kim
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Republic of Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials
- Seoul National University of Science and Technology
- Seoul 139-743
- Republic of Korea
| | - Seog K. Kim
- Department of Chemistry
- Yeungnam University
- Gyeongsan
- Republic of Korea
| |
Collapse
|
18
|
Ma C, Chen H, Li C, Zhang J, Qiao R. An IDB-containing low molecular weight short peptide as an efficient DNA cleavage reagent. Org Biomol Chem 2015; 13:4524-31. [DOI: 10.1039/c4ob02518k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present poly(aspartic acid) grafting bis-amine conjugates as artificial nucleases, which can effectively induce double-strand DNA cleavage.
Collapse
Affiliation(s)
- Chunying Ma
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Huan Chen
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Jin Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- P. R. China
- State Key Laboratory of Medicinal Chemical Biology
| |
Collapse
|
19
|
Chitrapriya N, Wang W, Jang YJ, Kim SK, Kim JH. Ligand effect and cooperative role of metal ions on the DNA cleavage efficiency of mono and binuclear Cu(II) macrocyclic ligands complexes. J Inorg Biochem 2014; 140:153-9. [PMID: 25108187 DOI: 10.1016/j.jinorgbio.2014.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/24/2022]
Abstract
Two binuclear Cu(II) complexes of N-functionalized macrocycle ligands, namely 1,3-bis(1,4,7-triaza-1-cyclonomyl)propane and 1-(3-(1,4,7-triazonan-1-yl)propyl)-1,4,7,10-tetraazacyclo-dodecane, were synthesized and their ability to hydrolyze the cleavage of supercoiled plasmid DNA (pBR322) was compared with that of structurally related non-functionalized mononuclear Cu(II) complexes. The former, binuclear Cu(II) complex with the symmetrical ligand exhibited enhanced double-strand cleavage activity compared to the other three complexes at the same [Cu(2+)] concentration. In contrast, the latter binuclear complex with unsymmetrical macrocylic ligand did not give rise to double-strand DNA cleavage. The linear DNA formation induced by the mononuclear Cu(II) 1,4,7,10-tetraazacyclo-dodecane complex was realized via a non-random double-stranded scission process. The differential cleavage activity is discussed in relation to dimer formation, effective cooperation and coordination environment of the metal center. The hydrolytic cleavage by the copper complexes without H2O2 is supported by evidence from an anaerobic reaction, free radical quenching, and nitro blue tetrazolium assay. In contrast, both the binuclear complexes cleaved supercoiled DNA efficiently to Form III (linearized DNA) in the presence of H2O2, indicating that nuclearity is a crucial parameter in oxidative cleavage. The radical scavenger inhibition study and nitro blue tetrazolium assay suggested the involvement of H2O2 and superoxide ions in the oxidative cleavage of DNA by the binuclear complexes.
Collapse
Affiliation(s)
- Nataraj Chitrapriya
- Department of Chemistry, Yeungnam University, Gyeongsan City, Gyeong-buk 712-749, Republic of Korea
| | - Wei Wang
- Department of Chemistry, Yeungnam University, Gyeongsan City, Gyeong-buk 712-749, Republic of Korea
| | - Yoon Jung Jang
- Department of Chemistry, Yeungnam University, Gyeongsan City, Gyeong-buk 712-749, Republic of Korea
| | - Seog K Kim
- Department of Chemistry, Yeungnam University, Gyeongsan City, Gyeong-buk 712-749, Republic of Korea.
| | - Jung Hee Kim
- Department of Chemistry, Sun Moon University, Asan, Chungnam 336-708, Republic of Korea.
| |
Collapse
|
20
|
Colis LC, Woo CM, Hegan DC, Li Z, Glazer PM, Herzon SB. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA. Nat Chem 2014; 6:504-10. [PMID: 24848236 PMCID: PMC4090708 DOI: 10.1038/nchem.1944] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/04/2014] [Indexed: 11/09/2022]
Abstract
The metabolite (-)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar-picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (-)-lomaiviticin A nicks and cleaves plasmid DNA by a pathway that is independent of reactive oxygen species and iron, and that the potent cytotoxicity of (-)-lomaiviticin A arises from the induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3 ± 0.6:1. Labelling studies suggest that this cleavage occurs via a radical pathway. The structurally related isolates (-)-lomaiviticin C and (-)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (-)-lomaiviticin A compared to that of other members of this family.
Collapse
Affiliation(s)
- Laureen C Colis
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Christina M Woo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Denise C Hegan
- Departments of Therapeutic Radiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Zhenwu Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Peter M Glazer
- Departments of Therapeutic Radiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
21
|
Zhang Y, Wang Q, Wen J, Wang X, Mahmood MHR, Ji L, Liu H. DNA Binding and Oxidative Cleavage by a Water-soluble Carboxyl Manganese(III) Corrole. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
van Dongen SFM, Clerx J, Nørgaard K, Bloemberg TG, Cornelissen JJLM, Trakselis MA, Nelson SW, Benkovic SJ, Rowan AE, Nolte RJM. A clamp-like biohybrid catalyst for DNA oxidation. Nat Chem 2013; 5:945-51. [DOI: 10.1038/nchem.1752] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 08/08/2013] [Indexed: 11/09/2022]
|
23
|
Shimobayashi SF, Iwaki T, Mori T, Yoshikawa K. Probability of double-strand breaks in genome-sized DNA by γ-ray decreases markedly as the DNA concentration increases. J Chem Phys 2013; 138:174907. [PMID: 23656159 DOI: 10.1063/1.4802993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By use of the single-molecule observation, we count the number of DNA double-strand breaks caused by γ-ray irradiation with genome-sized DNA molecules (166 kbp). We find that P1, the number of double-strand breaks (DSBs) per base pair per unit Gy, is nearly inversely proportional to the DNA concentration above a certain threshold DNA concentration. The inverse relationship implies that the total number of DSBs remains essentially constant. We give a theoretical interpretation of our experimental results in terms of attack of reactive species upon DNA molecules, indicating the significance of the characteristics of genome-sized giant DNA as semiflexible polymers for the efficiency of DSBs.
Collapse
|
24
|
Zhao Y, Gong T, Yu Z, Zhu S, He W, Ni T, Guo Z. Oxidative DNA cleavage promoted by polynuclear copper complexes bearing iminodiacetate chelator. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Fedor Y, Vignard J, Nicolau-Travers ML, Boutet-Robinet E, Watrin C, Salles B, Mirey G. From single-strand breaks to double-strand breaks during S-phase: a new mode of action of theEscherichia coli Cytolethal Distending Toxin. Cell Microbiol 2012; 15:1-15. [DOI: 10.1111/cmi.12028] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Y. Fedor
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - J. Vignard
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - M.-L. Nicolau-Travers
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - E. Boutet-Robinet
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - C. Watrin
- INRA; USC 1360; F-31300 Toulouse France
- Université de Toulouse; UPS; Centre de Physiopathologie de Toulouse Purpan (CPTP); F-31400 Toulouse France
- Inserm; UMR1043; F-31300 Toulouse France
- CNRS; UMR5282; F-31400 Toulouse France
| | - B. Salles
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - G. Mirey
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| |
Collapse
|
26
|
Raman N, Sobha S, Selvaganapathy M, Mahalakshmi R. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:698-708. [PMID: 22885083 DOI: 10.1016/j.saa.2012.07.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/29/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Few transition metal complexes of tetradentate N(2)O(2) donor Schiff base ligands containing 2-hydroxybenzylidene-4-aminoantipyrine and amino acids (alanine/valine) abbreviated to KHL(1)/KHL(2) have been synthesized. All the metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The Schiff bases KHL(1)/KHL(2) are found to act as tetradentate ligands using N(2)O(2) donor set of atoms leading to a square-planar geometry for the complexes around the metal ions. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The DNA binding constants reveal that all these complexes interact with DNA through minor groove binding mode. The studies on mechanism of photocleavage reveal that singlet oxygen ((1)O(2)) and superoxide anion radical (O(2)(-)) may play an important role in the photocleavage. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae and antifungal activities against Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola and Candida albicans by MIC method.
Collapse
Affiliation(s)
- N Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar 626 001, India.
| | | | | | | |
Collapse
|
27
|
Li C, Zhao F, Huang Y, Liu X, Liu Y, Qiao R, Zhao Y. Metal-Free DNA Linearized Nuclease Based on PASP–Polyamine Conjugates. Bioconjug Chem 2012; 23:1832-7. [DOI: 10.1021/bc300162g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Li
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fangfang Zhao
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yunan Huang
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xueyuan Liu
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Liu
- Department of Chemistry,
College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Renzhong Qiao
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Natural
and Biomimetic Drugs School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100083,
China
| | - Yufen Zhao
- Department of Chemistry,
College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
Loganathan R, Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M. Mixed ligand copper(II) complexes of N,N-bis(benzimidazol-2-ylmethyl)amine (BBA) with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity. Inorg Chem 2012; 51:5512-32. [PMID: 22559171 DOI: 10.1021/ic2017177] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of mononuclear mixed ligand copper(II) complexes [Cu(bba)(diimine)](ClO(4))(2)1-4, where bba is N,N-bis(benzimidazol-2-ylmethyl)amine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), or dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. The coordination geometry around copper(II) in 2 is described as square pyramidal with the two benzimidazole nitrogen atoms of the primary ligand bba and the two nitrogen atoms of phen (2) co-ligand constituting the equatorial plane and the amine nitrogen atom of bba occupying the apical position. In contrast, the two benzimidazole nitrogen atoms and the amine nitrogen atom of bba ligand and one of the two nitrogen atoms of 5,6-dmp constitute the equatorial plane of the trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry of 3 with the other nitrogen atom of 5,6-dmp occupying the apical position. The structures of 1-4 have been optimized by using the density functional theory (DFT) method at the B3LYP/6-31G(d,p) level. Absorption spectral titrations with Calf Thymus (CT) DNA reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq (4) > 5,6-dmp (3) > phen (2) > bpy (1). The DNA binding affinity of 4 is higher than 2 revealing that the π-stacking interaction of the dpq ring in between the DNA base pairs with the two bzim moieties of the bba ligand stacked along the DNA surface is more intimate than that of phen. The complex 3 is bound to DNA more strongly than 1 and 2 through strong hydrophobic interaction of the methyl groups on 5,6-positions of the phen ring in the DNA grooves. The extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes parallels the trend in DNA binding affinities. The large enhancement in relative viscosity of DNA upon binding to 3 and 4 supports the DNA binding modes proposed. Interestingly, the 5,6-dmp complex 3 is selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that it induces a B to A conformational change. In contrast, 2 and 4 show induced CD responses indicating their involvement in strong DNA binding. Interestingly, only the dpq complex 4, which displays the strongest DNA binding affinity and is efficient in cleaving DNA in the absence of an activator with a rate constant of 5.8 ± 0.1 h(-1), which is higher than the uncatalyzed rate of DNA cleavage. All the complexes exhibit oxidative DNA cleavage ability, which varies as 4 > 2 > 3 > 1 (ascorbic acid) and 3 > 2 > 4 > 1 (H(2)O(2)). Also, the complexes cleave the protein bovine serum albumin in the presence of H(2)O(2) as an activator with the cleavage ability varying in the order 3 > 4 > 2 > 1. The highest efficiency of 3 to cleave both DNA and protein in the presence of H(2)O(2) is consistent with its strong hydrophobic interaction with the biopolymers. The IC(50) values of 1-4 against cervical cancer cell lines (SiHa) are almost equal to that of cisplatin, indicating that they have the potential to act as effective anticancer drugs in a time-dependent manner. The morphological assessment data obtained by using acridine orange/ethidium bromide (AO/EB) and Hoechst 33258 staining reveal that 3 induces apoptosis much more effectively than the other complexes. Also, the alkaline single-cell gel electrophoresis study (comet assay) suggests that the same complex induces DNA fragmentation more efficiently than others.
Collapse
Affiliation(s)
- Rangasamy Loganathan
- Centre for Bioinorganic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | | | | | | | | | | |
Collapse
|
29
|
Xie Z, Yu Z, Chen Y, Lu G, Guo Z, He W. DNA cleavage behavior of a new p-xylyl spaced bisCu(BPA)Cl2 complex: the steric effect of a bulky p-xylyl-derived spacer. NEW J CHEM 2012. [DOI: 10.1039/c1nj20793h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Shimakoshi H, Hisaeda Y. Synthesis of Cyclic and Acyclic Schiff-base Compounds and Development of Unique Dicobalt Complexes with Supramolecular Functions. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Joyner JC, Keuper KD, Cowan JA. DNA nuclease activity of Rev-coupled transition metal chelates. Dalton Trans 2012; 41:6567-78. [DOI: 10.1039/c2dt00026a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Efficient double-strand scission of plasmid DNA by quaternized-chitosan zinc complex. Bioorg Med Chem Lett 2011; 22:1814-7. [PMID: 22257891 DOI: 10.1016/j.bmcl.2011.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/24/2022]
Abstract
N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTACC) was prepared to construct a chitosan-based zinc complex (HTACC-Zn(II)) as a catalyst with good water solubility for rapid DNA cleavage. Results indicated that the observed rate constant (k(obs)) of plasmid DNA cleaved by HTACC-Zn(II) could be enhanced by 10(7)-fold compared with that of uncatalyzed DNA cleavage. The kinetic behavior of HTACC-Zn(II) for DNA cleavage is well fitted by Michaelis-Menten model. The results of gel electrophoresis suggested that HTACC-Zn(II) preferentially perform double-strand break of plasmid DNA.
Collapse
|
33
|
Joyner JC, Reichfield J, Cowan JA. Factors influencing the DNA nuclease activity of iron, cobalt, nickel, and copper chelates. J Am Chem Soc 2011; 133:15613-26. [PMID: 21815680 DOI: 10.1021/ja2052599] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A library of complexes that included iron, cobalt, nickel, and copper chelates of cyclam, cyclen, DOTA, DTPA, EDTA, tripeptide GGH, tetrapeptide KGHK, NTA, and TACN was evaluated for DNA nuclease activity, ascorbate consumption, superoxide and hydroxyl radical generation, and reduction potential under physiologically relevant conditions. Plasmid DNA cleavage rates demonstrated by combinations of each complex and biological co-reactants were quantified by gel electrophoresis, yielding second-order rate constants for DNA(supercoiled) to DNA(nicked) conversion up to 2.5 × 10(6) M(-1) min(-1), and for DNA(nicked) to DNA(linear) up to 7 × 10(5) M(-1) min(-1). Relative rates of radical generation and characterization of radical species were determined by reaction with the fluorescent radical probes TEMPO-9-AC and rhodamine B. Ascorbate turnover rate constants ranging from 3 × 10(-4) to 0.13 min(-1) were determined, although many complexes demonstrated no measurable activity. Inhibition and Freifelder-Trumbo analysis of DNA cleavage supported concerted cleavage of dsDNA by a metal-associated reactive oxygen species (ROS) in the case of Cu(2+)(aq), Cu-KGHK, Co-KGHK, and Cu-NTA and stepwise cleavage for Fe(2+)(aq), Cu-cyclam, Cu-cyclen, Co-cyclen, Cu-EDTA, Ni-EDTA, Co-EDTA, Cu-GGH, and Co-NTA. Reduction potentials varied over the range from -362 to +1111 mV versus NHE, and complexes demonstrated optimal catalytic activity in the range of the physiological redox co-reactants ascorbate and peroxide (-66 to +380 mV).
Collapse
Affiliation(s)
- Jeff C Joyner
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
34
|
Li Q, Browne WR, Roelfes G. DNA cleavage activity of Fe(II)N4Py under photo irradiation in the presence of 1,8-naphthalimide and 9-aminoacridine: unexpected effects of reactive oxygen species scavengers. Inorg Chem 2011; 50:8318-25. [PMID: 21780766 DOI: 10.1021/ic2008478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The DNA cleavage activity of the iron(II) complex of the ligand N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine (N4Py) was investigated in the presence of the chromophores 1,8-naphthalimide (NI) and 9-aminoacridine (AA) under photo irradiation at 355 and 400.8 nm and compared to the activity of the complex without the chromophores. Whereas in most cases no synergistic effect of the added chromophores on DNA cleavage efficiency was observed, it was found that for Fe(II)N4Py, in combination with NI under irradiation at 355 nm, the DNA cleavage activity was increased. Surprisingly, it was found that the addition of reactive oxygen species (ROS) scavengers gave rise to significantly increased DNA cleavage efficiency, which is a highly counterintuitive observation since ROS are needed to achieve DNA cleavage. A hypothesis is put forward to explain, at least partly, these results. It is proposed that the addition of scavengers inhibits quenching of (3)NI*, thus making photo-induced electron transfer between (3)NI* and Fe(III)N4Py more efficient. This results in reduction of Fe(III)N4Py to Fe(II)N4Py, which can then react with ROS giving rise to DNA cleavage. Hence the role of the scavengers is to maintain a close to optimal concentration of ROS. The present study serves as an illustration of the care that needs to be exercised in interpreting the results of experiments using standard ROS scavengers, since especially in complex systems such as presented here they can give rise to unexpected phenomena. In the presence of 1,8-naphthalimide or 9-aminoacridine, ROS scavengers can increase the DNA cleavage efficiency of Fe(II)N4Py complex under photo irradiation.
Collapse
Affiliation(s)
- Qian Li
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | |
Collapse
|
35
|
Silva PP, Guerra W, Silveira JN, Ferreira AMDC, Bortolotto T, Fischer FL, Terenzi H, Neves A, Pereira-Maia EC. Two New Ternary Complexes of Copper(II) with Tetracycline or Doxycycline and 1,10-Phenanthroline and Their Potential as Antitumoral: Cytotoxicity and DNA Cleavage. Inorg Chem 2011; 50:6414-24. [DOI: 10.1021/ic101791r] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Ana Maria da C. Ferreira
- Instituto de Química, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, 05508-000 São Paulo−SP, Brazil
| | - Tiago Bortolotto
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970, Florianópolis—SC, Brazil
| | - Franciele L. Fischer
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970, Florianópolis—SC, Brazil
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970, Florianópolis—SC, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis—SC, Brazil
| | | |
Collapse
|
36
|
Qian J, Wang L, Gu W, Liu X, Tian J, Yan S. Efficient double-strand cleavage of DNA mediated by Zn(ii)-based artificial nucleases. Dalton Trans 2011; 40:5617-24. [DOI: 10.1039/c0dt01659d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Li Q, Browne WR, Roelfes G. Photoenhanced oxidative DNA cleavage with non-heme iron(II) complexes. Inorg Chem 2010; 49:11009-17. [PMID: 21058672 DOI: 10.1021/ic1014785] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DNA cleavage activity of iron(II) complexes of a series of monotopic pentadentate N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine (N4Py)-derived ligands (1-5) was investigated under laser irradiation at 473, 400.8, and 355 nm in the absence of a reducing agent and compared to that under ambient lighting. A significant increase in activity was observed under laser irradiation, which is dependent on the structural characteristics of the complexes and the wavelength and power of irradiation. Under photoirradiation at 355 nm, direct double-stand DNA cleavage activity was observed with Fe(II)-1 and Fe(II)-3-5, and a 56-fold increase in the single-strand cleavage activity was observed with Fe(II)-2. Mechanistic investigations revealed that O(2)(•-), (1)O(2), and OH(•) contribute to the photoenhanced DNA cleavage activity, and that their relative contribution is dependent on the wavelength. It is proposed that the origin of the increase in activity is the photoenhanced formation of an Fe(III)OOH intermediate as the active species or precursor.
Collapse
Affiliation(s)
- Qian Li
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | | |
Collapse
|
38
|
Li C, Du C, Tian H, Jiang C, Du M, Liu Y, Qiao RZ, Jia YX, Zhao YF. Artificial Transcription Factors which Mediate Double-Strand DNA Cleavage. Chemistry 2010; 16:12935-40. [DOI: 10.1002/chem.201000552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Cottreau KM, Spencer C, Wentzell JR, Graham CL, Borissow CN, Jakeman DL, McFarland SA. Diverse DNA-cleaving capacities of the jadomycins through precursor-directed biosynthesis. Org Lett 2010; 12:1172-5. [PMID: 20175518 DOI: 10.1021/ol902907r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gel mobility assays were used to establish that some members of the jadomycin family of natural products act as DNA cleaving agents. Moreover, it was found that subtle structural changes generated through the use of precursor-directed biosynthesis lead to marked effects on the DNA-damaging properties of these glycosylated polyketide-derived natural products.
Collapse
Affiliation(s)
- Krista M Cottreau
- Chemistry Department, Acadia University, Wolfville, NS B4P 2R6, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Monro S, Scott J, Chouai A, Lincoln R, Zong R, Thummel RP, McFarland SA. Photobiological activity of Ru(II) dyads based on (pyren-1-yl)ethynyl derivatives of 1,10-phenanthroline. Inorg Chem 2010; 49:2889-900. [PMID: 20146527 DOI: 10.1021/ic902427r] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several mononuclear Ru(II) dyads possessing 1,10-phenanthroline-appended pyrenylethynylene ligands were synthesized, characterized, and evaluated for their potential in photobiological applications such as photodynamic therapy (PDT). These complexes interact with DNA via intercalation and photocleave DNA in vitro at submicromolar concentrations when irradiated with visible light (lambda(irr) > or = 400 nm). Such properties are remarkably sensitive to the position of the ethynylpyrenyl substituent on the 1,10-phenanthroline ring, with 3-substitution showing the strongest binding under all conditions and causing the most deleterious DNA damage. Both dyads photocleave DNA under hypoxic conditions, and this photoactivity translates well to cytotoxicity and photocytotoxicity models using human leukemia cells, where the 5- and 3-substituted dyads show photocytotoxicity at 5-10 microM and 10-20 microM, respectively, with minimal, or essentially no, dark toxicity at these concentrations. This lack of dark cytotoxicity at concentrations where significant photoactivity is observed emphasizes that agents with strong intercalating units, previously thought to be too toxic for phototherapeutic applications, should not be excluded from the arsenal of potential photochemotherapeutic agents under investigation.
Collapse
Affiliation(s)
- Susan Monro
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Li Q, van den Berg TA, Feringa BL, Roelfes G. Mononuclear Fe(ii)-N4Py complexes in oxidative DNA cleavage: structure, activity and mechanism. Dalton Trans 2010; 39:8012-21. [DOI: 10.1039/b927145g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Wang JT, Xia Q, Zheng XH, Chen HY, Chao H, Mao ZW, Ji LN. An effective approach to artificial nucleases using copper(ii) complexes bearing nucleobases. Dalton Trans 2010; 39:2128-36. [DOI: 10.1039/b915392f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Shimakoshi H, Kaieda T, Hisaeda Y. The Single- and Double-Strand Cleavage of DNA by a Cationic Dicobalt Complex by Visible Light. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2009. [DOI: 10.1246/bcsj.82.1386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Śmiałek MA, Moore SA, Mason NJ, Shuker DEG. Quantification of Radiation-Induced Single-Strand Breaks in Plasmid DNA using a TUNEL/ELISA-Based Assay. Radiat Res 2009; 172:529-36. [DOI: 10.1667/rr1684.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Megens RP, van den Berg TA, de Bruijn AD, Feringa BL, Roelfes G. Multinuclear non-heme iron complexes for double-strand DNA cleavage. Chemistry 2009; 15:1723-33. [PMID: 19130526 DOI: 10.1002/chem.200801409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cytotoxicity of the anti-tumor drug BLM is believed to be related to the ability of the corresponding iron complex (Fe-BLM) to engage in oxidative double-strand DNA cleavage. The iron complex of the ligand N4Py (Fe-N4Py; N4Py = N,N-bis(2-pyridyl)-N-bis(2-pyridyl)methylamine) has proven to be a particularly valuable spectroscopic and functional model for Fe-BLM. It is also a very active oxidative DNA-cleaving agent. However, like all other synthetic Fe-BLM mimics, it gives only single-strand DNA cleavage. Since double-strand DNA cleavage requires the delivery of two oxidizing equivalents to the DNA, it was envisaged that multinuclear iron complexes might be capable of effecting double-strand cleavage. For this purpose, a series of ditopic and tritopic N4Py-derived ligands has been synthesized and the corresponding iron complexes have been evaluated for their efficacy in the oxidative cleavage of supercoiled pUC18 plasmid DNA. The dinuclear iron complexes showed significantly enhanced double-strand cleavage activity compared to mononuclear Fe-N4Py, which was relatively independent of the structure of the linking moiety. Covalent attachment of a 9-aminoacridine intercalator to a dinuclear complex did not give rise to improved double-strand DNA cleavage. The most efficient oxidative double-strand cleavage agents proved to be the trinuclear iron complexes. This is presumably the result of increased probability of the simultaneous delivery of two oxidizing equivalents to the DNA.
Collapse
Affiliation(s)
- Rik P Megens
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Oxidative nuclease activity of ferromagnetically coupled μ-hydroxo-μ-propionato copper(II) complexes [Cu3(L)2(μ-OH)2(μ-propionato)2] (L=N-(pyrid-2-ylmethyl)R-sulfonamidato, R=benzene, toluene, naphthalene). J Inorg Biochem 2009; 103:243-55. [DOI: 10.1016/j.jinorgbio.2008.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/13/2008] [Accepted: 10/15/2008] [Indexed: 11/20/2022]
|
48
|
Jin Y, Lewis MA, Gokhale NH, Long EC, Cowan JA. Influence of Stereochemistry and Redox Potentials on the Single- and Double-Strand DNA Cleavage Efficiency of Cu(II)· and Ni(II)·Lys-Gly-His-Derived ATCUN Metallopeptides. J Am Chem Soc 2007; 129:8353-61. [PMID: 17552522 DOI: 10.1021/ja0705083] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA cleavage chemistry of a series of metallopeptides based on the amino-terminal Cu and Ni (ATCUN) binding motif of proteins has been studied. Specifically, the impact of the positioning of charged Lys side chains and their stereochemistry on metal reduction potentials and DNA cleavage reactivity have been quantitatively evaluated. Both Cu and Ni metallopeptides show a general increase in reactivity toward DNA with an increasing number of Lys residues, while a corresponding decrease in complex reduction potential reflects the enhanced sigma-donor character of the Lys side chain relative to that of Gly. Placement of Lys at the first position in the tripeptide ligand sequence resulted in a greater increase in DNA cleavage reactivity, relative to placement at the second position, while a switch from an l-Lys to a d-Lys typically resulted in enhanced reactivity, as well as perturbations of reduction potential. In the case of Cu peptides, reactivity was enhanced with both increasing positive charge density on the peptide and stabilization of the Cu3+ state. However, for Ni peptides, while the general trends are the same, the correlation with redox behavior was less pronounced. Most likely these differences in specific trends for the Cu and Ni complexes reflect the distinct coordination preferences for Cu3+/2+ and Ni3+/2+ oxidation states, and the consequent distinct positioning of metal-associated reactive oxygen species, as well as the orientation of the DNA-associated complex. Thus, the amino acid composition and stereochemistry of ATCUN metallopeptides can tune the intrinsic reactivities of these systems (their ability to promote formation and activity of metal-associated ROS) as well as their overall structural features, and both of these aspects appear to influence their reactivity and efficiency of DNA strand scission.
Collapse
Affiliation(s)
- Yan Jin
- Evans Laboratory of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
49
|
van den Berg TA, Feringa BL, Roelfes G. Double strand DNA cleavage with a binuclear iron complex. Chem Commun (Camb) 2006:180-2. [PMID: 17180239 DOI: 10.1039/b613469f] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalently linking two single strand DNA cleaving agents resulted in a new biomimetic binuclear iron complex capable of effecting oxidative double strand DNA cleavage.
Collapse
Affiliation(s)
- Tieme A van den Berg
- Department of Organic and Molecular Inorganic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | |
Collapse
|
50
|
Zhao Y, Zhu J, He W, Yang Z, Zhu Y, Li Y, Zhang J, Guo Z. Oxidative DNA Cleavage Promoted by Multinuclear Copper Complexes: Activity Dependence on the Complex Structure. Chemistry 2006; 12:6621-9. [PMID: 16755636 DOI: 10.1002/chem.200600044] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polynuclear copper complexes with two or three Cu(BPA) (BPA, bis(2-pyridylmethyl)amine) motifs, [Cu2(mTPXA)Cl4]3 H2O (1), [Cu2(pTPXA)Cl4]3 H2O (2), [Cu3(HPTAB)Cl5]Cl3 H2O (3) (mTPXA = N,N,N',N'-tetra-(2-pyridylmethyl)-m-xylylene diamine; pTPXA = N,N, N',N'-tetra-(2-pyridylmethyl)-p-xylylenediamine; HPTAB = N,N,N',N',N'',N''-hexakis(2-pyridylmethyl)-1,3,5-tris-(aminomethyl)benzene) have been synthesized and characterized. The crystal structures of compounds 2 and 3 showed each Cu(BPA) motif had a 4+1 square-pyramidal coordination environment with one chloride occupying the apical position and three N atoms from the same BPA moiety together with another Cl atom forming the basal plane. Fluorescence and circular dichroism (CD) spectroscopy studies indicated that the DNA binding followed an order of 3>2>1 in the compounds. These complexes cleave plasmid pUC19 DNA by using an oxidative mechanism with mercaptopropionic acid (MPA) as the reductant under aerobic conditions. Dinuclear Cu2+ complexes 1 and 2 showed much higher cleavage efficiency than their mononuclear analogue [Cu(bpa)Cl2] at the same [Cu2+] concentration, suggesting a synergistic effect of the Cu2+ centers. Moreover, the meta-dicopper centers in complex 1 facilitated the formation of linear DNA. Interestingly, the additional copper center to the meta-dicopper motif in complex 3 decreased the cleavage efficacy of meta-dicopper motif in complex 1, although it is able to cleave DNA to the linear form at higher [Cu2+] concentrations. Therefore, the higher DNA binding ability of complex 3 did not lead to higher cleavage efficiency. These findings have been correlated to the DNA binding mode and the ability of the Cu2+ complexes to activate oxygen (O2). This work is a good example of the rational design of multinuclear Cu2+ artificial nuclease and the activity of which can be manipulated by the geometry and the number of metal centers.
Collapse
Affiliation(s)
- Yongmei Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|